Design and Fabrication of Faceted Mirror Arrays for Light Field Capture

The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipelin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 32; číslo 8; s. 246 - 257
Hlavní autori: Fuchs, Martin, Kächele, Markus, Rusinkiewicz, Szymon
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.12.2013
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC‐cut mirror facets. We demonstrate results for refocusing in a macro photography scenario. In addition, we observe that traditional photographic parameters take novel roles in the faceted mirror array setup and discuss their influence. The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating, and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC‐cut mirror facets.
AbstractList The high resolution of digital cameras has made single-shot, single-sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC-cut mirror facets. We demonstrate results for refocusing in a macro photography scenario. In addition, we observe that traditional photographic parameters take novel roles in the faceted mirror array setup and discuss their influence. [PUBLICATION ABSTRACT]
The high resolution of digital cameras has made single-shot, single-sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC-cut mirror facets. We demonstrate results for refocusing in a macro photography scenario. In addition, we observe that traditional photographic parameters take novel roles in the faceted mirror array setup and discuss their influence. The high resolution of digital cameras has made single-shot, single-sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating, and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC-cut mirror facets.
The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC‐cut mirror facets. We demonstrate results for refocusing in a macro photography scenario. In addition, we observe that traditional photographic parameters take novel roles in the faceted mirror array setup and discuss their influence. The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating, and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC‐cut mirror facets.
The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC‐cut mirror facets. We demonstrate results for refocusing in a macro photography scenario. In addition, we observe that traditional photographic parameters take novel roles in the faceted mirror array setup and discuss their influence.
Author Fuchs, Martin
Rusinkiewicz, Szymon
Kächele, Markus
Author_xml – sequence: 1
  givenname: Martin
  surname: Fuchs
  fullname: Fuchs, Martin
  email: martin.fuchs@visus.uni-stuttgart.de
  organization: University of Stuttgart, Germany
– sequence: 2
  givenname: Markus
  surname: Kächele
  fullname: Kächele, Markus
  email: markus.kaechele@uni-ulm.de
  organization: University of Ulm, Germany
– sequence: 3
  givenname: Szymon
  surname: Rusinkiewicz
  fullname: Rusinkiewicz, Szymon
  email: smr@princeton.edu
  organization: Princeton University, NJ, Princeton, USA
BookMark eNp1kE9PwjAYhxujiYAe_AZLvOhh0K5_th3JEDQBjYnGY9N177A4NmxHlG9vBfRAtJe-TZ_nzS-_LjqumxoQuiC4T_wZ6HnZJ1GEyRHqECbiMBE8PUYdTPwcY85PUde5BcaYxYJ30GQEzszrQNVFMFa5NVq1pqmDpvRPDS0UwcxY29hgaK3auKD049TMX9tgbKAqgkyt2rWFM3RSqsrB-f7uoefxzVN2G04fJnfZcBpqRhkJoaQCIqEEUTzJc5EniS7SUqexYolKCOAk5XlepDEtY-0_CsWYj664j57kQHvoard3ZZv3NbhWLo3TUFWqhmbtJGEpo5REmHr08gBdNGtb-3SeEhGOBE6xpwY7StvGOQul1KbddtBaZSpJsPwuVvpi5bZYb1wfGCtrlspu_mT32z9MBZv_QZlNxj9GuDOMa-Hz11D2TYqYxly-3E9kNsPZiKcz-Ui_ABrLlow
CitedBy_id crossref_primary_10_1109_TPAMI_2021_3070347
crossref_primary_10_3390_photonics10111219
crossref_primary_10_1109_TCI_2019_2911856
crossref_primary_10_1145_3478513_3480524
crossref_primary_10_1109_LRA_2017_2654544
crossref_primary_10_1364_AO_542123
crossref_primary_10_1016_j_cviu_2015_11_004
crossref_primary_10_3390_s18113711
crossref_primary_10_1145_3072959_3073589
crossref_primary_10_1364_AO_55_008457
crossref_primary_10_1109_TVCG_2016_2532329
Cites_doi 10.1145/1073204.1073259
10.1145/237170.237199
10.1007/s11263-011-0422-6
10.1007/978-3-642-19315-6_26
10.1145/1531326.1531403
10.1145/344779.344925
10.1145/1882261.1866194
10.1007/s11263‐008‐0151‐7
10.1145/344779.344929
10.1111/j.1467-8659.2009.01646.x
10.1145/133994.134078
10.1109/CVPR.2010.5540174
10.1145/1015706.1015806
10.1145/1015706.1015805
10.1145/237170.237200
10.1109/CVPR.2008.4587835
10.1109/CVPR.2007.383467
10.1145/1276377.1276463
ContentType Journal Article
Copyright 2013 The Authors Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.
Copyright © 2013 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2013 The Authors Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.
– notice: Copyright © 2013 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12201
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 257
ExternalDocumentID 3139044331
10_1111_cgf_12201
CGF12201
ark_67375_WNG_CM0CD59M_Q
Genre article
Feature
GrantInformation_xml – fundername: German Academic Exchange Service (DAAD)
– fundername: US NSF
  funderid: #CCF‐1012147
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
ALUQN
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4341-ef36e26a61a58bb6b88cd9fc97a48a81e0895bbd973f7c9fcda44167a50558be3
IEDL.DBID DRFUL
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327433800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 11:42:40 EST 2025
Sun Nov 09 06:11:09 EST 2025
Tue Nov 18 22:14:58 EST 2025
Sat Nov 29 03:41:10 EST 2025
Sun Sep 21 06:20:07 EDT 2025
Tue Nov 11 03:32:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4341-ef36e26a61a58bb6b88cd9fc97a48a81e0895bbd973f7c9fcda44167a50558be3
Notes ArticleID:CGF12201
istex:8133D6616120C62000252CA9B01AC52407C25128
US NSF - No. #CCF-1012147
German Academic Exchange Service (DAAD)
ark:/67375/WNG-CM0CD59M-Q
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1462026090
PQPubID 30877
PageCount 12
ParticipantIDs proquest_miscellaneous_1494331203
proquest_journals_1462026090
crossref_citationtrail_10_1111_cgf_12201
crossref_primary_10_1111_cgf_12201
wiley_primary_10_1111_cgf_12201_CGF12201
istex_primary_ark_67375_WNG_CM0CD59M_Q
PublicationCentury 2000
PublicationDate December 2013
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: December 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References [AVR10] Agrawal A., Veeraraghavan A., Raskar R.: Reinterpretable imager: Towards variable post capture space, angle and time resolution in photography. Computer Graphics Forum (Proc. Eurographics special issue) 29 (2010), 763-772.
[WJV*05] Wilburn B., Joshi N., Vaish V., Talvala E.-V., Antunez E., Barth A., Adams A., Horowitz M., Levoy M.: High performance imaging using large camera arrays. ACM Transactions on Graphics 24 (July 2005), 765-776.
[TAV*10] Taguchi Y., Agrawal A., Veeraraghavan A., Ramalingam S., Raskar R.: Axial-cones: Modeling spherical catadioptric cameras for wide-angle light field rendering. ACM Transactions on Graphics (Proc. of SIGGRAPH Asia special issue) 29, 6 (2010), 172.
[LHG*09] Levin A., Hasinoff S. W., Green P., Durand F., Freeman W. T.: 4D frequency analysis of computational cameras for depth of field extension. ACM Transactions on Graphics (Proc. SIGGRAPH special issue) 28 (July 2009), 97:1-97:14.
[LCV*04] Levoy M., Chen B., Vaish V., Horowitz M., McDowall I., Bolas M.: Synthetic aperture confocal imaging. ACM Transactions on Graphics (Proc. SIGGRAPH special issue), 23 (August 2004), 825-834.
[Yan00] Yang J. C.: A Light Field Camera for Image Based Rendering. PhD thesis, Massachusetts Institute of Technology, 2000.
[CNR08] Cossairt O., Nayar S. K., Ramamoorthi R.: Light field transfer: Global illumination between real and synthetic objects. ACM Transactions on Graphics (Proc. SIGGRAPH special issue) 27, 3 (August 2008), 57.
[YEBM02] Yang J. C., Everett M., Buehler C., McMillan L.: A real-time distributed light field camera. Rendering Techniques 2002 (Proc. Eurographics Rendering Workshop) (2002), 77-86.
[MP04] Matusik W., Pfister H.: 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Transactions on Graphics (Proc. SIGGRAPH 2004) 23, 3 (2004), 814-824.
[NLB*05] Ng R., Levoy M., Brédif M., Duval G., Horowitz M., Hanrahan P.: Light Field Photography with a Hand-held Plenoptic Camera. Tech Report, Stanford University Computer Science, April 2005.
[VRA*07] Veeraraghavan A., Raskar R., Agrawal A., Mohan A., Tumblin J.: Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Transactions on Graphics (Proc. SIGGRAPH 2007) 26, 3 (2007), 69.
[GHAO10] Ghosh A., Heidrich W., Achutha S., O'Toole M.: A basis illumination approach to BRDF measurement. International Journal of Computer Vision 90 (2010), 183-197. doi: 10.1007/s11263-008-0151-7.
[ZBW11] Zimmer H., Bruhn A., Weickert J.: Optic flow in harmony. International Journal of Computer Vision 93, 3 (2011), 368-388.
[Ng06] Ng R.: Digital Light Field Photography. PhD thesis, Stanford University, 2006.
2012
2000
2011
2010; 29
2010
2011; 93
2008; 27
2004; 23
2008
1996
2007
2006
2005
2001; 2
2004
2003
1992
2002
2010; 90
2007; 26
2005; 24
2009; 28
e_1_2_9_31_1
e_1_2_9_11_1
Lanman D. (e_1_2_9_13_1) 2006
e_1_2_9_34_1
e_1_2_9_10_1
Fuchs M. (e_1_2_9_6_1) 2012
Unger J. (e_1_2_9_25_1) 2003
e_1_2_9_12_1
Ng R. (e_1_2_9_20_1) 2006
Dana K. J. (e_1_2_9_5_1) 2001
Taguchi Y. (e_1_2_9_23_1) 2010
Ng R. (e_1_2_9_21_1) 2005
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_22_1
Wetzstein G. (e_1_2_9_30_1) 2010
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_3_1
Cossairt O. (e_1_2_9_4_1) 2008; 27
e_1_2_9_2_1
e_1_2_9_26_1
Georgiev T. (e_1_2_9_9_1) 2006
e_1_2_9_28_1
Yang J. C. (e_1_2_9_32_1) 2000
e_1_2_9_27_1
Yang J. C. (e_1_2_9_33_1) 2002
e_1_2_9_29_1
References_xml – reference: [LCV*04] Levoy M., Chen B., Vaish V., Horowitz M., McDowall I., Bolas M.: Synthetic aperture confocal imaging. ACM Transactions on Graphics (Proc. SIGGRAPH special issue), 23 (August 2004), 825-834.
– reference: [NLB*05] Ng R., Levoy M., Brédif M., Duval G., Horowitz M., Hanrahan P.: Light Field Photography with a Hand-held Plenoptic Camera. Tech Report, Stanford University Computer Science, April 2005.
– reference: [VRA*07] Veeraraghavan A., Raskar R., Agrawal A., Mohan A., Tumblin J.: Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Transactions on Graphics (Proc. SIGGRAPH 2007) 26, 3 (2007), 69.
– reference: [WJV*05] Wilburn B., Joshi N., Vaish V., Talvala E.-V., Antunez E., Barth A., Adams A., Horowitz M., Levoy M.: High performance imaging using large camera arrays. ACM Transactions on Graphics 24 (July 2005), 765-776.
– reference: [AVR10] Agrawal A., Veeraraghavan A., Raskar R.: Reinterpretable imager: Towards variable post capture space, angle and time resolution in photography. Computer Graphics Forum (Proc. Eurographics special issue) 29 (2010), 763-772.
– reference: [ZBW11] Zimmer H., Bruhn A., Weickert J.: Optic flow in harmony. International Journal of Computer Vision 93, 3 (2011), 368-388.
– reference: [MP04] Matusik W., Pfister H.: 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Transactions on Graphics (Proc. SIGGRAPH 2004) 23, 3 (2004), 814-824.
– reference: [Ng06] Ng R.: Digital Light Field Photography. PhD thesis, Stanford University, 2006.
– reference: [TAV*10] Taguchi Y., Agrawal A., Veeraraghavan A., Ramalingam S., Raskar R.: Axial-cones: Modeling spherical catadioptric cameras for wide-angle light field rendering. ACM Transactions on Graphics (Proc. of SIGGRAPH Asia special issue) 29, 6 (2010), 172.
– reference: [Yan00] Yang J. C.: A Light Field Camera for Image Based Rendering. PhD thesis, Massachusetts Institute of Technology, 2000.
– reference: [LHG*09] Levin A., Hasinoff S. W., Green P., Durand F., Freeman W. T.: 4D frequency analysis of computational cameras for depth of field extension. ACM Transactions on Graphics (Proc. SIGGRAPH special issue) 28 (July 2009), 97:1-97:14.
– reference: [CNR08] Cossairt O., Nayar S. K., Ramamoorthi R.: Light field transfer: Global illumination between real and synthetic objects. ACM Transactions on Graphics (Proc. SIGGRAPH special issue) 27, 3 (August 2008), 57.
– reference: [GHAO10] Ghosh A., Heidrich W., Achutha S., O'Toole M.: A basis illumination approach to BRDF measurement. International Journal of Computer Vision 90 (2010), 183-197. doi: 10.1007/s11263-008-0151-7.
– reference: [YEBM02] Yang J. C., Everett M., Buehler C., McMillan L.: A real-time distributed light field camera. Rendering Techniques 2002 (Proc. Eurographics Rendering Workshop) (2002), 77-86.
– start-page: 31
  year: 1996
  end-page: 42
– start-page: 545
  year: 2010
  end-page: 552
– volume: 23
  start-page: 814
  issue: 3
  year: 2004
  end-page: 824
  article-title: 3D TV: a scalable system for real‐time acquisition, transmission, and autostereoscopic display of dynamic scenes
  publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH 2004)
– start-page: 141
  year: 2003
  end-page: 149
– start-page: 1
  year: 2007
  end-page: 8
– start-page: 483
  year: 2010
  end-page: 490
– year: 2005
– start-page: 77
  year: 2002
  end-page: 86
  article-title: A real‐time distributed light field camera
  publication-title: Rendering Techniques 2002 (Proc. Eurographics Rendering Workshop)
– volume: 28
  start-page: 97:1
  year: 2009
  end-page: 97:14
  article-title: 4D frequency analysis of computational cameras for depth of field extension
  publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH special issue)
– volume: 29
  start-page: 172
  issue: 6
  year: 2010
  article-title: Axial‐cones: Modeling spherical catadioptric cameras for wide‐angle light field rendering
  publication-title: ACM Transactions on Graphics (Proc. of SIGGRAPH Asia special issue)
– year: 2000
– start-page: 336
  year: 2011
  end-page: 349
– volume: 24
  start-page: 765
  year: 2005
  end-page: 776
  article-title: High performance imaging using large camera arrays
  publication-title: ACM Transactions on Graphics
– start-page: 43
  year: 1996
  end-page: 54
– start-page: 263
  year: 2006
  end-page: 272
– start-page: 265
  year: 1992
  end-page: 272
– volume: 23
  start-page: 825
  year: 2004
  end-page: 834
  article-title: Synthetic aperture confocal imaging
  publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH special issue)
– start-page: 499
  year: 2010
  end-page: 506
– start-page: 1
  year: 2008
  end-page: 8
– volume: 93
  start-page: 368
  issue: 3
  year: 2011
  end-page: 388
  article-title: Optic flow in harmony
  publication-title: International Journal of Computer Vision
– year: 2006
– year: 2004
– volume: 2
  start-page: 460
  year: 2001
  end-page: 6
– volume: 90
  start-page: 183
  year: 2010
  end-page: 197
  article-title: A basis illumination approach to BRDF measurement
  publication-title: International Journal of Computer Vision
– start-page: 297
  year: 2000
  end-page: 306
– volume: 27
  start-page: 57
  issue: 3
  year: 2008
  article-title: Light field transfer: Global illumination between real and synthetic objects
  publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH special issue)
– volume: 29
  start-page: 763
  year: 2010
  end-page: 772
  article-title: Reinterpretable imager: Towards variable post capture space, angle and time resolution in photography
  publication-title: Computer Graphics Forum (Proc. Eurographics special issue)
– start-page: 1
  year: 2012
  end-page: 8
– start-page: 287
  year: 2000
  end-page: 296
– volume: 26
  start-page: 69
  issue: 3
  year: 2007
  article-title: Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing
  publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH 2007)
– ident: e_1_2_9_31_1
  doi: 10.1145/1073204.1073259
– ident: e_1_2_9_3_1
– start-page: 499
  volume-title: Computer Vision and Pattern Recognition (CVPR)
  year: 2010
  ident: e_1_2_9_23_1
– ident: e_1_2_9_14_1
  doi: 10.1145/237170.237199
– ident: e_1_2_9_34_1
  doi: 10.1007/s11263-011-0422-6
– ident: e_1_2_9_19_1
  doi: 10.1007/978-3-642-19315-6_26
– ident: e_1_2_9_15_1
  doi: 10.1145/1531326.1531403
– ident: e_1_2_9_28_1
  doi: 10.1145/344779.344925
– start-page: 77
  year: 2002
  ident: e_1_2_9_33_1
  article-title: A real‐time distributed light field camera
  publication-title: Rendering Techniques 2002 (Proc. Eurographics Rendering Workshop)
– ident: e_1_2_9_24_1
  doi: 10.1145/1882261.1866194
– volume-title: A Light Field Camera for Image Based Rendering
  year: 2000
  ident: e_1_2_9_32_1
– ident: e_1_2_9_8_1
  doi: 10.1007/s11263‐008‐0151‐7
– ident: e_1_2_9_10_1
  doi: 10.1145/344779.344929
– ident: e_1_2_9_16_1
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1467-8659.2009.01646.x
– start-page: 1
  volume-title: VMV 2012: Vision, Modeling & Visualization
  year: 2012
  ident: e_1_2_9_6_1
– start-page: 460
  volume-title: ICCV Proceedings of Eighth IEEE International Conference on Computer Vision
  year: 2001
  ident: e_1_2_9_5_1
– volume-title: Third International Symposium on 3D Data Processing, Visualization and Transmission
  year: 2006
  ident: e_1_2_9_13_1
– ident: e_1_2_9_29_1
  doi: 10.1145/133994.134078
– start-page: 545
  volume-title: Computer Vision and Pattern Recognition (CVPR)
  year: 2010
  ident: e_1_2_9_30_1
– ident: e_1_2_9_11_1
  doi: 10.1109/CVPR.2010.5540174
– start-page: 263
  volume-title: Rendering Techniques 2006 (Proc. EGSR )
  year: 2006
  ident: e_1_2_9_9_1
– start-page: 141
  volume-title: Rendering Techniques 2003 (Proc. EGSR)
  year: 2003
  ident: e_1_2_9_25_1
– ident: e_1_2_9_12_1
  doi: 10.1145/1015706.1015806
– ident: e_1_2_9_17_1
  doi: 10.1145/1015706.1015805
– ident: e_1_2_9_7_1
  doi: 10.1145/237170.237200
– volume-title: Digital Light Field Photography
  year: 2006
  ident: e_1_2_9_20_1
– ident: e_1_2_9_22_1
– ident: e_1_2_9_26_1
  doi: 10.1109/CVPR.2008.4587835
– ident: e_1_2_9_18_1
  doi: 10.1109/CVPR.2007.383467
– ident: e_1_2_9_27_1
  doi: 10.1145/1276377.1276463
– volume: 27
  start-page: 57
  issue: 3
  year: 2008
  ident: e_1_2_9_4_1
  article-title: Light field transfer: Global illumination between real and synthetic objects
  publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH special issue)
– volume-title: Light Field Photography with a Hand‐held Plenoptic Camera
  year: 2005
  ident: e_1_2_9_21_1
SSID ssj0004765
Score 2.1515799
Snippet The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still...
The high resolution of digital cameras has made single-shot, single-sensor acquisition of light fields feasible, though considerable design effort is still...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 246
SubjectTerms 2012 Computing Methodologies
Acquisitions
Analysis
Artificial Intelligence
catadioptric
Computational Photography
Computer graphics
Computer Vision
Design
Digital cameras
Digitization and Image Capture
fabrication
I.4.1 Image Processing and Computer Vision
Image and Video Acquisition
Imaging geometry
light field recording
mirror design
Mirrors
Studies
Title Design and Fabrication of Faceted Mirror Arrays for Light Field Capture
URI https://api.istex.fr/ark:/67375/WNG-CM0CD59M-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12201
https://www.proquest.com/docview/1462026090
https://www.proquest.com/docview/1494331203
Volume 32
WOSCitedRecordID wos000327433800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_E60N9UFsVr36wShFfIpfEJLv4JDlzffCOtlT0LexX5FBykrsr7X_vzF4ST6gg9CUk7GzYzOxkfrM7MwvwVdrQKKG4h6YWHRTuRx5aQe6ZHhc2EuhSRIU7bCIZjfjdnfi-AhdNLsyiPkS74Eaa4f7XpOBSTZeUXN8XZ34QUO5Wh5Kq0PPq9H9mN9cvaZFJHDWlvaloTF1YiAJ52s6vzFGHOPvnFdZcRqzO5GQb_zXYTVivkSa7XEyNT7Biy8-wtlR_cAsGfRe_wWRpWCZVVa_fsUmBjxrhtGHDcVVNKnxLJf9OGSJcdk3uPMso8o2l8ol2ILbhJrv6lX7z6pMVPH2OZsuzRRjbIJaxLyOuVKw410YUWiTynEvuW5RUpJQRSVgkGhuMRFnGiUS8hB1suAOr5aS0u8B8RGAh7fci8MNLyI2vVS-2VsSJVdJ04bRhcK7rsuN0-sVj3rgfyJvc8aYLxy3p06LWxr-ITpyUWgpZPVBwWhLlt6NBng57aT8Sw_xHF_YbMea1Xk7J0QmoiprodeGobUaNom0SWdrJnGgEpZHht-DYnVDfHk2eDjJ38-X9pHvwMaAzNVxMzD6szqq5PYAP-vdsPK0O60n8DJTe8KY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_KnaA-WD_xtOoqIr6kXJLLfkBfSs5cxbtDpcW-LbubjRQlV3Kt6H_fmb0kXkFB8CUk7GzYzOxkZnZnfwPw2vi0tMrKCE0tBigyziK0gjIqx1L5TGFIkVWh2IRYLuXpqfq4AwfdWZgNPkS_4EaaEf7XpOC0IL2l5e5rtR8nCR3eGk54KuQAhtPPxcn897lIwbMO25tQY1pkIcrk6Ttfs0dDYu3Pa87mtssabE6x-3-jvQt3Wl-THW4mxz3Y8fV9uL2FQPgAZtOQwcFMXbLC2KZdwWOrCh8dOtQlW5w1zarBtzTm15qhj8vmFNCzgnLfWG7OaQ_iIZwU747zo6itrRC5CRquyFcp9wk3PDaZtJZbKV2pKqeEmUgjY4-yyqwtlUgr4bChNChNLgx6TNjBp49gUK9q_xhYjD5YSju-6PrhJZVl7OyYe6-48NaUI3jbcVi7Fnic6l98110AgrzRgTcjeNWTnm_QNv5E9CaIqacwzTdKTxOZ_rKc6XwxzqeZWuhPI9jr5KhbzVxTqJMQjpoaj-Bl34w6RRslpvarS6JRdJAMvwXHHqT699HofFaEmyf_TvoCbh4dL-Z6_n754SncSqjCRsiQ2YPBRXPpn8EN9-PibN08b2f0FQl89JY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB-OVkQfPD-56qmriPgSaZJusgv3IqmpYltO8fDelv3KcShpSe9E_3tntknsgYLgS0jY2bCZ2cn8ZndmFuCF9qkz0ogITS06KCLmEVpBEbmxkJ5LdCl4FQ6byJdLcXoqj_fgqMuF2daH6BfcSDPC_5oU3K9dtaPl9qx6HScJJW8NJ1zyyQCG00_lyfx3XmSe8a62N1WNaSsLUSRP3_mKPRoSa39cAZu7kDXYnHL__0Z7G261WJO92U6OO7Dn67twc6cC4T2YTUMEB9O1Y6U2TbuCx1YVPloE1I4tzptm1eBbGv1zwxDjsjk59Kyk2DdW6DXtQdyHk_Lt5-Jd1J6tENkJGq7IV2nmk0xnsebCmMwIYZ2srMz1RGgRe5QVN8bJPK1yiw1OozSzXCNiwg4-fQCDelX7A2AxYrCUdnwR-uElFS62Zpx5L7PcG-1G8KrjsLJt4XE6_-Kb6hwQ5I0KvBnB8550va228Seil0FMPYVuvlJ4Ws7Vl-VMFYtxMeVyoT6O4LCTo2o1c0OuTkJ11OR4BM_6ZtQp2ijRtV9dEo2kRDL8Fhx7kOrfR6OKWRluHv476VO4fjwt1fz98sMjuJHQARshQOYQBhfNpX8M1-z3i_NN86Sd0L8Ao5z0EQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Fabrication+of+Faceted+Mirror+Arrays+for+Light+Field+Capture&rft.jtitle=Computer+graphics+forum&rft.au=Fuchs%2C+Martin&rft.au=K%C3%A4chele%2C+Markus&rft.au=Rusinkiewicz%2C+Szymon&rft.date=2013-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=32&rft.issue=8&rft.spage=246&rft.epage=257&rft_id=info:doi/10.1111%2Fcgf.12201&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_CM0CD59M_Q
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon