Using Remote and Proximal Sensing Data and Vine Vigor Parameters for Non-Destructive and Rapid Prediction of Grape Quality

The traditional method for determining wine grape total soluble solid (TSS) is destructive laboratory analysis, which is time consuming and expensive. In this study, we explore the potential of using different predictor variables from various advanced techniques to predict the grape TSS in a non-des...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 15; no. 22; p. 5412
Main Authors: Lyu, Hongyi, Grafton, Miles, Ramilan, Thiagarajah, Irwin, Matthew, Wei, Hsiang-En, Sandoval, Eduardo
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2023
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The traditional method for determining wine grape total soluble solid (TSS) is destructive laboratory analysis, which is time consuming and expensive. In this study, we explore the potential of using different predictor variables from various advanced techniques to predict the grape TSS in a non-destructive and rapid way. Calculating Pearson’s correlation coefficient between the vegetation indices (VIs) obtained from UAV multispectral imagery and grape TSS resulted in a strong correlation between OSAVI and grape TSS with a coefficient of 0.64. Additionally, seven machine learning models including ridge regression and lasso regression, k-Nearest neighbor (KNN), support vector regression (SVR), random forest regression (RFR), extreme gradient boosting (XGBoost), and artificial neural network (ANN) are used to build the prediction models. The predictor variables include the unmanned aerial vehicles (UAV) derived VIs, and other ancillary variables including normalized difference vegetation index (NDVI_proximal) and soil electrical conductivity (ECa) measured by proximal sensors, elevation, slope, trunk circumference, and day of the year for each sampling date. When using 23 VIs and other ancillary variables as input variables, the results show that ensemble learning models (RFR, and XGBoost) outperform other regression models when predicting grape TSS, with the average of root mean square error (RMSE) of 1.19 and 1.2 °Brix, and coefficient of determination (R2) of 0.52 and 0.52, respectively, during the 20 times testing process. In addition, this study examines the prediction performance of using optimized soil adjusted vegetation index (OSAVI) or normalized green-blue difference index (NGBDI) as the main input for different machine learning models with other ancillary variables. When using OSAVI-based models, the best prediction model is RFR with an average R2 of 0.51 and RMSE of 1.19 °Brix, respectively. For NGBDI-based model, the RFR model showed the best average result of predicting TSS were a R2 of 0.54 and a RMSE of 1.16 °Brix, respectively. The approach proposed in this study provides an opportunity to grape growers to estimate the whole vineyard grape TSS in a non-destructive way.
AbstractList The traditional method for determining wine grape total soluble solid (TSS) is destructive laboratory analysis, which is time consuming and expensive. In this study, we explore the potential of using different predictor variables from various advanced techniques to predict the grape TSS in a non-destructive and rapid way. Calculating Pearson’s correlation coefficient between the vegetation indices (VIs) obtained from UAV multispectral imagery and grape TSS resulted in a strong correlation between OSAVI and grape TSS with a coefficient of 0.64. Additionally, seven machine learning models including ridge regression and lasso regression, k-Nearest neighbor (KNN), support vector regression (SVR), random forest regression (RFR), extreme gradient boosting (XGBoost), and artificial neural network (ANN) are used to build the prediction models. The predictor variables include the unmanned aerial vehicles (UAV) derived VIs, and other ancillary variables including normalized difference vegetation index (NDVI_proximal) and soil electrical conductivity (EC[sub.a] ) measured by proximal sensors, elevation, slope, trunk circumference, and day of the year for each sampling date. When using 23 VIs and other ancillary variables as input variables, the results show that ensemble learning models (RFR, and XGBoost) outperform other regression models when predicting grape TSS, with the average of root mean square error (RMSE) of 1.19 and 1.2 °Brix, and coefficient of determination (R[sup.2] ) of 0.52 and 0.52, respectively, during the 20 times testing process. In addition, this study examines the prediction performance of using optimized soil adjusted vegetation index (OSAVI) or normalized green-blue difference index (NGBDI) as the main input for different machine learning models with other ancillary variables. When using OSAVI-based models, the best prediction model is RFR with an average R[sup.2] of 0.51 and RMSE of 1.19 °Brix, respectively. For NGBDI-based model, the RFR model showed the best average result of predicting TSS were a R[sup.2] of 0.54 and a RMSE of 1.16 °Brix, respectively. The approach proposed in this study provides an opportunity to grape growers to estimate the whole vineyard grape TSS in a non-destructive way.
The traditional method for determining wine grape total soluble solid (TSS) is destructive laboratory analysis, which is time consuming and expensive. In this study, we explore the potential of using different predictor variables from various advanced techniques to predict the grape TSS in a non-destructive and rapid way. Calculating Pearson’s correlation coefficient between the vegetation indices (VIs) obtained from UAV multispectral imagery and grape TSS resulted in a strong correlation between OSAVI and grape TSS with a coefficient of 0.64. Additionally, seven machine learning models including ridge regression and lasso regression, k-Nearest neighbor (KNN), support vector regression (SVR), random forest regression (RFR), extreme gradient boosting (XGBoost), and artificial neural network (ANN) are used to build the prediction models. The predictor variables include the unmanned aerial vehicles (UAV) derived VIs, and other ancillary variables including normalized difference vegetation index (NDVI_proximal) and soil electrical conductivity (ECa) measured by proximal sensors, elevation, slope, trunk circumference, and day of the year for each sampling date. When using 23 VIs and other ancillary variables as input variables, the results show that ensemble learning models (RFR, and XGBoost) outperform other regression models when predicting grape TSS, with the average of root mean square error (RMSE) of 1.19 and 1.2 °Brix, and coefficient of determination (R2) of 0.52 and 0.52, respectively, during the 20 times testing process. In addition, this study examines the prediction performance of using optimized soil adjusted vegetation index (OSAVI) or normalized green-blue difference index (NGBDI) as the main input for different machine learning models with other ancillary variables. When using OSAVI-based models, the best prediction model is RFR with an average R2 of 0.51 and RMSE of 1.19 °Brix, respectively. For NGBDI-based model, the RFR model showed the best average result of predicting TSS were a R2 of 0.54 and a RMSE of 1.16 °Brix, respectively. The approach proposed in this study provides an opportunity to grape growers to estimate the whole vineyard grape TSS in a non-destructive way.
The traditional method for determining wine grape total soluble solid (TSS) is destructive laboratory analysis, which is time consuming and expensive. In this study, we explore the potential of using different predictor variables from various advanced techniques to predict the grape TSS in a non-destructive and rapid way. Calculating Pearson’s correlation coefficient between the vegetation indices (VIs) obtained from UAV multispectral imagery and grape TSS resulted in a strong correlation between OSAVI and grape TSS with a coefficient of 0.64. Additionally, seven machine learning models including ridge regression and lasso regression, k-Nearest neighbor (KNN), support vector regression (SVR), random forest regression (RFR), extreme gradient boosting (XGBoost), and artificial neural network (ANN) are used to build the prediction models. The predictor variables include the unmanned aerial vehicles (UAV) derived VIs, and other ancillary variables including normalized difference vegetation index (NDVI_proximal) and soil electrical conductivity (ECₐ) measured by proximal sensors, elevation, slope, trunk circumference, and day of the year for each sampling date. When using 23 VIs and other ancillary variables as input variables, the results show that ensemble learning models (RFR, and XGBoost) outperform other regression models when predicting grape TSS, with the average of root mean square error (RMSE) of 1.19 and 1.2 °Brix, and coefficient of determination (R²) of 0.52 and 0.52, respectively, during the 20 times testing process. In addition, this study examines the prediction performance of using optimized soil adjusted vegetation index (OSAVI) or normalized green-blue difference index (NGBDI) as the main input for different machine learning models with other ancillary variables. When using OSAVI-based models, the best prediction model is RFR with an average R² of 0.51 and RMSE of 1.19 °Brix, respectively. For NGBDI-based model, the RFR model showed the best average result of predicting TSS were a R² of 0.54 and a RMSE of 1.16 °Brix, respectively. The approach proposed in this study provides an opportunity to grape growers to estimate the whole vineyard grape TSS in a non-destructive way.
Audience Academic
Author Ramilan, Thiagarajah
Wei, Hsiang-En
Irwin, Matthew
Sandoval, Eduardo
Grafton, Miles
Lyu, Hongyi
Author_xml – sequence: 1
  givenname: Hongyi
  orcidid: 0000-0003-2883-6259
  surname: Lyu
  fullname: Lyu, Hongyi
– sequence: 2
  givenname: Miles
  orcidid: 0000-0002-4094-874X
  surname: Grafton
  fullname: Grafton, Miles
– sequence: 3
  givenname: Thiagarajah
  orcidid: 0000-0001-8476-3619
  surname: Ramilan
  fullname: Ramilan, Thiagarajah
– sequence: 4
  givenname: Matthew
  surname: Irwin
  fullname: Irwin, Matthew
– sequence: 5
  givenname: Hsiang-En
  orcidid: 0000-0003-1919-4864
  surname: Wei
  fullname: Wei, Hsiang-En
– sequence: 6
  givenname: Eduardo
  orcidid: 0000-0003-2695-7305
  surname: Sandoval
  fullname: Sandoval, Eduardo
BookMark eNptUl1rFDEUHaSCde2Lv2DAFxG2ZnIzH3ksba2ForVaX8OdzM2SZSZZk4xYf73ZHUUpJpCPc8854d7c58WR846K4mXFTgEkextiVXNei4o_KY45a_lacMmP_jk_K05i3LI8ACrJxHHx8z5atynvaPKJSnRDeRv8DzvhWH4md4hdYMJD5Kt1lJeND-UtBpwoUYilydcP3q0vKKYw62S_Lz53uLN7NxpsBr0rvSmvAu6o_DTjaNPDi-KpwTHSye99Vdy_u_xy_n598_Hq-vzsZq0FQFobIGKIYPoWajKsGyqUPRjQRmJHEqsBNa-aHpjhnekbCdxIkIjIO61rWBXXi-_gcat2IScXHpRHqw6ADxuFIVk9kqp5K1pBHKDuRNt0knUkeI-tqdtGZHhVvF68dsF_m3PGarJR0ziiIz9HBUww0UDTsEx99Yi69XNwOVPFOwkgRFPvWacLa4P5feuMTwF1ngNNVuf_NTbjZ20rgNddJbKALQIdfIyBjNI24b7AWWhHVTG1bwb1txmy5M0jyZ8i_If8C6bXtQI
CitedBy_id crossref_primary_10_1016_j_compag_2025_110341
crossref_primary_10_1016_j_rsase_2025_101708
crossref_primary_10_7717_peerj_19264
crossref_primary_10_3390_rs16101655
crossref_primary_10_1038_s41598_025_16967_6
crossref_primary_10_1007_s11119_024_10177_2
crossref_primary_10_3390_rs16030584
crossref_primary_10_1002_ppj2_70024
crossref_primary_10_3390_horticulturae10030238
crossref_primary_10_3390_rs16244805
Cites_doi 10.1016/j.compag.2018.02.013
10.3390/s22093249
10.1371/journal.pone.0218132
10.1016/j.compag.2017.06.009
10.3390/agronomy11040655
10.5424/sjar/2009074-1092
10.1016/j.isprsjprs.2014.08.015
10.13031/ja.14126
10.3390/rs14184450
10.1007/s11119-015-9407-8
10.3389/fpls.2020.00790
10.1111/ajgw.12408
10.3390/rs11010023
10.3389/fpls.2021.683078
10.1111/j.1755-0238.2004.tb00007.x
10.1016/j.rse.2020.111679
10.1111/j.1755-0238.2010.00119.x
10.3390/agriculture11050457
10.3390/rs9040317
10.20870/oeno-one.2008.42.2.828
10.3390/rs15061497
10.1080/05704928.2014.966380
10.3390/rs70302971
10.1016/j.biosystemseng.2021.04.006
10.1111/j.1755-0238.2005.tb00277.x
10.1111/j.1755-0238.2010.00120.x
10.3390/s23031065
10.1007/s11119-012-9282-5
10.1111/j.1755-0238.2011.00136.x
10.3390/rs71114458
10.3390/rs14235918
10.1139/juvs-2016-0024
10.1080/01431161.2018.1471548
10.1016/S0098-3004(03)00082-7
10.3390/agriculture8070094
10.3390/rs11232869
10.3390/rs9040308
10.1016/j.measurement.2014.04.007
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15225412
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (subscription)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_527474e233584768908e42ba7f576423
A774325814
10_3390_rs15225412
GeographicLocations New Zealand
GeographicLocations_xml – name: New Zealand
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-f3ee0aa3fb735ef08d1a9b3f3cf9a8e9a1dac216b30f28fb6932f939aaa28cc53
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001113800200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:43:51 EDT 2025
Thu Sep 04 16:57:25 EDT 2025
Fri Jul 25 11:57:31 EDT 2025
Tue Nov 04 18:11:23 EST 2025
Tue Nov 18 22:16:50 EST 2025
Sat Nov 29 07:19:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-f3ee0aa3fb735ef08d1a9b3f3cf9a8e9a1dac216b30f28fb6932f939aaa28cc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4094-874X
0000-0001-8476-3619
0000-0003-2695-7305
0000-0003-1919-4864
0000-0003-2883-6259
OpenAccessLink https://doaj.org/article/527474e233584768908e42ba7f576423
PQID 2893344650
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_527474e233584768908e42ba7f576423
proquest_miscellaneous_3040463660
proquest_journals_2893344650
gale_infotracacademiconefile_A774325814
crossref_citationtrail_10_3390_rs15225412
crossref_primary_10_3390_rs15225412
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Arab (ref_9) 2021; 22
Dambergs (ref_19) 2015; 50
Benelli (ref_17) 2021; 207
ref_14
ref_13
Marques (ref_31) 2018; 39
Hall (ref_45) 2003; 29
ref_12
Brook (ref_27) 2020; 240
ref_32
Carrillo (ref_10) 2016; 17
ref_30
Bramley (ref_3) 2011; 17
Bramley (ref_33) 2011; 17
Baluja (ref_2) 2013; 14
ref_15
ref_37
Bramley (ref_39) 2005; 11
Wei (ref_5) 2023; 3
Yu (ref_36) 2020; 11
Matese (ref_11) 2015; 7
Sanches (ref_41) 2014; 97
Lamb (ref_7) 2004; 10
Soubry (ref_29) 2017; 5
Kasimati (ref_18) 2021; 12
Jiang (ref_48) 2022; 65
Trought (ref_35) 2008; 42
Bramley (ref_16) 2003; 473a
Trought (ref_38) 2011; 17
ref_47
SU (ref_34) 2014; 54
ref_46
ref_23
ref_44
ref_21
ref_20
ref_42
ref_1
Bramley (ref_43) 2019; 25
Gomes (ref_40) 2017; 140
Diago (ref_6) 2015; 7
ref_28
ref_26
(ref_25) 2010; 49
ref_8
ref_4
(ref_22) 2009; 7
Romero (ref_24) 2018; 147
References_xml – volume: 147
  start-page: 109
  year: 2018
  ident: ref_24
  article-title: Vineyard Water Status Estimation Using Multispectral Imagery from an UAV Platform and Machine Learning Algorithms for Irrigation Scheduling Management
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.013
– ident: ref_20
  doi: 10.3390/s22093249
– ident: ref_26
  doi: 10.1371/journal.pone.0218132
– volume: 140
  start-page: 244
  year: 2017
  ident: ref_40
  article-title: Comparison of Different Approaches for the Prediction of Sugar Content in New Vintages of Whole Port Wine Grape Berries Using Hyperspectral Imaging
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.06.009
– ident: ref_12
  doi: 10.3390/agronomy11040655
– volume: 7
  start-page: 779
  year: 2009
  ident: ref_22
  article-title: Precision Viticulture. Research Topics, Challenges and Opportunities in Site-Specific Vineyard Management
  publication-title: Span. J. Agric. Res.
  doi: 10.5424/sjar/2009074-1092
– volume: 97
  start-page: 111
  year: 2014
  ident: ref_41
  article-title: Spectroscopic Remote Sensing of Plant Stress at Leaf and Canopy Levels Using the Chlorophyll 680 Nm Absorption Feature with Continuum Removal
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.08.015
– volume: 65
  start-page: 287
  year: 2022
  ident: ref_48
  article-title: A Comparison of Supervised Machine Learning Algorithms for Predicting Subfield Yield Variability of Maize Grain
  publication-title: J. ASABE
  doi: 10.13031/ja.14126
– volume: 22
  start-page: 100485
  year: 2021
  ident: ref_9
  article-title: Prediction of Grape Yields from Time-Series Vegetation Indices Using Satellite Remote Sensing and a Machine-Learning Approach
  publication-title: Remote Sens. Appl. Soc. Environ.
– ident: ref_8
  doi: 10.3390/rs14184450
– volume: 17
  start-page: 74
  year: 2016
  ident: ref_10
  article-title: Use of Multi-Spectral Airborne Imagery to Improve Yield Sampling in Viticulture
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-015-9407-8
– volume: 11
  start-page: 790
  year: 2020
  ident: ref_36
  article-title: Spatial Variability of Soil and Plant Water Status and Their Cascading Effects on Grapevine Physiology Are Linked to Berry and Wine Chemistry
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00790
– volume: 25
  start-page: 430
  year: 2019
  ident: ref_43
  article-title: Spatio-temporal Variability in Vine Vigour and Yield in a Marlborough Sauvignon Blanc Vineyard
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/ajgw.12408
– ident: ref_32
  doi: 10.3390/rs11010023
– volume: 12
  start-page: 683078
  year: 2021
  ident: ref_18
  article-title: Investigating a Selection of Methods for the Prediction of Total Soluble Solids among Wine Grape Quality Characteristics Using Normalized Difference Vegetation Index Data from Proximal and Remote Sensing
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.683078
– ident: ref_37
– ident: ref_1
– volume: 10
  start-page: 46
  year: 2004
  ident: ref_7
  article-title: Using Remote Sensing to Predict Grape Phenolics and Colour at Harvest in a Cabernet Sauvignon Vineyard: Timing Observations against Vine Phenology and Optimising Image Resolution
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/j.1755-0238.2004.tb00007.x
– volume: 240
  start-page: 111679
  year: 2020
  ident: ref_27
  article-title: A Smart Multiple Spatial and Temporal Resolution System to Support Precision Agriculture from Satellite Images: Proof of Concept on Aglianico Vineyard
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111679
– ident: ref_44
– volume: 17
  start-page: 72
  year: 2011
  ident: ref_3
  article-title: Vineyard Variability in Marlborough, New Zealand: Characterising Variation in Vineyard Performance and Options for the Implementation of Precision Viticulture
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/j.1755-0238.2010.00119.x
– ident: ref_23
– volume: 49
  start-page: 167
  year: 2010
  ident: ref_25
  article-title: Remote Sensing Detection of Nutrient Uptake in Vineyards Using Narrow-Band Hyperspectral Imagery
  publication-title: Vitis
– ident: ref_21
– ident: ref_42
  doi: 10.3390/agriculture11050457
– volume: 3
  start-page: 6
  year: 2023
  ident: ref_5
  article-title: Evaluation of the Use of Two-Stage Calibrated PlanetScope Images and Environmental Variables for the Development of the Grapevine Water Status Prediction Model
  publication-title: Technol. Agron.
– ident: ref_47
  doi: 10.3390/rs9040317
– volume: 42
  start-page: 67
  year: 2008
  ident: ref_35
  article-title: The Impact of Differences in Soil Texture within a Vineyard on Vine Vigour, Vine Earliness and Juice Composition
  publication-title: OENO One
  doi: 10.20870/oeno-one.2008.42.2.828
– ident: ref_4
– ident: ref_14
  doi: 10.3390/rs15061497
– volume: 50
  start-page: 261
  year: 2015
  ident: ref_19
  article-title: A Review of the State of the Art, Limitations, and Perspectives of Infrared Spectroscopy for the Analysis of Wine Grapes, Must, and Grapevine Tissue
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2014.966380
– volume: 7
  start-page: 2971
  year: 2015
  ident: ref_11
  article-title: Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture
  publication-title: Remote Sens.
  doi: 10.3390/rs70302971
– volume: 207
  start-page: 59
  year: 2021
  ident: ref_17
  article-title: In-Field and Non-Destructive Monitoring of Grapes Maturity by Hyperspectral Imaging
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.04.006
– volume: 11
  start-page: 33
  year: 2005
  ident: ref_39
  article-title: Understanding Variability in Winegrape Production Systems 2. Within Vineyard Variation in Quality over Several Vintages
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/j.1755-0238.2005.tb00277.x
– volume: 17
  start-page: 79
  year: 2011
  ident: ref_38
  article-title: Vineyard Variability in Marlborough, New Zealand: Characterising Spatial and Temporal Changes in Fruit Composition and Juice Quality in the Vineyard
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/j.1755-0238.2010.00120.x
– ident: ref_15
  doi: 10.3390/s23031065
– volume: 14
  start-page: 40
  year: 2013
  ident: ref_2
  article-title: Spatial Variability of Grape Composition in a Tempranillo (Vitis vinifera L.) Vineyard over a 3-Year Survey
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-012-9282-5
– volume: 17
  start-page: 217
  year: 2011
  ident: ref_33
  article-title: Variation in Vine Vigour, Grape Yield and Vineyard Soils and Topography as Indicators of Variation in the Chemical Composition of Grapes, Wine and Wine Sensory Attributes
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/j.1755-0238.2011.00136.x
– volume: 7
  start-page: 14458
  year: 2015
  ident: ref_6
  article-title: Using RPAS Multi-Spectral Imagery to Characterise Vigour, Leaf Development, Yield Components and Berry Composition Variability within a Vineyard
  publication-title: Remote Sens.
  doi: 10.3390/rs71114458
– ident: ref_13
  doi: 10.3390/rs14235918
– volume: 5
  start-page: 37
  year: 2017
  ident: ref_29
  article-title: Monitoring Vineyards with UAV and Multi-Sensors for the Assessment of Water Stress and Grape Maturity
  publication-title: J. Unmanned Veh. Syst.
  doi: 10.1139/juvs-2016-0024
– volume: 39
  start-page: 5377
  year: 2018
  ident: ref_31
  article-title: Vineyard Properties Extraction Combining UAS-Based RGB Imagery with Elevation Data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1471548
– volume: 29
  start-page: 813
  year: 2003
  ident: ref_45
  article-title: Characterising and Mapping Vineyard Canopy Using High-Spatial-Resolution Aerial Multispectral Images
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(03)00082-7
– ident: ref_46
  doi: 10.3390/agriculture8070094
– volume: 473a
  start-page: 84
  year: 2003
  ident: ref_16
  article-title: Being Profitable Precisely-A Case Study of Precision Viticulture from Margaret River
  publication-title: Aust. New Zealand Grapegrow. Winemak. [Annu. Tech. Issue]
– ident: ref_30
  doi: 10.3390/rs11232869
– ident: ref_28
  doi: 10.3390/rs9040308
– volume: 54
  start-page: 92
  year: 2014
  ident: ref_34
  article-title: A Critical Review of Soil Moisture Measurement
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.04.007
SSID ssj0000331904
Score 2.4122005
Snippet The traditional method for determining wine grape total soluble solid (TSS) is destructive laboratory analysis, which is time consuming and expensive. In this...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5412
SubjectTerms Aircraft
algorithms
Artificial neural networks
Berries
Brix value
Cameras
Correlation coefficient
Correlation coefficients
Electrical conductivity
Electrical resistivity
Environmental aspects
Fruits
Grapes
Learning algorithms
Machine learning
Methods
multispectral imagery
Neural networks
Non-destructive testing
normalized difference vegetation index
Normalized difference vegetative index
prediction
Prediction models
Quality management
Regression analysis
Regression models
Remote sensing
Root-mean-square errors
Satellites
Sensors
Soil conductivity
soil electrical conductivity
Soils
sugar content
Support vector machines
total soluble solids
UAV multispectral imagery
Unmanned aerial vehicles
Vegetation
vegetation indices
vigor
vines
Vineyards
wine grape
wine grapes
Wineries & vineyards
Wines
SummonAdditionalLinks – databaseName: Engineering Database (subscription)
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMGFNyJQkBFIiENUx84mzgmVR-G0WrWAerPGjt2uBMmSLBXl1zPjeLdCAi5cVtHasRx94_GMZ_wNY88LV4HWoc2VtyEv0UTPrQr4FNqmdLKo_MzGYhP1fK6Pj5tFOnAbU1rlRidGRd32js7I9yTVhSd2L_Fq9S2nqlEUXU0lNC6zK8SSUMTUvaPtGYtQKGCinFhJFXr3e8OI-xX6RIX8bR-KdP1_U8pxpzm4-b9zvMVuJBuT709CcZtd8t0ddi2VOz89v8t-xkQBfugRJ8-ha_li6H8sv-JLR5TQjm1vYQ2x5TOaofhz0g98AZTJRXScHE1dPu-7nNzWSEB7No1zCKsljUbhH4Kc94G_pwtefCLrOL_HPh28-_jmQ56KMOSuVGqdB-W9AFDB1mrmg9BtAQ3CqVxoQPsGihYIU6tEkDrYCg3C0KgGAKR2bqbus52u7_wDxm3hbKihQlSqslbSoikjlRfC2xraImTs5QYS4xJDORXK-GLQUyH4zAV8GXu27buaeDn-2Os1IbvtQVza8Y9-ODFpaZoZOeall0pRyLjSjdC-lBbqgL4YTjBjL0guDK14nI6DdHEBP4q4s8w-WtBKznRRZmx3IxcmqYLRXAhFxp5um3ERU2QGOt9_H41CVUrMbZV4-O8hHrHrVO9-ugy5y3YQYv-YXXVn6-U4PInS_wtk8w77
  priority: 102
  providerName: ProQuest
Title Using Remote and Proximal Sensing Data and Vine Vigor Parameters for Non-Destructive and Rapid Prediction of Grape Quality
URI https://www.proquest.com/docview/2893344650
https://www.proquest.com/docview/3040463660
https://doaj.org/article/527474e233584768908e42ba7f576423
Volume 15
WOSCitedRecordID wos001113800200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQQYILKi8RKCsjkBCHqE4mD-fYwhY4sIq2gAoXa-zYZSVIqt1tRTnw25lJ0qVIIC5crCjjWM7M2P5Gtr8R4mniCtQ6NDF4G-KMIHpsIdBTaKrMpUnhc9snmyhnM310VNWXUn3xmbCBHnhQ3G7OYVPmUwDe0Ct0pbTPUotlIKRMWIBnX1VWl4Kpfg4Gci2VDXykQHH97nJFKxVFQ0n62wrUE_X_bTru15iDbXFzBIdyb-jULXHFt7fF9TFP-efzO-J7v8Mv554U7CW2jayX3bfFV_rokE-ik-wlrrGXfCD8SMVxt5Q18hEs5tGUhFHlrGtjjjd75tizoZ05niy4Nd63YVvJLshXfDNLDiwb53fF-4Ppuxev4zF7QuwygHUcwHuFCMGWkPugdJNgRXYAFyrUvsKkQTaGBRVSHWxBSC5UUCFiqp3L4Z7YarvW3xfSJs6GEgtSapGVkFrCICl4pbwtsUlCJJ5faNS4kVqcM1x8MRRisPbNL-1H4smm7slAqPHHWvtsmE0NJsHuX5BrmNE1zL9cIxLP2KyGhyp1x-F444B-ikmvzB5BX0hznWSR2LmwvBnH8MpQKArAfHIqEo83Yhp9vKWCre9OVwZoDmTKtUI9-B89fihucDr74a7jjtgiR_CPxDV3tl6slhNxdX86q-eT3tUnfEr1kMsfUyrr_BPJ6zdv648_Ac9TBPc
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qpkhlwxsxpYARIMQiqmNn8lggVCilo7ajUSmorIzt2O1IkAyZoTB8FN_IvXlMhQTsumATRbFjOcnJffhxDsDj0MY6TX0eSGd8EGGIHhjp8cznWWRFGLuBqcUmktEoPT7Oxivws9sLQ8sqO5tYG-q8tDRGvilIF57YvfiL6ZeAVKNodrWT0GhgsecW3zBlmz0fbuP3fSLEzuujV7tBqyoQ2EjKeeClc1xr6U0iB87zNA91hv2T1mc6dZkOc02dNJJ7kXoTY4TjM5lprUVqLalEoMlfjQjsPVgdDw_GH5ajOlwipHnU8KBKmfHNaoYeErOwUPzm-WqBgL-5gdq37Vz9397KNbjSRtFsq4H9dVhxxQ1YawXdTxc34Ue9FIIdOkSiY7rI2bgqv08-401vack-lm3rua5L3mOgjYeTsmJjTWvViHCUYTDPRmURUGJeU-yeNe0c6umEWqMJLgI1Kz17Q1vYWENHsrgF7y7k0W9DrygLdweYCa3xiY4RBXGUSGEwWBPSce5MovPQ9-FZBwFlWw52kgL5pDAXI7ioc7j04dGy7rRhHvljrZeEpGUNYguvL5TViWqNjxrQ0EPkhJQ0KR6nGU9dJIxOPGab2ME-PCUcKrJp2B2r260Z-FDEDqa2MEeQYpCGUR82Ohyq1tjN1DkI-_BwWYxmiuaedOHKrzMl0VkQN13M1__dxANY2z062Ff7w9HeXbgsMKZstn5uQA8_t7sHl-zZfDKr7rf_HoOPFw3sXwI5cOw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamgWAv3BGBAUaAEA9RHTtNnAeEBqUwDVXRuGjixdiOvVWCpCRlUH4av45zcumEBLztgZeqql3LSb6ci338fYQ8iGyipfRFKJzxYQwhemiEh2--yGLLo8SNTSs2kc5m8uAgyzfIz-EsDJZVDjaxNdRFZXGNfMRRFx7ZvdjI92UR-WT6dPElRAUp3Gkd5DQ6iOy51TdI35onuxN41g85n754-_xV2CsMhDYWYhl64RzTWniTirHzTBaRzmCuwvpMS5fpqNA4YSOY59KbBKIdn4lMa82ltagYAeb_TAo5JpYT5uMP6_UdJgDcLO4YUYXI2KhuwFdCPhbx33xgKxXwN4fQernpxf_5_lwiF_rYmu50L8NlsuHKK-R8L_N-tLpKfrQFEnTfAT4d1WVB87r6Pv8Mf3qDhfzQNtFL3ba8h_AbPg6rmuYaK9iQhpRCiE9nVRliut4S7x534-zrxRxHw20vhDqtPH2JB9toR1KyukbencqlXyebZVW6G4SayBqf6gQQkcSp4AZCOC4cY86kuoh8QB4PcFC2Z2ZHgZBPCjI0hI46gU5A7q_7Ljo-kj_2eoaoWvdADvH2h6o-VL1JUmNckIgdFwK3yhOZMelibnTqIQeFCQbkEWJSoaWD6VjdH9iAi0LOMLUDmYPgYxnFAdkeMKl6E9ioE0AG5N66GYwX7kjp0lVfGyXAhSBjXcJu_nuIu-QcoFm93p3t3SJbHALN7jzoNtmEp-1uk7P2eDlv6jvtS0jJx9NG9S-T8XhP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Remote+and+Proximal+Sensing+Data+and+Vine+Vigor+Parameters+for+Non-Destructive+and+Rapid+Prediction+of+Grape+Quality&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Lyu%2C+Hongyi&rft.au=Grafton%2C+Miles&rft.au=Ramilan%2C+Thiagarajah&rft.au=Irwin%2C+Matthew&rft.date=2023-11-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=22&rft_id=info:doi/10.3390%2Frs15225412&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon