Advanced Brain Tumor Segmentation Using SAM2-UNet

Image segmentation is one of the key factors in diagnosing glioma patients with brain tumors. It helps doctors identify the types of tumor that a patient is carrying and will lead to a prognosis that will help save the lives of patients. The analysis of medical images is a specialized domain in comp...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 15; no. 6; p. 3267
Main Authors: Pidishetti, Rohit Viswakarma, Amjad, Maaz, Sheng, Victor S.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.03.2025
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Image segmentation is one of the key factors in diagnosing glioma patients with brain tumors. It helps doctors identify the types of tumor that a patient is carrying and will lead to a prognosis that will help save the lives of patients. The analysis of medical images is a specialized domain in computer vision and image processing. This process extracts meaningful information from medical images that helps in treatment planning and monitoring the condition of patients. Deep learning models like CNN have shown promising results in image segmentation by identifying complex patterns in the image data. These methods have also shown great results in tumor segmentation and the identification of anomalies, which assist health care professionals in treatment planning. Despite advancements made in the domain of deep learning for medical image segmentation, the precise segmentation of tumors remains challenging because of the complex structures of tumors across patients. Existing models, such as traditional U-Net- and SAM-based architectures, either lack efficiency in handling class-specific segmentation or require extensive computational resources. This study aims to bridge this gap by proposing Segment Anything Model 2-UNetwork, a hybrid model that leverages the strengths of both architectures to improve segmentation accuracy and consumes less computational resources by maintaining efficiency. The proposed model possesses the ability to perform explicitly well on scarce data, and we trained this model on the Brain Tumor Segmentation Challenge 2020 (BraTS) dataset. This architecture is inspired by U-Networks that are based on the encoder and decoder architecture. The Hiera pre-trained model is set as a backbone to this architecture to capture multi-scale features. Adapters are embedded into the encoder to achieve parameter-efficient fine-tuning. The dataset contains four channels of MRI scans of 369 glioma patients as T1, T1ce, T2, and T2-flair and a segmentation mask for each patient consisting of non-tumor (NT), necrotic and non-enhancing tumor (NCR/NET), and peritumoral edema or GD-enhancing tumor (ET) as the ground-truth value. These experiments yielded good segmentation performance and achieved balanced performance based on the metrics discussed next in this paragraph for each tumor region. Our experiments yielded the following results with minimal hardware resources, i.e., 16 GB RAM with 30 epochs: a mean Dice score (mDice) of 0.771, a mean Intersection over Union (mIoU) of 0.569, an Sα score of 0.692, a weighted F-beta score (Fβw) of 0.267, a F-beta score (Fβ) of 0.261, an Eϕ score of 0.857, and a Mean Absolute Error (MAE) of 0.04 on the BraTS 2020 dataset.
AbstractList Image segmentation is one of the key factors in diagnosing glioma patients with brain tumors. It helps doctors identify the types of tumor that a patient is carrying and will lead to a prognosis that will help save the lives of patients. The analysis of medical images is a specialized domain in computer vision and image processing. This process extracts meaningful information from medical images that helps in treatment planning and monitoring the condition of patients. Deep learning models like CNN have shown promising results in image segmentation by identifying complex patterns in the image data. These methods have also shown great results in tumor segmentation and the identification of anomalies, which assist health care professionals in treatment planning. Despite advancements made in the domain of deep learning for medical image segmentation, the precise segmentation of tumors remains challenging because of the complex structures of tumors across patients. Existing models, such as traditional U-Net- and SAM-based architectures, either lack efficiency in handling class-specific segmentation or require extensive computational resources. This study aims to bridge this gap by proposing Segment Anything Model 2-UNetwork, a hybrid model that leverages the strengths of both architectures to improve segmentation accuracy and consumes less computational resources by maintaining efficiency. The proposed model possesses the ability to perform explicitly well on scarce data, and we trained this model on the Brain Tumor Segmentation Challenge 2020 (BraTS) dataset. This architecture is inspired by U-Networks that are based on the encoder and decoder architecture. The Hiera pre-trained model is set as a backbone to this architecture to capture multi-scale features. Adapters are embedded into the encoder to achieve parameter-efficient fine-tuning. The dataset contains four channels of MRI scans of 369 glioma patients as T1, T1ce, T2, and T2-flair and a segmentation mask for each patient consisting of non-tumor (NT), necrotic and non-enhancing tumor (NCR/NET), and peritumoral edema or GD-enhancing tumor (ET) as the ground-truth value. These experiments yielded good segmentation performance and achieved balanced performance based on the metrics discussed next in this paragraph for each tumor region. Our experiments yielded the following results with minimal hardware resources, i.e., 16 GB RAM with 30 epochs: a mean Dice score (mDice) of 0.771, a mean Intersection over Union (mIoU) of 0.569, an Sα score of 0.692, a weighted F-beta score ( Fβw ) of 0.267, a F-beta score ( Fβ ) of 0.261, an Eϕ score of 0.857, and a Mean Absolute Error (MAE) of 0.04 on the BraTS 2020 dataset.
Image segmentation is one of the key factors in diagnosing glioma patients with brain tumors. It helps doctors identify the types of tumor that a patient is carrying and will lead to a prognosis that will help save the lives of patients. The analysis of medical images is a specialized domain in computer vision and image processing. This process extracts meaningful information from medical images that helps in treatment planning and monitoring the condition of patients. Deep learning models like CNN have shown promising results in image segmentation by identifying complex patterns in the image data. These methods have also shown great results in tumor segmentation and the identification of anomalies, which assist health care professionals in treatment planning. Despite advancements made in the domain of deep learning for medical image segmentation, the precise segmentation of tumors remains challenging because of the complex structures of tumors across patients. Existing models, such as traditional U-Net- and SAM-based architectures, either lack efficiency in handling class-specific segmentation or require extensive computational resources. This study aims to bridge this gap by proposing Segment Anything Model 2-UNetwork, a hybrid model that leverages the strengths of both architectures to improve segmentation accuracy and consumes less computational resources by maintaining efficiency. The proposed model possesses the ability to perform explicitly well on scarce data, and we trained this model on the Brain Tumor Segmentation Challenge 2020 (BraTS) dataset. This architecture is inspired by U-Networks that are based on the encoder and decoder architecture. The Hiera pre-trained model is set as a backbone to this architecture to capture multi-scale features. Adapters are embedded into the encoder to achieve parameter-efficient fine-tuning. The dataset contains four channels of MRI scans of 369 glioma patients as T1, T1ce, T2, and T2-flair and a segmentation mask for each patient consisting of non-tumor (NT), necrotic and non-enhancing tumor (NCR/NET), and peritumoral edema or GD-enhancing tumor (ET) as the ground-truth value. These experiments yielded good segmentation performance and achieved balanced performance based on the metrics discussed next in this paragraph for each tumor region. Our experiments yielded the following results with minimal hardware resources, i.e., 16 GB RAM with 30 epochs: a mean Dice score (mDice) of 0.771, a mean Intersection over Union (mIoU) of 0.569, an S[sub.α] score of 0.692, a weighted F-beta score (F[sub.β] [sup.w]) of 0.267, a F-beta score (F[sub.β]) of 0.261, an E[sub.ϕ] score of 0.857, and a Mean Absolute Error (MAE) of 0.04 on the BraTS 2020 dataset.
Audience Academic
Author Amjad, Maaz
Sheng, Victor S.
Pidishetti, Rohit Viswakarma
Author_xml – sequence: 1
  givenname: Rohit Viswakarma
  orcidid: 0009-0006-3197-2381
  surname: Pidishetti
  fullname: Pidishetti, Rohit Viswakarma
– sequence: 2
  givenname: Maaz
  orcidid: 0000-0002-5969-9085
  surname: Amjad
  fullname: Amjad, Maaz
– sequence: 3
  givenname: Victor S.
  surname: Sheng
  fullname: Sheng, Victor S.
BookMark eNptkUFvEzEQhS1UJErpiT-wEsdqi8fetTfHUEFbqcChzdkaj-3IUdYO3k2l_vuaBkGpOj6MNfreG1vvPTtKOXnGPgI_l3LBP-NuBz1XUij9hh0LrlUrO9BHz-7v2Ok0bXitBcgB-DGDpbvHRN41XwrG1Nztx1yaW78efZpxjjk1qymmdXO7_C7a1Q8_f2BvA24nf_qnn7DVt693F1ftzc_L64vlTUudlHPrO7fgFjUXyjovpCAUPQTvnCLSg6WuExwCgNLOIsGA1ikeehTaKk0kT9j1wddl3JhdiSOWB5MxmqdBLmuDZY609cbBAFr2aPVAHYQOyVoHNvRWcwWI1evTwWtX8q-9n2azyfuS6vONrNqOK7EQ_6g1VtOYQp4L0hgnMstBikErpXWlzl-h6nF-jFQjCbHO_xOcHQRU8jQVH_5-Brj5nZx5llyl4QVN8RBEXRO3r2oeAV0Dmjg
CitedBy_id crossref_primary_10_1016_j_dsp_2025_105459
Cites_doi 10.3390/diagnostics13111947
10.1007/978-3-319-24574-4_28
10.1007/978-3-030-72087-2_4
10.1007/978-3-030-01252-6_24
10.3389/fneur.2020.00005
10.1007/978-3-030-11726-9_1
10.2307/1932409
10.1186/s12880-024-01323-3
10.1038/s41592-020-01008-z
10.3390/s23218739
10.1109/TMI.2019.2959609
10.1007/978-3-030-59725-2_26
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app15063267
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_d181735ab78c41f4acbbd1bf5b7061aa
A832876677
10_3390_app15063267
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c433t-e4d90ba7026bde232ca251fedd6cc78bc44201f1167dbac18abd60f5a27b67cc3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001453508700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 14:30:11 EDT 2025
Mon Jun 30 12:04:36 EDT 2025
Tue Nov 11 10:50:34 EST 2025
Tue Nov 04 18:14:20 EST 2025
Sat Nov 29 07:18:24 EST 2025
Tue Nov 18 22:35:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-e4d90ba7026bde232ca251fedd6cc78bc44201f1167dbac18abd60f5a27b67cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5969-9085
0009-0006-3197-2381
OpenAccessLink https://doaj.org/article/d181735ab78c41f4acbbd1bf5b7061aa
PQID 3181406292
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_d181735ab78c41f4acbbd1bf5b7061aa
proquest_journals_3181406292
gale_infotracmisc_A832876677
gale_infotracacademiconefile_A832876677
crossref_primary_10_3390_app15063267
crossref_citationtrail_10_3390_app15063267
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhou (ref_19) 2019; 39
Brown (ref_4) 2004; 22
ref_14
ref_13
ref_12
ref_23
ref_11
ref_10
ref_21
Dice (ref_22) 1945; 26
ref_20
Willmott (ref_24) 2005; 25
ref_1
Isensee (ref_16) 2021; 18
ref_2
ref_18
Holland (ref_3) 2009; 9
ref_17
ref_15
ref_9
ref_8
ref_5
ref_7
ref_6
References_xml – ident: ref_6
– ident: ref_8
  doi: 10.3390/diagnostics13111947
– ident: ref_9
– ident: ref_10
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_11
  doi: 10.1007/978-3-030-72087-2_4
– ident: ref_18
  doi: 10.1007/978-3-030-01252-6_24
– ident: ref_5
  doi: 10.3389/fneur.2020.00005
– ident: ref_2
– ident: ref_14
  doi: 10.1007/978-3-030-11726-9_1
– volume: 9
  start-page: 341
  year: 2009
  ident: ref_3
  article-title: Glioma: Biology and diagnosis
  publication-title: Nat. Rev. Cancer
– ident: ref_12
– volume: 26
  start-page: 297
  year: 1945
  ident: ref_22
  article-title: Measures of the Amount of Ecologic Association Between Species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 25
  start-page: 637
  year: 2005
  ident: ref_24
  article-title: Some Comments on the Evaluation of Model Performance
  publication-title: J. Climatol.
– ident: ref_15
– volume: 22
  start-page: 2171
  year: 2004
  ident: ref_4
  article-title: Glioblastoma: The paradigm of the malignant glioma
  publication-title: J. Clin. Oncol.
– ident: ref_7
  doi: 10.1186/s12880-024-01323-3
– ident: ref_13
– volume: 18
  start-page: 203
  year: 2021
  ident: ref_16
  article-title: nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– ident: ref_17
– ident: ref_23
– ident: ref_21
– ident: ref_1
  doi: 10.3390/s23218739
– volume: 39
  start-page: 1856
  year: 2019
  ident: ref_19
  article-title: UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2959609
– ident: ref_20
  doi: 10.1007/978-3-030-59725-2_26
SSID ssj0000913810
Score 2.3380156
Snippet Image segmentation is one of the key factors in diagnosing glioma patients with brain tumors. It helps doctors identify the types of tumor that a patient is...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3267
SubjectTerms Brain cancer
brain tumor segmentation
Brain tumors
BraTS 2020
Care and treatment
Datasets
Deep learning
Edema
Glioma
Gliomas
Localization
Machine vision
Magnetic resonance imaging
medical image segmentation
Medical imaging equipment
Medical research
Prognosis
segment anything model-2
Semantics
Tissues
Tumors
U-Network
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58HfTgW6wv9iD4gMV9pJvdk7SieNAivvAWkklWBG21rf5-Z7ZptaBevG4GNrvzTma-Adi1phRSUOSWJIavGa0I2Y-HuY4Qc-PKogLSvr-QrVb-8FBc-QO3ni-rHNrEylDbDvIZ-RHJHuUCWVIkx69vIU-N4ttVP0JjEqYZqYzkfLp52rq6Hp2yMOplHkeDxryU8nu-F2ZQPYpa5JgrqhD7f7PLlbM5W_jvNhdh3oeZQWMgF0sw4drLMPcNfHAZlrxa94J9jz19sAJxw9cEBE2eHRHcvr90usGNe3zxPUrtoCoyCG4al0l413L9Vbg7O709OQ_9VIUQRZr2QydsERktKfky1lFAhZpinNJZmyHK3KAQFBSUfD9jjcY418ZmUVnXiTSZREzXYKrdabt1CAzpuy5K6Rg2LtMi5y7dJJWRpSQwx3oNDoc_WKGHHOfJF8-KUg_mhvrGjRrsjohfB0gbP5M1mVMjEobHrh50uo_Ka5uyxAWZ1rWhXYi4FBqNsbEp60ZS_KJ1DfaYz4qVmDaE2vci0GcxHJZqkJ0jN5FJet3WGCUpH44vD8VAeeXvqS8Z2Ph7eRNmEx4nXJW0bcFUv_vutmEGP_pPve6Ol-VPjkT7FQ
  priority: 102
  providerName: ProQuest
Title Advanced Brain Tumor Segmentation Using SAM2-UNet
URI https://www.proquest.com/docview/3181406292
https://doaj.org/article/d181735ab78c41f4acbbd1bf5b7061aa
Volume 15
WOSCitedRecordID wos001453508700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC5EPehhcXzg7KrkIPiAYB496eQ4sygKOgy-0FPTXd0RYR2XmXF_v1WdHpmBFS8ekxSkU5V6UVVfAexbUwspKHLLMsNlRiti9uNxqRPE0ri68kDa95ey3y8fHqrBzKov7glr4IEbxp1YckEy72gjSxRpLTQaY1NTd4wkV6R9aJTIaiaZ8ja4Shm6qhnIyymv53owg-lRtCLnXJBH6v_MHnsnc7YGP0J0GHWbU7VgwQ3XYXUGM3AdWkEbx9FhgIw-2oC0G0r5UY9XPkS3by-vo-jGPb2E0aJh5HsDopvuVRbf9d1kE-7OTm9_n8dhGUKMIs8nsRO2SoyWlDMZ6ygOQk2hSe2sLRBlaVAI8uU1l1Ws0ZiW2tgiqTs6k6aQiPkWLA5fh24bIkNqqqtaOkZ7K7Qoebg2y2ViKXcrsdOG4yl_FAakcF5Y8UdRxsDMVDPMbMP-B_HfBiDj_2Q9ZvQHCaNa-xskaxVkrb6SdRsOWEyKdY8OhDqMENBnMYqV6pJ5IuteSHrdzhwl6QzOP54KWgWdHSuybpRtFlmV_fyOw_6ClYx3Bft-tR1YnIze3C4s47_J83i0B0u90_7ges__tnQ1uLgaPL4DsADwIg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIn2UGgBESiwhyIekoW93njtA0IpUDVqEkVqispp2ZerSjRpkxTUP8VvZMZZh0YCbj1w9a7stefzPHZ2vgHYcaYUUqDnxrmhNKMTEdnxKNextbnxZVERaX_uyn4_Pz4uBivws66FoWOVtU6sFLUbW9ojf4vYw1gg4wV_f34RUdcoyq7WLTTmsDjwVz8wZJu-63xE-b7gfO_T8MN-FLoKRFak6SzywhWx0RKDD-M8OhRWo40vvXOZtTI3Vgg0iiXlJ5zRNsm1cVlctjSXJpPWpnjfW7AqCOwNWB10eoMvi10dYtnMk3heCJimRUx5aCLxQy9JLpm-qkPA3-xAZdz27v5vn-UebAQ3mrXnuN-EFT_agvVr5IpbsBnU1pS9Ctzar-9D0g5nHtgu9cZgw8uz8YQd-pOzUIM1YtUhCnbY7vHoqO9nD-DoRl7kITRG45F_BMygiHVRSk-0eJkWOVUh81TGDoPc3Laa8KYWqLKBUp06e3xTGFqR9NU16TdhZzH5fM4k8udpu4SMxRSi_64ujCcnKmgT5VDqMm1pg6sQSSm0NcYlpmwZif6Z1k14SbhSpKRwQVaHWgt8LaL7Um3U42gGM4mP216aicrFLg_XsFNBuU3Vb8w9_vfwc7izP-x1VbfTP3gCa5xaJ1fH97ahMZtc-qdw236fnU4nz8J_xODrTWP0Fz3CWuc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE4AC0gAgX2UMRDsmqvN177gFBKiYjaRpHaova07LNCoklJUhB_jV_HjLMOjQTceuDqXfn57Tcz3plvADadCUIK9Nw4N7TN6ERCdjwpdWptaXyoaiHtj3tyMCiPj6vhCvxsamEorbLhxJqo3djSP_ItxB7GAgWv-FaIaRHDnd7b868JdZCindamncYcIrv-x3cM36Zv-jv4rZ9z3nt_-O5DEjsMJFbk-SzxwlWp0RIDEeM8OhdWo70P3rnCWlkaKwQayEB7Fc5om5XauCINHc2lKaS1OZ73GqyiSy54C1aH_f3hyeIPDylullk6LwrM8yqlPWkS9EOPSS6ZwbpbwN9sQm3oenf-51d0F25H95p15-thDVb8aB1uXRJdXIe1SGdT9jJqbr-6B1k35kKwbeqZwQ4vzsYTduBPz2Jt1ojVyRXsoLvPk6OBn92Hoyt5kAfQGo1H_iEwgzynqyA9yeUVWpRUncxzmToMfkvbacPr5uMqG6XWqePHF4UhFyFBXUJCGzYXk8_nCiN_nrZNKFlMIVnw-sB4cqoiyyiHCJB5Rxu8C5EFoa0xLjOhYyT6bVq34QVhTBF54Q1ZHWsw8LFIBkx1kd_RPBYSL7exNBNJxy4PNxBUkfSm6jf-Hv17-BncQGCqvf5g9zHc5NRRuc7q24DWbHLhn8B1-232eTp5GpcUg09XDdFfKlpjpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Brain+Tumor+Segmentation+Using+SAM2-UNet&rft.jtitle=Applied+sciences&rft.au=Rohit+Viswakarma+Pidishetti&rft.au=Maaz+Amjad&rft.au=Victor+S.+Sheng&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=6&rft.spage=3267&rft_id=info:doi/10.3390%2Fapp15063267&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d181735ab78c41f4acbbd1bf5b7061aa
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon