Self-Supervised Convolutional Neural Network Learning in a Hybrid Approach Framework to Estimate Chlorophyll and Nitrogen Content of Maize from Hyperspectral Images

The new generation of available (i.e., PRISMA, ENMAP, DESIS) and future (i.e., ESA-CHIME, NASA-SBG) spaceborne hyperspectral missions provide unprecedented data for environmental and agricultural monitoring, such as crop trait assessment. This paper focuses on retrieving two crop traits, specificall...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 15; číslo 19; s. 4765
Hlavní autoři: Gallo, Ignazio, Boschetti, Mirco, Rehman, Anwar Ur, Candiani, Gabriele
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.10.2023
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The new generation of available (i.e., PRISMA, ENMAP, DESIS) and future (i.e., ESA-CHIME, NASA-SBG) spaceborne hyperspectral missions provide unprecedented data for environmental and agricultural monitoring, such as crop trait assessment. This paper focuses on retrieving two crop traits, specifically Chlorophyll and Nitrogen content at the canopy level (CCC and CNC), starting from hyperspectral images acquired during the CHIME-RCS project, exploiting a self-supervised learning (SSL) technique. SSL is a machine learning paradigm that leverages unlabeled data to generate valuable representations for downstream tasks, bridging the gap between unsupervised and supervised learning. The proposed method comprises pre-training and fine-tuning procedures: in the first stage, a de-noising Convolutional Autoencoder is trained using pairs of noisy and clean CHIME-like images; the pre-trained Encoder network is utilized as-is or fine-tuned in the second stage. The paper demonstrates the applicability of this technique in hybrid approach methods that combine Radiative Transfer Modelling (RTM) and Machine Learning Regression Algorithm (MLRA) to set up a retrieval schema able to estimate crop traits from new generation space-born hyperspectral data. The results showcase excellent prediction accuracy for estimating CCC (R2 = 0.8318; RMSE = 0.2490) and CNC (R2 = 0.9186; RMSE = 0.7908) for maize crops from CHIME-like images without requiring further ground data calibration.
AbstractList The new generation of available (i.e., PRISMA, ENMAP, DESIS) and future (i.e., ESA-CHIME, NASA-SBG) spaceborne hyperspectral missions provide unprecedented data for environmental and agricultural monitoring, such as crop trait assessment. This paper focuses on retrieving two crop traits, specifically Chlorophyll and Nitrogen content at the canopy level (CCC and CNC), starting from hyperspectral images acquired during the CHIME-RCS project, exploiting a self-supervised learning (SSL) technique. SSL is a machine learning paradigm that leverages unlabeled data to generate valuable representations for downstream tasks, bridging the gap between unsupervised and supervised learning. The proposed method comprises pre-training and fine-tuning procedures: in the first stage, a de-noising Convolutional Autoencoder is trained using pairs of noisy and clean CHIME-like images; the pre-trained Encoder network is utilized as-is or fine-tuned in the second stage. The paper demonstrates the applicability of this technique in hybrid approach methods that combine Radiative Transfer Modelling (RTM) and Machine Learning Regression Algorithm (MLRA) to set up a retrieval schema able to estimate crop traits from new generation space-born hyperspectral data. The results showcase excellent prediction accuracy for estimating CCC (R2 = 0.8318; RMSE = 0.2490) and CNC (R2 = 0.9186; RMSE = 0.7908) for maize crops from CHIME-like images without requiring further ground data calibration.
Audience Academic
Author Gallo, Ignazio
Boschetti, Mirco
Rehman, Anwar Ur
Candiani, Gabriele
Author_xml – sequence: 1
  givenname: Ignazio
  orcidid: 0000-0002-7076-8328
  surname: Gallo
  fullname: Gallo, Ignazio
– sequence: 2
  givenname: Mirco
  orcidid: 0000-0003-2156-4166
  surname: Boschetti
  fullname: Boschetti, Mirco
– sequence: 3
  givenname: Anwar Ur
  orcidid: 0000-0002-9384-8988
  surname: Rehman
  fullname: Rehman, Anwar Ur
– sequence: 4
  givenname: Gabriele
  orcidid: 0000-0001-5270-071X
  surname: Candiani
  fullname: Candiani, Gabriele
BookMark eNptkk1vEzEQhleoSJTSC7_AEheElOKv_TpGUUsjhXIonFdee5w4eO3F9halv6c_FG-CAFXYh7FGz7zjGb2vizPnHRTFW4KvGGvxxxBJSVpeV-WL4pzimi44benZP-9XxWWMe5wPY6TF_Lx4ugerF_fTCOHBRFBo5d2Dt1My3gmL7mAKx5B--vAdbUAEZ9wWGYcEuj30wSi0HMfghdyhmyAGOHLJo-uYzCASoNXO-uDH3cFaJJxCdyYFvwU3d0rgEvIafRbmEZAOfsii-StxBJnmxutBbCG-KV5qYSNc_o4Xxbeb66-r28Xmy6f1arlZSM5YWiipGAEJTUWFVlXLpCZE97wvoW6h5ApkKytgVSlxSUiTUYFzRvWElazU7KJYn3SVF_tuDHmAcOi8MN0x4cO2EyEZaaGDqsZYkL5voOWE0kY0La0l07WitMV11np_0srL-TFBTN1gogRrhQM_xY5hjjlrCCYZffcM3fsp5PXHjjZ1VXHSlDxTVydqK3J_47TPG5L5KhiMzE7QJueXdU0pxoTPBR9OBTL4GAPoPxMR3M2G6f4aJsP4GSxNErMLchdj_1fyC0x9xoU
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3375624
crossref_primary_10_3390_rs16071211
crossref_primary_10_1016_j_rse_2024_114309
crossref_primary_10_3390_agronomy15051041
crossref_primary_10_1016_j_compag_2024_109565
crossref_primary_10_3390_rs16122071
crossref_primary_10_1016_j_isprsjprs_2024_11_005
crossref_primary_10_1109_TGRS_2025_3602884
crossref_primary_10_3390_horticulturae10050516
crossref_primary_10_3390_s25082345
Cites_doi 10.3390/rs14061400
10.1016/j.fcr.2018.01.007
10.1016/j.fcr.2023.108929
10.1016/j.agrformet.2003.08.027
10.1145/3510373
10.1016/j.agrformet.2003.08.001
10.1007/s10712-018-9478-y
10.1038/s41598-018-38343-3
10.3390/s17030538
10.1016/j.compag.2020.105860
10.2139/ssrn.4364605
10.3390/rs13101893
10.3390/rs11232760
10.1016/j.rse.2020.111758
10.3390/app13031928
10.1016/j.rse.2015.03.027
10.5194/isprs-archives-XLIII-B3-2022-1327-2022
10.1109/TKDE.2021.3139916
10.1109/TKDE.2009.191
10.1007/978-3-031-16434-7_5
10.1007/s11119-019-09659-5
10.1080/22797254.2022.2117650
10.1016/j.compag.2021.106421
10.1109/CVPR42600.2020.00290
10.3390/rs14112576
10.1016/j.compag.2018.05.012
10.1016/bs.agron.2019.08.001
10.1016/j.inffus.2020.01.007
10.1016/j.rse.2020.112173
10.1109/TGRS.2007.895844
10.1126/science.aaa8415
10.1109/TGRS.2006.872529
10.1016/0034-4257(84)90057-9
10.1109/CVPR42600.2020.00975
10.1111/gcb.13017
10.1016/j.compag.2021.106510
10.3390/rs14081792
10.1002/2014GL062943
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15194765
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_e6700a1bb8e941228a8927c3f7d22907
A772200144
10_3390_rs15194765
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-dcd31ece862afd693cf11fb4b5e79e54dec9c6e365c05118ecea09c6db13535f3
IEDL.DBID M7S
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001083714000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:40:27 EDT 2025
Wed Oct 01 14:47:16 EDT 2025
Fri Jul 25 09:34:36 EDT 2025
Tue Nov 04 18:17:05 EST 2025
Sat Nov 29 07:16:05 EST 2025
Tue Nov 18 22:42:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-dcd31ece862afd693cf11fb4b5e79e54dec9c6e365c05118ecea09c6db13535f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7076-8328
0000-0002-9384-8988
0000-0003-2156-4166
0000-0001-5270-071X
OpenAccessLink https://www.proquest.com/docview/2876641854?pq-origsite=%requestingapplication%
PQID 2876641854
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_e6700a1bb8e941228a8927c3f7d22907
proquest_miscellaneous_3040438101
proquest_journals_2876641854
gale_infotracacademiconefile_A772200144
crossref_primary_10_3390_rs15194765
crossref_citationtrail_10_3390_rs15194765
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Qiu (ref_13) 2021; 189
Olsen (ref_21) 2019; 9
Jonckheere (ref_35) 2004; 121
Verhoef (ref_41) 2007; 45
Verhoef (ref_40) 1984; 16
Zhao (ref_26) 2023; 297
Weiss (ref_34) 2004; 121
ref_32
ref_31
ref_30
Rossini (ref_37) 2015; 42
Liu (ref_24) 2022; 18
ref_18
Shi (ref_12) 2021; 180
ref_17
ref_39
Nalpantidis (ref_19) 2021; 191
Cogliati (ref_38) 2015; 164
Rascher (ref_36) 2015; 21
Herrmann (ref_1) 2020; 21
Berger (ref_8) 2020; 242
Imani (ref_9) 2020; 59
Berger (ref_15) 2021; 252
Munnaf (ref_6) 2020; 161
Jordan (ref_11) 2015; 349
ref_25
Bramley (ref_5) 2018; 218
ref_22
ref_43
ref_20
ref_42
Verrelst (ref_14) 2019; 40
Yue (ref_23) 2021; 60
ref_3
Morisette (ref_33) 2006; 44
ref_2
ref_29
ref_28
ref_27
ref_4
ref_7
Chlingaryan (ref_10) 2018; 151
Pan (ref_16) 2010; 22
References_xml – ident: ref_3
  doi: 10.3390/rs14061400
– volume: 218
  start-page: 126
  year: 2018
  ident: ref_5
  article-title: Do crop sensors promote improved nitrogen management in grain crops?
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2018.01.007
– volume: 297
  start-page: 108929
  year: 2023
  ident: ref_26
  article-title: Improving chlorophyll content detection to suit maize dynamic growth effects by deep features of hyperspectral data
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2023.108929
– ident: ref_32
– volume: 121
  start-page: 19
  year: 2004
  ident: ref_35
  article-title: Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2003.08.027
– volume: 18
  start-page: 1
  year: 2022
  ident: ref_24
  article-title: Deep self-supervised hyperspectral image reconstruction
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl.
  doi: 10.1145/3510373
– volume: 121
  start-page: 37
  year: 2004
  ident: ref_34
  article-title: Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2003.08.001
– volume: 40
  start-page: 589
  year: 2019
  ident: ref_14
  article-title: Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on retrieval methods
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-018-9478-y
– volume: 9
  start-page: 2058
  year: 2019
  ident: ref_21
  article-title: DeepWeeds: A multiclass weed species image dataset for deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-38343-3
– ident: ref_7
  doi: 10.3390/s17030538
– volume: 180
  start-page: 105860
  year: 2021
  ident: ref_12
  article-title: Rice nitrogen nutrition estimation with RGB images and machine learning methods
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105860
– ident: ref_2
  doi: 10.2139/ssrn.4364605
– ident: ref_4
  doi: 10.3390/rs13101893
– ident: ref_39
  doi: 10.3390/rs11232760
– ident: ref_42
– volume: 242
  start-page: 111758
  year: 2020
  ident: ref_8
  article-title: Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111758
– ident: ref_28
  doi: 10.3390/app13031928
– volume: 164
  start-page: 270
  year: 2015
  ident: ref_38
  article-title: Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.03.027
– ident: ref_22
  doi: 10.5194/isprs-archives-XLIII-B3-2022-1327-2022
– ident: ref_25
  doi: 10.1109/TKDE.2021.3139916
– volume: 22
  start-page: 1345
  year: 2010
  ident: ref_16
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– ident: ref_29
  doi: 10.1007/978-3-031-16434-7_5
– volume: 21
  start-page: 51
  year: 2020
  ident: ref_1
  article-title: Assessment of maize yield and phenology by drone-mounted superspectral camera
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-019-09659-5
– ident: ref_43
  doi: 10.1080/22797254.2022.2117650
– volume: 189
  start-page: 106421
  year: 2021
  ident: ref_13
  article-title: Estimation of nitrogen nutrition index in rice from UAV RGB images coupled with machine learning algorithms
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106421
– ident: ref_31
– ident: ref_20
  doi: 10.1109/CVPR42600.2020.00290
– ident: ref_27
  doi: 10.3390/rs14112576
– volume: 151
  start-page: 61
  year: 2018
  ident: ref_10
  article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.05.012
– volume: 161
  start-page: 241
  year: 2020
  ident: ref_6
  article-title: Site-specific seeding using multi-sensor and data fusion techniques: A review
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2019.08.001
– volume: 59
  start-page: 59
  year: 2020
  ident: ref_9
  article-title: An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.01.007
– volume: 252
  start-page: 112173
  year: 2021
  ident: ref_15
  article-title: PROSPECT-PRO for estimating content of nitrogen-containing leaf proteins and other carbon-based constituents
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112173
– volume: 45
  start-page: 1808
  year: 2007
  ident: ref_41
  article-title: Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.895844
– volume: 349
  start-page: 255
  year: 2015
  ident: ref_11
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 44
  start-page: 1804
  year: 2006
  ident: ref_33
  article-title: Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.872529
– volume: 16
  start-page: 125
  year: 1984
  ident: ref_40
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(84)90057-9
– ident: ref_17
– ident: ref_18
  doi: 10.1109/CVPR42600.2020.00975
– volume: 21
  start-page: 4673
  year: 2015
  ident: ref_36
  article-title: Sun-induced fluorescence–a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13017
– volume: 191
  start-page: 106510
  year: 2021
  ident: ref_19
  article-title: Self-supervised contrastive learning on agricultural images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106510
– ident: ref_30
  doi: 10.3390/rs14081792
– volume: 42
  start-page: 1632
  year: 2015
  ident: ref_37
  article-title: Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL062943
– volume: 60
  start-page: 1
  year: 2021
  ident: ref_23
  article-title: Self-supervised learning with adaptive distillation for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
SSID ssj0000331904
Score 2.4192562
Snippet The new generation of available (i.e., PRISMA, ENMAP, DESIS) and future (i.e., ESA-CHIME, NASA-SBG) spaceborne hyperspectral missions provide unprecedented...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4765
SubjectTerms Agricultural production
Algorithms
Artificial intelligence
Artificial neural networks
calibration
canopy
Cereal crops
Chlorophyll
Comparative analysis
Composition
convolutional neural network
Corn
Crops
Datasets
deep learning
Environmental aspects
hybrid approach
hyper-spectral images
Hyperspectral imaging
Image acquisition
Learning algorithms
Machine learning
Measurement
Multispectral photography
Neural networks
Nitrogen
nitrogen content
Nitrogen in the body
Physiological aspects
prediction
Radiative transfer
Remote sensing
Satellites
Self-supervised learning
Sensors
Simulation
Testing
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kEfQiPnF0lRIF8RA2SXeSznEcdlgPDsIq7K3p9MMdmE2GSWZh_T37Q7eq0zPOQfHiKdBdSTpdry5S9RVjH7y0vrCWJxnPRCKoRleiUUyMkFqbVLhK2tBsolos5MVF_e2g1RflhI3wwOPGnTiqI9FZ00hXiyzPpZZ1XhnuK0tQ5aGOPK3qg2Aq2GCOopWKEY-UY1x_sunRt9WiIi9y4IECUP_fzHHwMfPH7FE8HMJ0XNQTds-1T9mD2Kf88uYZuz13K5-cb9ek4b2zMOva6yg8eCMhbYRLSO2GiJ36E5YtaDi7oeIsmEYQcZjv0rJg6OAUNR3Prg5mlxjAd_iy1Qp0a2GxHDYdChkEGKt2gM7DV7385YAKU_Ch61itSS_-coXWqX_OfsxPv8_OkthnATnC-ZBYY3nmjMPgRntb1tz4LPONaApX1a4Q1pnalI6XhUkpIEFSneKIbahpRuH5C3bUdq17yUAaqorKc29sFZDopfCFzEprPB5FuZuwT7u9VyaCkFMvjJXCYIT4pH7zacLe72nXI_TGH6k-Ewv3FASXHQZQiFQUIvUvIZqwjyQAipQal2N0rE3AjyJ4LDXFGISSz4SYsOOdjKio7b3CqLMsCQUIp9_tp1FP6eeLbl237RVPRYRTe_U_VvyaPaTG92Na4TE7GjZb94bdN9fDst-8DcpwBxuwEDM
  priority: 102
  providerName: Directory of Open Access Journals
Title Self-Supervised Convolutional Neural Network Learning in a Hybrid Approach Framework to Estimate Chlorophyll and Nitrogen Content of Maize from Hyperspectral Images
URI https://www.proquest.com/docview/2876641854
https://www.proquest.com/docview/3040438101
https://doaj.org/article/e6700a1bb8e941228a8927c3f7d22907
Volume 15
WOSCitedRecordID wos001083714000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgFwkuvFcUlsoIJMQh2iR2EueEulWr3cNWEQVp4RI5fuxWKklJ0pWWA7-GH8qM63Y5ABcuieRMnEQef55xZr4h5I0V2iZasyBiEQ845ugKAMVAcSGlCrnJhHbFJrLZTJyf54XfcOt8WOUWEx1Q60bhHvkRWPZpikwr_P3qW4BVo_Dvqi-hcZvsI0tC5EL35rs9lpCBgoV8w0rKwLs_ajuQynmGa8lv65Cj6_8bKLuVZvrgf9_xIbnvbUw62ijFI3LL1I_JXV_u_PL6Cfk5N0sbzNcrBIrOaDpu6iuvg3AjEna4k4sQp56C9YIuairpyTXmeNGR5yKn0210F-0bOgHAABPY0PHlsmkbeNhySWWt6WzRtw3oKnVsWHVPG0vP5OK7oZjfAp2ufNInPvj0K4Bc95R8mk4-jk8CX64BBpaxPtBKs8goAz6StDrNmbJRZCteJSbLTcK1UblKDUsTFaJfA6IyhBZdYe2NxLIDslc3tXlGqFCYXBXHVunMEdoLbhMRpVpZsGiZGZB328Erlecyx5IayxJ8Ghzo8magB-T1Tna1YfD4o9Qx6sBOAlm3XUPTXpR-EpcGc5pkVFXC5DyKYyFFHmeK2UwjbX42IG9Rg0rEBngdJX2KA3wUsmyVI3BlMIaN8wE53GpQ6UGjK2_UZ0Be7S7DdMd_OLI2zborWcg9K9vzf3fxgtyLwR7bxB0ekr2-XZuX5I666hddOyT7x5NZ8WHotiCGbtbg8ccEjkXyBa4Xp2fF519UPyXX
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFKlceCMCBRYBQhys2t61vT4gFEKjRG2iSC1SOZnNPtpIwQ62WxR-D2d-IzPOOuUA3HrgZMle7_rx7Tez9sw3hLy0QttIa-YFLOAexxxdAaToKS6kVD43idBNsYlkMhEnJ-l0i_xsc2EwrLLlxIaodaHwG_keePZxjEor_N3yq4dVo_DvaltCYw2LA7P6Bku26u3oA7zfV2E42D_uDz1XVQDGZ6z2tNIsMMqAKy-tjlOmbBDYGZ9FJklNxLVRqYoNiyPlo_sNTaUPe_QMS0RElkG_18g2R7B3yPZ0NJ5-2nzV8RlA2udrHVTGUn-vrMCmpjxB6_Wb5WsKBPzNDDS2bXDrf3sqt8lN50XT3hr2d8iWye-SHVfQ_Wx1j_w4MgvrHZ0vkQoro2m_yC_cLIMTUZKk2TQx8NSJzJ7SeU4lHa4wi432nNo6HbTxa7Qu6D5QIjj5hvbPFkVZwGCLBZW5ppN5XRYwG2mj95XXtLB0LOffDcUMHuh06dJaceDRF6Dx6j75eCUP6QHp5EVuHhIqFKaPhaFVOmkk-wW3kQhirSz47Mx0yZsWLJlyau1YNGSRwaoNgZVdAqtLXmzaLtcaJX9s9R4xt2mBuuLNjqI8zRxNZQaztmQwmwmT8iAMhRRpmChmE42FAZIueY2IzZD94HKUdEkccFOoI5b1YLGGUXqcd8lui9jM0WKVXcK1S55vDgOh4V8qmZvivMqYz53u3KN_d_GM7AyPx4fZ4Why8JjcCMH7XEdZ7pJOXZ6bJ-S6uqjnVfnUzVJKPl_1FPgF8_2A5w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgoALb0SgwCJAiIMV27t-HRAKaaNGhShSQap6Wdb7aCMFO9hOUfg9_Ap-HTPOOuUA3HrgZMler9f2t9_M2jPfEPLCptpGWjMvYAH3OObopkCKnuKplMrnJkl1W2wimUzSo6NsukV-drkwGFbZcWJL1LpU-I28D559HKPSCu9bFxYx3R29XXz1sIIU_mntymmsIXJgVt9g-Va_Ge_Cu34ZhqO9j8N9z1UYgLEw1nhaaRYYZcCtl1bHGVM2CGzO88gkmYm4NipTsWFxpHx0xaGp9GGPzrFcRGQZ9HuJXE5gjYnhhNPoePN9x2cAbp-vFVEZy_x-VYN1zXiCduw3G9iWCvibQWit3Ojm__x8bpEbzremg_VkuE22THGHXHNl3k9Xd8mPQzO33uFygQRZG02HZXHm5h6ciEIl7aaNjKdOevaEzgoq6f4Kc9vowGmw01EX1Uabku4BUYLrb-jwdF5WJVxsPqey0HQya6oS5ihtVcCKhpaWfpCz74ZiXg90unDJrnjh8Rcg9_oe-XQhD-k-2S7KwjwgNFWYVBaGVumkFfJPuY3SINbKgifPTI-87oAjlNNwx1IicwFrOQSZOAdZjzzftF2slUv-2Ood4m_TAtXG2x1ldSIceQmDuVwyyPPUZDwIw1SmWZgoZhON5QKSHnmF6BXIiTAcJV1qB9wUqouJASzhMHaP8x7Z6dArHFnW4hy6PfJscxhoDv9dycKUy1ownzs1uof_7uIpuQq4F-_Hk4NH5HoILuk69HKHbDfV0jwmV9RZM6urJ-10peTzReP_F6aEiEo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Supervised+Convolutional+Neural+Network+Learning+in+a+Hybrid+Approach+Framework+to+Estimate+Chlorophyll+and+Nitrogen+Content+of+Maize+from+Hyperspectral+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Gallo%2C+Ignazio&rft.au=Boschetti%2C+Mirco&rft.au=Rehman%2C+Anwar+Ur&rft.au=Candiani%2C+Gabriele&rft.date=2023-10-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=19&rft_id=info:doi/10.3390%2Frs15194765&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon