Design and Fabrication of Faceted Mirror Arrays for Light Field Capture
The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipelin...
Uložené v:
| Vydané v: | Computer graphics forum Ročník 32; číslo 8; s. 246 - 257 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Blackwell Publishing Ltd
01.12.2013
|
| Predmet: | |
| ISSN: | 0167-7055, 1467-8659 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC‐cut mirror facets. We demonstrate results for refocusing in a macro photography scenario. In addition, we observe that traditional photographic parameters take novel roles in the faceted mirror array setup and discuss their influence.
The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating, and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC‐cut mirror facets. |
|---|---|
| AbstractList | The high resolution of digital cameras has made single-shot, single-sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC-cut mirror facets. We demonstrate results for refocusing in a macro photography scenario. In addition, we observe that traditional photographic parameters take novel roles in the faceted mirror array setup and discuss their influence. [PUBLICATION ABSTRACT] The high resolution of digital cameras has made single-shot, single-sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC-cut mirror facets. We demonstrate results for refocusing in a macro photography scenario. In addition, we observe that traditional photographic parameters take novel roles in the faceted mirror array setup and discuss their influence. The high resolution of digital cameras has made single-shot, single-sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating, and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC-cut mirror facets. The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC‐cut mirror facets. We demonstrate results for refocusing in a macro photography scenario. In addition, we observe that traditional photographic parameters take novel roles in the faceted mirror array setup and discuss their influence. The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating, and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC‐cut mirror facets. The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still necessary in order to construct the necessary collection of optical elements for particular acquisition scenarios. This paper explores a pipeline for designing, fabricating and utilizing faceted mirror arrays which simplifies this task. The foundation of the pipeline is an interactive tool that automatically optimizes for mirror designs while exposing to the user a set of intuitive parameters for light field quality and manufacturing constraints. We investigate two manufacturing processes for automatic fabrication of the resulting designs: one is based on CNC milling, polishing, and plating of one solid work piece, while the other involves assembly of CNC‐cut mirror facets. We demonstrate results for refocusing in a macro photography scenario. In addition, we observe that traditional photographic parameters take novel roles in the faceted mirror array setup and discuss their influence. |
| Author | Fuchs, Martin Rusinkiewicz, Szymon Kächele, Markus |
| Author_xml | – sequence: 1 givenname: Martin surname: Fuchs fullname: Fuchs, Martin email: martin.fuchs@visus.uni-stuttgart.de organization: University of Stuttgart, Germany – sequence: 2 givenname: Markus surname: Kächele fullname: Kächele, Markus email: markus.kaechele@uni-ulm.de organization: University of Ulm, Germany – sequence: 3 givenname: Szymon surname: Rusinkiewicz fullname: Rusinkiewicz, Szymon email: smr@princeton.edu organization: Princeton University, NJ, Princeton, USA |
| BookMark | eNp1kE9PwjAYhxujiYAe_AZLvOhh0K5_th3JEDQBjYnGY9N177A4NmxHlG9vBfRAtJe-TZ_nzS-_LjqumxoQuiC4T_wZ6HnZJ1GEyRHqECbiMBE8PUYdTPwcY85PUde5BcaYxYJ30GQEzszrQNVFMFa5NVq1pqmDpvRPDS0UwcxY29hgaK3auKD049TMX9tgbKAqgkyt2rWFM3RSqsrB-f7uoefxzVN2G04fJnfZcBpqRhkJoaQCIqEEUTzJc5EniS7SUqexYolKCOAk5XlepDEtY-0_CsWYj664j57kQHvoard3ZZv3NbhWLo3TUFWqhmbtJGEpo5REmHr08gBdNGtb-3SeEhGOBE6xpwY7StvGOQul1KbddtBaZSpJsPwuVvpi5bZYb1wfGCtrlspu_mT32z9MBZv_QZlNxj9GuDOMa-Hz11D2TYqYxly-3E9kNsPZiKcz-Ui_ABrLlow |
| CitedBy_id | crossref_primary_10_1109_TPAMI_2021_3070347 crossref_primary_10_3390_photonics10111219 crossref_primary_10_1109_TCI_2019_2911856 crossref_primary_10_1145_3478513_3480524 crossref_primary_10_1109_LRA_2017_2654544 crossref_primary_10_1364_AO_542123 crossref_primary_10_1016_j_cviu_2015_11_004 crossref_primary_10_3390_s18113711 crossref_primary_10_1145_3072959_3073589 crossref_primary_10_1364_AO_55_008457 crossref_primary_10_1109_TVCG_2016_2532329 |
| Cites_doi | 10.1145/1073204.1073259 10.1145/237170.237199 10.1007/s11263-011-0422-6 10.1007/978-3-642-19315-6_26 10.1145/1531326.1531403 10.1145/344779.344925 10.1145/1882261.1866194 10.1007/s11263‐008‐0151‐7 10.1145/344779.344929 10.1111/j.1467-8659.2009.01646.x 10.1145/133994.134078 10.1109/CVPR.2010.5540174 10.1145/1015706.1015806 10.1145/1015706.1015805 10.1145/237170.237200 10.1109/CVPR.2008.4587835 10.1109/CVPR.2007.383467 10.1145/1276377.1276463 |
| ContentType | Journal Article |
| Copyright | 2013 The Authors Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd. Copyright © 2013 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2013 The Authors Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd. – notice: Copyright © 2013 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1111/cgf.12201 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Computer and Information Systems Abstracts Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 257 |
| ExternalDocumentID | 3139044331 10_1111_cgf_12201 CGF12201 ark_67375_WNG_CM0CD59M_Q |
| Genre | article Feature |
| GrantInformation_xml | – fundername: German Academic Exchange Service (DAAD) – fundername: US NSF funderid: #CCF‐1012147 |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT ALUQN AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c4341-ef36e26a61a58bb6b88cd9fc97a48a81e0895bbd973f7c9fcda44167a50558be3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327433800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Sun Nov 09 11:42:40 EST 2025 Sun Nov 09 06:11:09 EST 2025 Tue Nov 18 22:14:58 EST 2025 Sat Nov 29 03:41:10 EST 2025 Sun Sep 21 06:20:07 EDT 2025 Tue Nov 11 03:32:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4341-ef36e26a61a58bb6b88cd9fc97a48a81e0895bbd973f7c9fcda44167a50558be3 |
| Notes | ArticleID:CGF12201 istex:8133D6616120C62000252CA9B01AC52407C25128 US NSF - No. #CCF-1012147 German Academic Exchange Service (DAAD) ark:/67375/WNG-CM0CD59M-Q SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 1462026090 |
| PQPubID | 30877 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1494331203 proquest_journals_1462026090 crossref_citationtrail_10_1111_cgf_12201 crossref_primary_10_1111_cgf_12201 wiley_primary_10_1111_cgf_12201_CGF12201 istex_primary_ark_67375_WNG_CM0CD59M_Q |
| PublicationCentury | 2000 |
| PublicationDate | December 2013 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: December 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationTitleAlternate | Computer Graphics Forum |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | [AVR10] Agrawal A., Veeraraghavan A., Raskar R.: Reinterpretable imager: Towards variable post capture space, angle and time resolution in photography. Computer Graphics Forum (Proc. Eurographics special issue) 29 (2010), 763-772. [WJV*05] Wilburn B., Joshi N., Vaish V., Talvala E.-V., Antunez E., Barth A., Adams A., Horowitz M., Levoy M.: High performance imaging using large camera arrays. ACM Transactions on Graphics 24 (July 2005), 765-776. [TAV*10] Taguchi Y., Agrawal A., Veeraraghavan A., Ramalingam S., Raskar R.: Axial-cones: Modeling spherical catadioptric cameras for wide-angle light field rendering. ACM Transactions on Graphics (Proc. of SIGGRAPH Asia special issue) 29, 6 (2010), 172. [LHG*09] Levin A., Hasinoff S. W., Green P., Durand F., Freeman W. T.: 4D frequency analysis of computational cameras for depth of field extension. ACM Transactions on Graphics (Proc. SIGGRAPH special issue) 28 (July 2009), 97:1-97:14. [LCV*04] Levoy M., Chen B., Vaish V., Horowitz M., McDowall I., Bolas M.: Synthetic aperture confocal imaging. ACM Transactions on Graphics (Proc. SIGGRAPH special issue), 23 (August 2004), 825-834. [Yan00] Yang J. C.: A Light Field Camera for Image Based Rendering. PhD thesis, Massachusetts Institute of Technology, 2000. [CNR08] Cossairt O., Nayar S. K., Ramamoorthi R.: Light field transfer: Global illumination between real and synthetic objects. ACM Transactions on Graphics (Proc. SIGGRAPH special issue) 27, 3 (August 2008), 57. [YEBM02] Yang J. C., Everett M., Buehler C., McMillan L.: A real-time distributed light field camera. Rendering Techniques 2002 (Proc. Eurographics Rendering Workshop) (2002), 77-86. [MP04] Matusik W., Pfister H.: 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Transactions on Graphics (Proc. SIGGRAPH 2004) 23, 3 (2004), 814-824. [NLB*05] Ng R., Levoy M., Brédif M., Duval G., Horowitz M., Hanrahan P.: Light Field Photography with a Hand-held Plenoptic Camera. Tech Report, Stanford University Computer Science, April 2005. [VRA*07] Veeraraghavan A., Raskar R., Agrawal A., Mohan A., Tumblin J.: Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Transactions on Graphics (Proc. SIGGRAPH 2007) 26, 3 (2007), 69. [GHAO10] Ghosh A., Heidrich W., Achutha S., O'Toole M.: A basis illumination approach to BRDF measurement. International Journal of Computer Vision 90 (2010), 183-197. doi: 10.1007/s11263-008-0151-7. [ZBW11] Zimmer H., Bruhn A., Weickert J.: Optic flow in harmony. International Journal of Computer Vision 93, 3 (2011), 368-388. [Ng06] Ng R.: Digital Light Field Photography. PhD thesis, Stanford University, 2006. 2012 2000 2011 2010; 29 2010 2011; 93 2008; 27 2004; 23 2008 1996 2007 2006 2005 2001; 2 2004 2003 1992 2002 2010; 90 2007; 26 2005; 24 2009; 28 e_1_2_9_31_1 e_1_2_9_11_1 Lanman D. (e_1_2_9_13_1) 2006 e_1_2_9_34_1 e_1_2_9_10_1 Fuchs M. (e_1_2_9_6_1) 2012 Unger J. (e_1_2_9_25_1) 2003 e_1_2_9_12_1 Ng R. (e_1_2_9_20_1) 2006 Dana K. J. (e_1_2_9_5_1) 2001 Taguchi Y. (e_1_2_9_23_1) 2010 Ng R. (e_1_2_9_21_1) 2005 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_22_1 Wetzstein G. (e_1_2_9_30_1) 2010 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_3_1 Cossairt O. (e_1_2_9_4_1) 2008; 27 e_1_2_9_2_1 e_1_2_9_26_1 Georgiev T. (e_1_2_9_9_1) 2006 e_1_2_9_28_1 Yang J. C. (e_1_2_9_32_1) 2000 e_1_2_9_27_1 Yang J. C. (e_1_2_9_33_1) 2002 e_1_2_9_29_1 |
| References_xml | – reference: [LCV*04] Levoy M., Chen B., Vaish V., Horowitz M., McDowall I., Bolas M.: Synthetic aperture confocal imaging. ACM Transactions on Graphics (Proc. SIGGRAPH special issue), 23 (August 2004), 825-834. – reference: [NLB*05] Ng R., Levoy M., Brédif M., Duval G., Horowitz M., Hanrahan P.: Light Field Photography with a Hand-held Plenoptic Camera. Tech Report, Stanford University Computer Science, April 2005. – reference: [VRA*07] Veeraraghavan A., Raskar R., Agrawal A., Mohan A., Tumblin J.: Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Transactions on Graphics (Proc. SIGGRAPH 2007) 26, 3 (2007), 69. – reference: [WJV*05] Wilburn B., Joshi N., Vaish V., Talvala E.-V., Antunez E., Barth A., Adams A., Horowitz M., Levoy M.: High performance imaging using large camera arrays. ACM Transactions on Graphics 24 (July 2005), 765-776. – reference: [AVR10] Agrawal A., Veeraraghavan A., Raskar R.: Reinterpretable imager: Towards variable post capture space, angle and time resolution in photography. Computer Graphics Forum (Proc. Eurographics special issue) 29 (2010), 763-772. – reference: [ZBW11] Zimmer H., Bruhn A., Weickert J.: Optic flow in harmony. International Journal of Computer Vision 93, 3 (2011), 368-388. – reference: [MP04] Matusik W., Pfister H.: 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Transactions on Graphics (Proc. SIGGRAPH 2004) 23, 3 (2004), 814-824. – reference: [Ng06] Ng R.: Digital Light Field Photography. PhD thesis, Stanford University, 2006. – reference: [TAV*10] Taguchi Y., Agrawal A., Veeraraghavan A., Ramalingam S., Raskar R.: Axial-cones: Modeling spherical catadioptric cameras for wide-angle light field rendering. ACM Transactions on Graphics (Proc. of SIGGRAPH Asia special issue) 29, 6 (2010), 172. – reference: [Yan00] Yang J. C.: A Light Field Camera for Image Based Rendering. PhD thesis, Massachusetts Institute of Technology, 2000. – reference: [LHG*09] Levin A., Hasinoff S. W., Green P., Durand F., Freeman W. T.: 4D frequency analysis of computational cameras for depth of field extension. ACM Transactions on Graphics (Proc. SIGGRAPH special issue) 28 (July 2009), 97:1-97:14. – reference: [CNR08] Cossairt O., Nayar S. K., Ramamoorthi R.: Light field transfer: Global illumination between real and synthetic objects. ACM Transactions on Graphics (Proc. SIGGRAPH special issue) 27, 3 (August 2008), 57. – reference: [GHAO10] Ghosh A., Heidrich W., Achutha S., O'Toole M.: A basis illumination approach to BRDF measurement. International Journal of Computer Vision 90 (2010), 183-197. doi: 10.1007/s11263-008-0151-7. – reference: [YEBM02] Yang J. C., Everett M., Buehler C., McMillan L.: A real-time distributed light field camera. Rendering Techniques 2002 (Proc. Eurographics Rendering Workshop) (2002), 77-86. – start-page: 31 year: 1996 end-page: 42 – start-page: 545 year: 2010 end-page: 552 – volume: 23 start-page: 814 issue: 3 year: 2004 end-page: 824 article-title: 3D TV: a scalable system for real‐time acquisition, transmission, and autostereoscopic display of dynamic scenes publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH 2004) – start-page: 141 year: 2003 end-page: 149 – start-page: 1 year: 2007 end-page: 8 – start-page: 483 year: 2010 end-page: 490 – year: 2005 – start-page: 77 year: 2002 end-page: 86 article-title: A real‐time distributed light field camera publication-title: Rendering Techniques 2002 (Proc. Eurographics Rendering Workshop) – volume: 28 start-page: 97:1 year: 2009 end-page: 97:14 article-title: 4D frequency analysis of computational cameras for depth of field extension publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH special issue) – volume: 29 start-page: 172 issue: 6 year: 2010 article-title: Axial‐cones: Modeling spherical catadioptric cameras for wide‐angle light field rendering publication-title: ACM Transactions on Graphics (Proc. of SIGGRAPH Asia special issue) – year: 2000 – start-page: 336 year: 2011 end-page: 349 – volume: 24 start-page: 765 year: 2005 end-page: 776 article-title: High performance imaging using large camera arrays publication-title: ACM Transactions on Graphics – start-page: 43 year: 1996 end-page: 54 – start-page: 263 year: 2006 end-page: 272 – start-page: 265 year: 1992 end-page: 272 – volume: 23 start-page: 825 year: 2004 end-page: 834 article-title: Synthetic aperture confocal imaging publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH special issue) – start-page: 499 year: 2010 end-page: 506 – start-page: 1 year: 2008 end-page: 8 – volume: 93 start-page: 368 issue: 3 year: 2011 end-page: 388 article-title: Optic flow in harmony publication-title: International Journal of Computer Vision – year: 2006 – year: 2004 – volume: 2 start-page: 460 year: 2001 end-page: 6 – volume: 90 start-page: 183 year: 2010 end-page: 197 article-title: A basis illumination approach to BRDF measurement publication-title: International Journal of Computer Vision – start-page: 297 year: 2000 end-page: 306 – volume: 27 start-page: 57 issue: 3 year: 2008 article-title: Light field transfer: Global illumination between real and synthetic objects publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH special issue) – volume: 29 start-page: 763 year: 2010 end-page: 772 article-title: Reinterpretable imager: Towards variable post capture space, angle and time resolution in photography publication-title: Computer Graphics Forum (Proc. Eurographics special issue) – start-page: 1 year: 2012 end-page: 8 – start-page: 287 year: 2000 end-page: 296 – volume: 26 start-page: 69 issue: 3 year: 2007 article-title: Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH 2007) – ident: e_1_2_9_31_1 doi: 10.1145/1073204.1073259 – ident: e_1_2_9_3_1 – start-page: 499 volume-title: Computer Vision and Pattern Recognition (CVPR) year: 2010 ident: e_1_2_9_23_1 – ident: e_1_2_9_14_1 doi: 10.1145/237170.237199 – ident: e_1_2_9_34_1 doi: 10.1007/s11263-011-0422-6 – ident: e_1_2_9_19_1 doi: 10.1007/978-3-642-19315-6_26 – ident: e_1_2_9_15_1 doi: 10.1145/1531326.1531403 – ident: e_1_2_9_28_1 doi: 10.1145/344779.344925 – start-page: 77 year: 2002 ident: e_1_2_9_33_1 article-title: A real‐time distributed light field camera publication-title: Rendering Techniques 2002 (Proc. Eurographics Rendering Workshop) – ident: e_1_2_9_24_1 doi: 10.1145/1882261.1866194 – volume-title: A Light Field Camera for Image Based Rendering year: 2000 ident: e_1_2_9_32_1 – ident: e_1_2_9_8_1 doi: 10.1007/s11263‐008‐0151‐7 – ident: e_1_2_9_10_1 doi: 10.1145/344779.344929 – ident: e_1_2_9_16_1 – ident: e_1_2_9_2_1 doi: 10.1111/j.1467-8659.2009.01646.x – start-page: 1 volume-title: VMV 2012: Vision, Modeling & Visualization year: 2012 ident: e_1_2_9_6_1 – start-page: 460 volume-title: ICCV Proceedings of Eighth IEEE International Conference on Computer Vision year: 2001 ident: e_1_2_9_5_1 – volume-title: Third International Symposium on 3D Data Processing, Visualization and Transmission year: 2006 ident: e_1_2_9_13_1 – ident: e_1_2_9_29_1 doi: 10.1145/133994.134078 – start-page: 545 volume-title: Computer Vision and Pattern Recognition (CVPR) year: 2010 ident: e_1_2_9_30_1 – ident: e_1_2_9_11_1 doi: 10.1109/CVPR.2010.5540174 – start-page: 263 volume-title: Rendering Techniques 2006 (Proc. EGSR ) year: 2006 ident: e_1_2_9_9_1 – start-page: 141 volume-title: Rendering Techniques 2003 (Proc. EGSR) year: 2003 ident: e_1_2_9_25_1 – ident: e_1_2_9_12_1 doi: 10.1145/1015706.1015806 – ident: e_1_2_9_17_1 doi: 10.1145/1015706.1015805 – ident: e_1_2_9_7_1 doi: 10.1145/237170.237200 – volume-title: Digital Light Field Photography year: 2006 ident: e_1_2_9_20_1 – ident: e_1_2_9_22_1 – ident: e_1_2_9_26_1 doi: 10.1109/CVPR.2008.4587835 – ident: e_1_2_9_18_1 doi: 10.1109/CVPR.2007.383467 – ident: e_1_2_9_27_1 doi: 10.1145/1276377.1276463 – volume: 27 start-page: 57 issue: 3 year: 2008 ident: e_1_2_9_4_1 article-title: Light field transfer: Global illumination between real and synthetic objects publication-title: ACM Transactions on Graphics (Proc. SIGGRAPH special issue) – volume-title: Light Field Photography with a Hand‐held Plenoptic Camera year: 2005 ident: e_1_2_9_21_1 |
| SSID | ssj0004765 |
| Score | 2.1515799 |
| Snippet | The high resolution of digital cameras has made single‐shot, single‐sensor acquisition of light fields feasible, though considerable design effort is still... The high resolution of digital cameras has made single-shot, single-sensor acquisition of light fields feasible, though considerable design effort is still... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 246 |
| SubjectTerms | 2012 Computing Methodologies Acquisitions Analysis Artificial Intelligence catadioptric Computational Photography Computer graphics Computer Vision Design Digital cameras Digitization and Image Capture fabrication I.4.1 Image Processing and Computer Vision Image and Video Acquisition Imaging geometry light field recording mirror design Mirrors Studies |
| Title | Design and Fabrication of Faceted Mirror Arrays for Light Field Capture |
| URI | https://api.istex.fr/ark:/67375/WNG-CM0CD59M-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12201 https://www.proquest.com/docview/1462026090 https://www.proquest.com/docview/1494331203 |
| Volume | 32 |
| WOSCitedRecordID | wos000327433800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_E60N9UFsVr36wShFfIpfEJLv4JDlzffCOtlT0LexX5FBykrsr7X_vzF4ST6gg9CUk7GzYzOxkfrM7MwvwVdrQKKG4h6YWHRTuRx5aQe6ZHhc2EuhSRIU7bCIZjfjdnfi-AhdNLsyiPkS74Eaa4f7XpOBSTZeUXN8XZ34QUO5Wh5Kq0PPq9H9mN9cvaZFJHDWlvaloTF1YiAJ52s6vzFGHOPvnFdZcRqzO5GQb_zXYTVivkSa7XEyNT7Biy8-wtlR_cAsGfRe_wWRpWCZVVa_fsUmBjxrhtGHDcVVNKnxLJf9OGSJcdk3uPMso8o2l8ol2ILbhJrv6lX7z6pMVPH2OZsuzRRjbIJaxLyOuVKw410YUWiTynEvuW5RUpJQRSVgkGhuMRFnGiUS8hB1suAOr5aS0u8B8RGAh7fci8MNLyI2vVS-2VsSJVdJ04bRhcK7rsuN0-sVj3rgfyJvc8aYLxy3p06LWxr-ITpyUWgpZPVBwWhLlt6NBng57aT8Sw_xHF_YbMea1Xk7J0QmoiprodeGobUaNom0SWdrJnGgEpZHht-DYnVDfHk2eDjJ38-X9pHvwMaAzNVxMzD6szqq5PYAP-vdsPK0O60n8DJTe8KY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_KnaA-WD_xtOoqIr6kXJLLfkBfSs5cxbtDpcW-LbubjRQlV3Kt6H_fmb0kXkFB8CUk7GzYzOxkZnZnfwPw2vi0tMrKCE0tBigyziK0gjIqx1L5TGFIkVWh2IRYLuXpqfq4AwfdWZgNPkS_4EaaEf7XpOC0IL2l5e5rtR8nCR3eGk54KuQAhtPPxcn897lIwbMO25tQY1pkIcrk6Ttfs0dDYu3Pa87mtssabE6x-3-jvQt3Wl-THW4mxz3Y8fV9uL2FQPgAZtOQwcFMXbLC2KZdwWOrCh8dOtQlW5w1zarBtzTm15qhj8vmFNCzgnLfWG7OaQ_iIZwU747zo6itrRC5CRquyFcp9wk3PDaZtJZbKV2pKqeEmUgjY4-yyqwtlUgr4bChNChNLgx6TNjBp49gUK9q_xhYjD5YSju-6PrhJZVl7OyYe6-48NaUI3jbcVi7Fnic6l98110AgrzRgTcjeNWTnm_QNv5E9CaIqacwzTdKTxOZ_rKc6XwxzqeZWuhPI9jr5KhbzVxTqJMQjpoaj-Bl34w6RRslpvarS6JRdJAMvwXHHqT699HofFaEmyf_TvoCbh4dL-Z6_n754SncSqjCRsiQ2YPBRXPpn8EN9-PibN08b2f0FQl89JY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB-OVkQfPD-56qmriPgSaZJusgv3IqmpYltO8fDelv3KcShpSe9E_3tntknsgYLgS0jY2bCZ2cn8ZndmFuCF9qkz0ogITS06KCLmEVpBEbmxkJ5LdCl4FQ6byJdLcXoqj_fgqMuF2daH6BfcSDPC_5oU3K9dtaPl9qx6HScJJW8NJ1zyyQCG00_lyfx3XmSe8a62N1WNaSsLUSRP3_mKPRoSa39cAZu7kDXYnHL__0Z7G261WJO92U6OO7Dn67twc6cC4T2YTUMEB9O1Y6U2TbuCx1YVPloE1I4tzptm1eBbGv1zwxDjsjk59Kyk2DdW6DXtQdyHk_Lt5-Jd1J6tENkJGq7IV2nmk0xnsebCmMwIYZ2srMz1RGgRe5QVN8bJPK1yiw1OozSzXCNiwg4-fQCDelX7A2AxYrCUdnwR-uElFS62Zpx5L7PcG-1G8KrjsLJt4XE6_-Kb6hwQ5I0KvBnB8550va228Seil0FMPYVuvlJ4Ws7Vl-VMFYtxMeVyoT6O4LCTo2o1c0OuTkJ11OR4BM_6ZtQp2ijRtV9dEo2kRDL8Fhx7kOrfR6OKWRluHv476VO4fjwt1fz98sMjuJHQARshQOYQBhfNpX8M1-z3i_NN86Sd0L8Ao5z0EQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Fabrication+of+Faceted+Mirror+Arrays+for+Light+Field+Capture&rft.jtitle=Computer+graphics+forum&rft.au=Fuchs%2C+Martin&rft.au=K%C3%A4chele%2C+Markus&rft.au=Rusinkiewicz%2C+Szymon&rft.date=2013-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=32&rft.issue=8&rft.spage=246&rft.epage=257&rft_id=info:doi/10.1111%2Fcgf.12201&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_CM0CD59M_Q |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |