Numerical Modeling and High-Speed Parallel Computing: New Perspectives on Tomographic Microwave Imaging for Brain Stroke Detection and Monitoring

This article deals with microwave tomography for brain stroke imaging using state-of-the-art numerical modeling and massively parallel computing. Iterative microwave tomographic imaging requires the solution of an inverse problem based on a minimization algorithm (e.g., gradient based) with successi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE antennas & propagation magazine Ročník 59; číslo 5; s. 98 - 110
Hlavní autoři: Tournier, Pierre-Henri, Bonazzoli, Marcella, Dolean, Victorita, Rapetti, Francesca, Hecht, Frederic, Nataf, Frederic, Aliferis, Iannis, El Kanfoud, Ibtissam, Migliaccio, Claire, de Buhan, Maya, Darbas, Marion, Semenov, Serguei, Pichot, Christian
Médium: Magazine Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1045-9243, 1558-4143
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article deals with microwave tomography for brain stroke imaging using state-of-the-art numerical modeling and massively parallel computing. Iterative microwave tomographic imaging requires the solution of an inverse problem based on a minimization algorithm (e.g., gradient based) with successive solutions of a direct problem such as the accurate modeling of a whole-microwave measurement system. Moreover, a sufficiently high number of unknowns is required to accurately represent the solution. As the system will be used for detecting a brain stroke (ischemic or hemorrhagic) as well as for monitoring during the treatment, the running times for the reconstructions should be reasonable. The method used is based on high-order finite elements, parallel preconditioners from the domain decomposition method and domain-specific language with the opensource FreeFEM++ solver.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1045-9243
1558-4143
DOI:10.1109/MAP.2017.2731199