The impact of sentiment and attention measures on stock market volatility

We analyze the impact of sentiment and attention variables on the stock market volatility by using a novel and extensive dataset that combines social media, news articles, information consumption, and search engine data. We apply a state-of-the-art sentiment classification technique in order to inve...

Full description

Saved in:
Bibliographic Details
Published in:International journal of forecasting Vol. 36; no. 2; pp. 334 - 357
Main Authors: Audrino, Francesco, Sigrist, Fabio, Ballinari, Daniele
Format: Journal Article
Language:English
Published: Elsevier B.V 01.04.2020
Subjects:
ISSN:0169-2070, 1872-8200
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We analyze the impact of sentiment and attention variables on the stock market volatility by using a novel and extensive dataset that combines social media, news articles, information consumption, and search engine data. We apply a state-of-the-art sentiment classification technique in order to investigate the question of whether sentiment and attention measures contain additional predictive power for realized volatility when controlling for a wide range of economic and financial predictors. Using a penalized regression framework, we identify the most relevant variables to be investors’ attention, as measured by the number of Google searches on financial keywords (e.g. “financial market” and “stock market”), and the daily volume of company-specific short messages posted on StockTwits. In addition, our study shows that attention and sentiment variables are able to improve volatility forecasts significantly, although the magnitudes of the improvements are relatively small from an economic point of view.
AbstractList We analyze the impact of sentiment and attention variables on the stock market volatility by using a novel and extensive dataset that combines social media, news articles, information consumption, and search engine data. We apply a state-of-the-art sentiment classification technique in order to investigate the question of whether sentiment and attention measures contain additional predictive power for realized volatility when controlling for a wide range of economic and financial predictors. Using a penalized regression framework, we identify the most relevant variables to be investors’ attention, as measured by the number of Google searches on financial keywords (e.g. “financial market” and “stock market”), and the daily volume of company-specific short messages posted on StockTwits. In addition, our study shows that attention and sentiment variables are able to improve volatility forecasts significantly, although the magnitudes of the improvements are relatively small from an economic point of view.
Author Audrino, Francesco
Sigrist, Fabio
Ballinari, Daniele
Author_xml – sequence: 1
  givenname: Francesco
  surname: Audrino
  fullname: Audrino, Francesco
  email: francesco.audrino@unisg.ch
  organization: University of St. Gallen, Switzerland
– sequence: 2
  givenname: Fabio
  surname: Sigrist
  fullname: Sigrist, Fabio
  email: fabio.sigrist@hslu.ch
  organization: Lucerne University of Applied Sciences and Arts, Grafenauweg 10, 6304 Zug, Switzerland
– sequence: 3
  givenname: Daniele
  surname: Ballinari
  fullname: Ballinari, Daniele
  email: daniele.ballinari@unisg.ch
  organization: University of St. Gallen, Switzerland
BookMark eNqNkNtKAzEQhoNUsK2-Q15g10niJtkbQYuHQsGbeh3S7ASz3UPZxELf3l0qCN7ozRzgn4_5_wWZdX2HhFAGOQMmb-s81L4f0NmYcg6szKHIgcEFmTOteKY5wIzMR2mZcVBwRRYx1gBQKMbmZL39QBrag3WJ9p5G7FJox0JtV1Gb0rT3HW3Rxs8BIx3nmHq3p60d9pjosW9sCk1Ip2ty6W0T8ea7L8n789N29Zpt3l7Wq4dN5u6ESFnFvC25BueZwoLvNC-EFLKsdKWkdDvty8KX0iqmhEWuhVBgJaIshPYCuViS-zPXDX2MA3rjQrLTl2mwoTEMzBSMqc1PMGYKxkBhxmBGgP4FOAxhtHP6z-nj-RRHg8eAg4kuYOewCqM6maoPf0O-ACWYh3A
CitedBy_id crossref_primary_10_1016_j_bdr_2025_100535
crossref_primary_10_1080_2573234X_2025_2552440
crossref_primary_10_1093_jjfinec_nbac018
crossref_primary_10_1016_j_econmod_2021_105563
crossref_primary_10_1016_j_jmse_2025_07_002
crossref_primary_10_1371_journal_pone_0260132
crossref_primary_10_1016_j_frl_2023_104280
crossref_primary_10_1002_for_3101
crossref_primary_10_1155_2022_4646733
crossref_primary_10_1007_s13278_023_01190_w
crossref_primary_10_1177_21582440251328535
crossref_primary_10_1007_s00181_022_02205_9
crossref_primary_10_1109_TSMC_2024_3402160
crossref_primary_10_1080_13547860_2023_2170050
crossref_primary_10_1155_2022_1988396
crossref_primary_10_1016_j_jcomm_2024_100418
crossref_primary_10_2139_ssrn_4762725
crossref_primary_10_1177_13548166211049865
crossref_primary_10_1080_00036846_2023_2210820
crossref_primary_10_1016_j_irfa_2021_101671
crossref_primary_10_3917_redp_346_0923
crossref_primary_10_1016_j_irfa_2020_101552
crossref_primary_10_14254_2071_8330_2022_15_4_9
crossref_primary_10_1057_s41599_024_03434_2
crossref_primary_10_1080_14697688_2021_1905869
crossref_primary_10_1002_ijfe_70040
crossref_primary_10_1016_j_physa_2024_130212
crossref_primary_10_1371_journal_pone_0246331
crossref_primary_10_1080_14697688_2021_1914855
crossref_primary_10_3390_math13081260
crossref_primary_10_1093_jjfinec_nbac020
crossref_primary_10_1057_s41599_024_03036_y
crossref_primary_10_1080_03088839_2021_1959076
crossref_primary_10_1007_s10479_022_05129_w
crossref_primary_10_1016_j_econmod_2025_107077
crossref_primary_10_1007_s41060_025_00873_1
crossref_primary_10_1016_j_frl_2022_103292
crossref_primary_10_1016_j_najef_2024_102226
crossref_primary_10_1002_for_2777
crossref_primary_10_1016_j_frl_2023_104209
crossref_primary_10_1007_s11205_025_03693_9
crossref_primary_10_1016_j_econmod_2021_105614
crossref_primary_10_1007_s11135_024_01988_6
crossref_primary_10_3390_e24070874
crossref_primary_10_1108_RBF_01_2020_0011
crossref_primary_10_1111_ajfs_12483
crossref_primary_10_1016_j_intfin_2023_101861
crossref_primary_10_1016_j_ribaf_2023_102031
crossref_primary_10_1080_00036846_2024_2423068
crossref_primary_10_1002_for_3245
crossref_primary_10_1080_1540496X_2024_2449461
crossref_primary_10_1016_j_eswa_2023_121927
crossref_primary_10_1016_j_jbef_2023_100826
crossref_primary_10_1016_j_iref_2021_07_006
crossref_primary_10_1016_j_iref_2024_103488
crossref_primary_10_1002_for_3119
crossref_primary_10_1016_j_najef_2024_102356
crossref_primary_10_1080_14697688_2024_2434127
crossref_primary_10_1016_j_irfa_2023_102620
crossref_primary_10_1016_j_resourpol_2022_103227
crossref_primary_10_1016_j_compag_2024_109439
crossref_primary_10_3390_logistics9030078
crossref_primary_10_1155_2020_4754025
crossref_primary_10_1111_asej_12284
crossref_primary_10_1007_s10614_024_10674_6
crossref_primary_10_1016_j_frl_2021_102359
crossref_primary_10_3390_math10122116
crossref_primary_10_1016_j_irfa_2022_102028
crossref_primary_10_1109_ACCESS_2025_3584243
crossref_primary_10_1155_2022_1936485
crossref_primary_10_1016_j_econlet_2024_111547
crossref_primary_10_1016_j_irfa_2024_103714
crossref_primary_10_3233_JIFS_219038
crossref_primary_10_1080_1540496X_2024_2308181
crossref_primary_10_1016_j_ribaf_2022_101734
crossref_primary_10_1108_CFRI_12_2022_0250
crossref_primary_10_1016_j_jbef_2023_100810
crossref_primary_10_3846_tede_2024_21961
crossref_primary_10_3390_foods12203862
crossref_primary_10_1108_RBF_12_2020_0301
crossref_primary_10_1002_for_2797
crossref_primary_10_1186_s40854_022_00381_2
crossref_primary_10_3390_jrfm18010002
crossref_primary_10_1016_j_jempfin_2025_101639
crossref_primary_10_1080_00036846_2024_2405659
crossref_primary_10_1016_j_jbef_2021_100575
crossref_primary_10_1016_j_eswa_2024_126298
crossref_primary_10_1016_j_iref_2024_05_008
crossref_primary_10_1016_j_irfa_2024_103286
crossref_primary_10_1002_jae_3095
crossref_primary_10_1016_j_heliyon_2024_e38560
crossref_primary_10_1016_j_resourpol_2024_105271
crossref_primary_10_3846_tede_2023_18672
crossref_primary_10_1016_j_jebo_2022_01_028
crossref_primary_10_1016_j_intfin_2022_101684
crossref_primary_10_1080_00036846_2024_2312264
crossref_primary_10_1002_for_3020
crossref_primary_10_1080_1331677X_2021_1931914
crossref_primary_10_1002_for_2967
crossref_primary_10_1016_j_eneco_2025_108629
crossref_primary_10_1177_13548166211058497
crossref_primary_10_1108_QRFM_09_2021_0154
crossref_primary_10_1155_2021_9941148
crossref_primary_10_1108_JED_02_2020_0015
crossref_primary_10_1108_JABS_09_2020_0356
crossref_primary_10_1057_s41599_024_03316_7
crossref_primary_10_1108_K_06_2021_0457
crossref_primary_10_4018_IJSWIS_353903
crossref_primary_10_1016_j_energy_2021_121779
crossref_primary_10_1002_ijfe_3174
crossref_primary_10_1016_j_irfa_2024_103816
crossref_primary_10_1016_j_ribaf_2024_102448
crossref_primary_10_1016_j_ribaf_2024_102723
crossref_primary_10_1016_j_im_2024_103972
crossref_primary_10_1109_ACCESS_2024_3443606
crossref_primary_10_1002_fut_22529
crossref_primary_10_1186_s40854_020_00216_y
crossref_primary_10_1016_j_irfa_2023_102948
crossref_primary_10_1016_j_eneco_2024_107537
crossref_primary_10_1371_journal_pone_0293825
crossref_primary_10_1109_ACCESS_2025_3557460
crossref_primary_10_1155_2022_7871109
crossref_primary_10_4018_JOEUC_353303
crossref_primary_10_1016_j_eneco_2022_106285
crossref_primary_10_1016_j_inteco_2023_100459
crossref_primary_10_1016_j_ijforecast_2020_06_012
crossref_primary_10_1016_j_qref_2023_10_003
crossref_primary_10_2478_bsrj_2024_0018
crossref_primary_10_1016_j_iref_2023_05_008
crossref_primary_10_1016_j_knosys_2024_112017
crossref_primary_10_3390_info15080433
crossref_primary_10_1016_j_irfa_2020_101563
crossref_primary_10_1016_j_intfin_2023_101825
crossref_primary_10_1108_CFRI_03_2021_0047
crossref_primary_10_1016_j_ijforecast_2025_06_003
crossref_primary_10_3390_en16020929
crossref_primary_10_1080_14697688_2025_2454623
crossref_primary_10_1111_eufm_12454
crossref_primary_10_1016_j_ijforecast_2022_08_010
crossref_primary_10_1155_2021_5049179
crossref_primary_10_1080_1540496X_2025_2513346
crossref_primary_10_1111_twec_13477
crossref_primary_10_3390_jrfm14110514
crossref_primary_10_1002_ijfe_2989
crossref_primary_10_1016_j_jempfin_2023_07_003
crossref_primary_10_1007_s10690_025_09522_w
crossref_primary_10_1016_j_frl_2022_102995
crossref_primary_10_1016_j_irfa_2022_102185
crossref_primary_10_1002_for_70015
crossref_primary_10_1080_00036846_2022_2130145
crossref_primary_10_1016_j_knosys_2022_109954
crossref_primary_10_1016_j_ribaf_2021_101471
crossref_primary_10_1016_j_frl_2020_101735
crossref_primary_10_1002_ijfe_2463
crossref_primary_10_1016_j_jfs_2021_100963
crossref_primary_10_3389_frai_2022_884699
crossref_primary_10_1371_journal_pone_0254638
crossref_primary_10_1155_2022_8952996
crossref_primary_10_1080_15427560_2022_2100381
crossref_primary_10_1111_exsy_13364
crossref_primary_10_3390_math11194058
crossref_primary_10_1080_23322039_2023_2281177
crossref_primary_10_1016_j_physa_2021_125979
crossref_primary_10_1016_j_resourpol_2022_103098
crossref_primary_10_1016_j_najef_2023_101977
crossref_primary_10_1002_asmb_2763
crossref_primary_10_1016_j_tre_2021_102490
crossref_primary_10_1007_s42521_021_00038_2
crossref_primary_10_1016_j_pacfin_2021_101638
crossref_primary_10_1080_15427560_2023_2294813
crossref_primary_10_1016_j_seps_2024_102023
crossref_primary_10_1108_CFRI_12_2024_0768
crossref_primary_10_3389_fpsyg_2022_927617
crossref_primary_10_1016_j_bir_2024_12_014
crossref_primary_10_1016_j_heliyon_2022_e11175
crossref_primary_10_1016_j_irfa_2024_103881
crossref_primary_10_1057_s41260_025_00415_1
crossref_primary_10_1177_08944393241301330
crossref_primary_10_1016_j_irfa_2022_102111
Cites_doi 10.1371/journal.pone.0040014
10.1214/009053607000000127
10.2139/ssrn.2951036
10.1007/s12599-015-0390-4
10.1162/REST_a_00503
10.1093/rfs/hhr068
10.1214/16-EJS1186
10.1080/07350015.2015.1110525
10.1111/1468-0262.00418
10.1093/jjfinec/nbh001
10.1111/jtsa.12270
10.1093/rfs/hhm056
10.1162/rest.89.4.701
10.1016/j.najef.2013.02.015
10.1016/j.jeconom.2010.07.008
10.2307/2325486
10.3390/econometrics5030035
10.1111/j.1540-6261.2011.01679.x
10.1016/j.ijforecast.2005.04.019
10.1016/j.sbspro.2011.10.562
10.1016/j.econmod.2013.08.034
10.1016/j.jeconom.2006.05.023
10.1016/S0304-405X(01)00055-1
10.1016/j.jfineco.2013.12.005
10.1016/j.jbankfin.2017.02.005
10.1111/eufm.12058
10.1111/j.2517-6161.1996.tb02080.x
10.1609/icwsm.v8i1.14550
10.1016/j.jeconom.2015.10.007
10.1111/j.1540-6261.1986.tb04513.x
10.1080/14697688.2014.986513
10.2139/ssrn.2820269
10.1198/016214506000000735
10.21314/JOR.1998.001
10.1016/j.ins.2011.12.028
10.1037/0022-3514.45.1.20
10.1111/1467-9868.00336
10.2469/faj.v57.n3.2449
10.2307/2527341
10.1086/261703
10.1016/S0304-3932(01)00091-5
10.1007/s12525-017-0254-5
10.1016/j.jbankfin.2011.02.018
10.1080/07350015.2012.663261
10.1016/j.jbankfin.2015.04.003
10.1016/j.ijforecast.2010.11.001
10.1002/jae.2298
10.1016/j.jebo.2015.06.005
10.1198/073500104000000370
10.1016/j.jeconom.2015.04.002
10.1016/j.jbankfin.2016.09.010
10.1016/j.jempfin.2017.03.003
10.1016/j.ijforecast.2016.05.001
10.1016/j.jfineco.2012.06.005
10.1038/srep01684
10.1016/j.ijforecast.2003.10.003
10.3982/ECTA5771
10.1111/j.1540-6261.2004.00662.x
10.1093/rfs/hhu059
10.1093/rfs/hhm055
10.1016/j.jbankfin.2017.07.002
10.1016/j.jeconom.2012.01.011
10.1093/rfs/hhu072
10.3905/jod.1995.407942
10.1371/journal.pone.0026705
10.1111/j.1368-423X.2008.00275.x
10.1093/rfs/hhm014
10.1016/j.jeconom.2008.09.032
10.1108/IntR-06-2013-0115
10.1016/j.jmva.2013.02.010
10.1016/j.jocs.2010.12.007
10.1016/j.jeconom.2010.03.026
10.1002/jae.1149
10.1016/S0304-4076(00)00030-0
10.1016/j.jbankfin.2018.09.016
10.2139/ssrn.2763583
10.1080/07474930701853509
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright_xml – notice: 2019 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ijforecast.2019.05.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 1872-8200
EndPage 357
ExternalDocumentID 10_1016_j_ijforecast_2019_05_010
S0169207019301645
GroupedDBID --K
--M
-~X
.L6
.~1
0R~
13V
1B1
1OL
1RT
1~.
1~5
29J
3R3
4.4
457
4G.
5GY
5VS
63O
6I.
7-5
71M
85S
8P~
96U
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFFL
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AARIN
AAXUO
ABEHJ
ABJNI
ABKBG
ABLJU
ABMAC
ABMVD
ABTAH
ABUCO
ABXDB
ABYKQ
ACBMB
ACDAQ
ACGFO
ACGFS
ACHQT
ACHRH
ACNTT
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADMUD
AEBSH
AEKER
AEYQN
AFAZI
AFFNX
AFKWA
AFODL
AFTJW
AGHFR
AGJBL
AGTHC
AGUBO
AGUMN
AGYEJ
AHHHB
AI.
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BEZPJ
BGSCR
BKOJK
BKOMP
BLXMC
BNSAS
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLX
HVGLF
HZ~
IHE
IXIXF
J1W
KOM
LG8
LPU
LXL
LXN
LY1
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBM
SDF
SDG
SDP
SDS
SEB
SES
SEW
SPCBC
SSB
SSD
SSF
SSL
SSZ
T5K
TN5
U5U
VH1
WUQ
XPP
XYO
YK3
ZMT
ZRQ
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c433t-d1fa9280cf17e52b82536369d8d766cb8f95f96a7173ae283370a6ee6538f3e23
ISICitedReferencesCount 198
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527898100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-2070
IngestDate Tue Nov 18 20:59:29 EST 2025
Sat Nov 29 07:22:20 EST 2025
Fri Feb 23 02:48:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Investor sentiment
High-dimensional regression
Volatility prediction
Realized volatility
Investor attention
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c433t-d1fa9280cf17e52b82536369d8d766cb8f95f96a7173ae283370a6ee6538f3e23
OpenAccessLink https://dx.doi.org/10.1016/j.ijforecast.2019.05.010
PageCount 24
ParticipantIDs crossref_citationtrail_10_1016_j_ijforecast_2019_05_010
crossref_primary_10_1016_j_ijforecast_2019_05_010
elsevier_sciencedirect_doi_10_1016_j_ijforecast_2019_05_010
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of forecasting
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Andersen, Bollerslev, Diebold, Ebens (b2) 2001; 61
Siganos, Vagenas-Nanos, Verwijmeren (b76) 2017; 78
Wang, Cui (b82) 2013; 117
Paye (b68) 2012; 106
Da, Engelberg, Gao (b31) 2011; 66
Fengler, Mammen, Vogt (b40) 2015; 188
Christiansen, Schmeling, Schrimpf (b24) 2012; 27
Tibshirani (b79) 1994; 58
Mao, H., Counts, S., & Bollen, J. (2011). Predicting financial markets: Comparing survey, news, Twitter and search engine data (arXiv preprint
Engle, Manganelli (b37) 2004; 22
Barndorff-Nielsen, Shephard (b10) 2002; 64
Joseph, Wintoki, Zhang (b51) 2011; 27
Mittnik, Robinzonov, Spindler (b62) 2015; 58
Porshnev, A., Lakshina, V., & Redkin, I. (2016). Could emotional markers in Twitter posts add information to the stock market ARMAX-GARCH model (Higher School of Economics research paper No. WP BRP 54/FE/2016).
Corsi (b27) 2009; 7
Lustig, Roussanov, Verdelhan (b57) 2011; 24
Andersen, Dobrev, Schaumburg (b4) 2012; 169
Lahaye, Laurent, Neely (b53) 2011; 26
Schoen, Gayo-Avello, Metaxas, Mustafaraj, Strohmaier, Gloor (b74) 2013; 23
McAleer, Medeiros (b61) 2008; 27
McAleer, Medeiros (b60) 2008; 147
Racine (b71) 2000; 99
Steinberger (b77) 2016; 10
Renault (b72) 2017; 84
Zhang, Fuehres, Gloor (b85) 2011; 26
Bollerslev, Litvinova, Tauchen (b15) 2006; 4
Liew, J. K.-S., & Budavári, T. (2016). Do tweet sentiments still predict the stock market? (SSRN Working Paper No. 2820269).
Hull, White (b49) 1998; 1
.
Sun, Najand, Shen (b78) 2016; 73
Campbell, Thompson (b22) 2008; 21
Welch, Goyal (b84) 2008; 21
Christoffersen (b25) 1998; 39
Andersen, Bollerslev, Diebold (b1) 2007; 89
Bordino, Battiston, Caldarelli, Cristelli, Ukkonen, Weber (b17) 2012; 7
Evans (b38) 2011; 35
Saavedra, Duch, Uzzi (b73) 2011; 6
Gilbert, Karahalios (b41) 2010
Clark, West (b26) 2007; 138
Daniel, Hirshleifer, Teoh (b33) 2002; 49
Tseng (b80) 2006; 3
Andersen, Bollerslev, Diebold, Labys (b3) 2003; 71
Bergmeir, Benítez (b12) 2012; 191
González-Rivera, Lee, Mishra (b43) 2004; 20
Bühlmann, Van De Geer (b20) 2011
Preis, Moat, Stanley (b70) 2013; 3
Audrino, Camponovo (b8) 2018; 39
Bollen, Mao, Zeng (b14) 2011; 2
Johnson, Tversky (b50) 1983; 45
Da, Engelberg, Gao (b32) 2015; 28
Black (b13) 1986; 41
Zou (b87) 2006; 101
Deriu, Lucchi, De Luca, Severyn, Müller, Cieliebak (b35) 2017
Antweiler, Frank (b6) 2004; 59
Nofer, Hinz (b64) 2015; 57
Wang, Keswani, Taylor (b83) 2006; 22
Buncic, Gisler (b21) 2016; 32
Fama (b39) 1970; 25
Corsi, Audrino, Renò (b28) 2012
Nonejad (b65) 2017; 42
Aouadi, Arouri, Teulon (b7) 2013; 35
Hamid, Heiden (b45) 2015; 117
Zou, Hastie, Tibshirani (b88) 2007; 35
Patton, Sheppard (b67) 2015; 97
Tumarkin, Whitelaw (b81) 2001; 57
Behrendt, Schmidt (b11) 2018; 96
Kupiec (b52) 1995; 3
Corsi, Pirino, Renò (b29) 2010; 159
Hansen, Lunde, Nason (b46) 2011; 79
Ho, Shi, Zhang (b47) 2013; 26
Nakov, Ritter, Rosenthal, Sebastiani, Stoyanov (b63) 2016
Zhang, Härdle, Chen, Bommes (b86) 2016; 34
Borovkova, Mahakena (b19) 2015; 15
Holm (b48) 1979; 6
Deriu, Gonzenbach, Uzdilli, Lucchi, Luca, Jaggi (b34) 2016
Oliveira, Cortez, Areal (b66) 2013
Gonçalves, Meddahi (b42) 2011; 160
Barndorff-Nielsen, Hansen, Lunde, Shephard (b9) 2008; 12
Caporin, Poli (b23) 2017; 5
Dimpfl, Jank (b36) 2015; 22
Lee, Mykland (b54) 2007; 21
Corsi, Renò (b30) 2012; 30
Bollerslev, Patton, Quaedvlieg (b16) 2016; 192
Borovkova, S., Garmaev, E., Lammers, P., & Rustige, J. (2017). SenSR: A sentiment-based systemic risk indicator (De Nederlandsche Bank Working Paper No. 553).
Goodfellow, Bengio, Courville, Bengio (b44) 2016
Lustig, Roussanov, Verdelhan (b58) 2014; 111
See-To, Yang (b75) 2017; 27
Andrei, Hasler (b5) 2015; 28
Long, Shleifer, Summers, Waldmann (b56) 1990; 98
Andrei (10.1016/j.ijforecast.2019.05.010_b5) 2015; 28
Joseph (10.1016/j.ijforecast.2019.05.010_b51) 2011; 27
McAleer (10.1016/j.ijforecast.2019.05.010_b60) 2008; 147
Behrendt (10.1016/j.ijforecast.2019.05.010_b11) 2018; 96
Christiansen (10.1016/j.ijforecast.2019.05.010_b24) 2012; 27
Oliveira (10.1016/j.ijforecast.2019.05.010_b66) 2013
Lahaye (10.1016/j.ijforecast.2019.05.010_b53) 2011; 26
Audrino (10.1016/j.ijforecast.2019.05.010_b8) 2018; 39
Johnson (10.1016/j.ijforecast.2019.05.010_b50) 1983; 45
Siganos (10.1016/j.ijforecast.2019.05.010_b76) 2017; 78
González-Rivera (10.1016/j.ijforecast.2019.05.010_b43) 2004; 20
Kupiec (10.1016/j.ijforecast.2019.05.010_b52) 1995; 3
Tumarkin (10.1016/j.ijforecast.2019.05.010_b81) 2001; 57
Corsi (10.1016/j.ijforecast.2019.05.010_b28) 2012
Da (10.1016/j.ijforecast.2019.05.010_b31) 2011; 66
Andersen (10.1016/j.ijforecast.2019.05.010_b1) 2007; 89
Nofer (10.1016/j.ijforecast.2019.05.010_b64) 2015; 57
Wang (10.1016/j.ijforecast.2019.05.010_b82) 2013; 117
Bühlmann (10.1016/j.ijforecast.2019.05.010_b20) 2011
Hansen (10.1016/j.ijforecast.2019.05.010_b46) 2011; 79
Caporin (10.1016/j.ijforecast.2019.05.010_b23) 2017; 5
Bollerslev (10.1016/j.ijforecast.2019.05.010_b16) 2016; 192
Nakov (10.1016/j.ijforecast.2019.05.010_b63) 2016
Corsi (10.1016/j.ijforecast.2019.05.010_b29) 2010; 159
Andersen (10.1016/j.ijforecast.2019.05.010_b2) 2001; 61
10.1016/j.ijforecast.2019.05.010_b69
Black (10.1016/j.ijforecast.2019.05.010_b13) 1986; 41
Tibshirani (10.1016/j.ijforecast.2019.05.010_b79) 1994; 58
Wang (10.1016/j.ijforecast.2019.05.010_b83) 2006; 22
Christoffersen (10.1016/j.ijforecast.2019.05.010_b25) 1998; 39
See-To (10.1016/j.ijforecast.2019.05.010_b75) 2017; 27
Barndorff-Nielsen (10.1016/j.ijforecast.2019.05.010_b9) 2008; 12
Bordino (10.1016/j.ijforecast.2019.05.010_b17) 2012; 7
Dimpfl (10.1016/j.ijforecast.2019.05.010_b36) 2015; 22
Renault (10.1016/j.ijforecast.2019.05.010_b72) 2017; 84
Antweiler (10.1016/j.ijforecast.2019.05.010_b6) 2004; 59
Zhang (10.1016/j.ijforecast.2019.05.010_b86) 2016; 34
Hull (10.1016/j.ijforecast.2019.05.010_b49) 1998; 1
Preis (10.1016/j.ijforecast.2019.05.010_b70) 2013; 3
10.1016/j.ijforecast.2019.05.010_b18
Long (10.1016/j.ijforecast.2019.05.010_b56) 1990; 98
10.1016/j.ijforecast.2019.05.010_b59
Clark (10.1016/j.ijforecast.2019.05.010_b26) 2007; 138
McAleer (10.1016/j.ijforecast.2019.05.010_b61) 2008; 27
Bergmeir (10.1016/j.ijforecast.2019.05.010_b12) 2012; 191
Fengler (10.1016/j.ijforecast.2019.05.010_b40) 2015; 188
10.1016/j.ijforecast.2019.05.010_b55
Patton (10.1016/j.ijforecast.2019.05.010_b67) 2015; 97
Engle (10.1016/j.ijforecast.2019.05.010_b37) 2004; 22
Buncic (10.1016/j.ijforecast.2019.05.010_b21) 2016; 32
Daniel (10.1016/j.ijforecast.2019.05.010_b33) 2002; 49
Schoen (10.1016/j.ijforecast.2019.05.010_b74) 2013; 23
Aouadi (10.1016/j.ijforecast.2019.05.010_b7) 2013; 35
Barndorff-Nielsen (10.1016/j.ijforecast.2019.05.010_b89) 2004; 2
Borovkova (10.1016/j.ijforecast.2019.05.010_b19) 2015; 15
Corsi (10.1016/j.ijforecast.2019.05.010_b27) 2009; 7
Deriu (10.1016/j.ijforecast.2019.05.010_b34) 2016
Gonçalves (10.1016/j.ijforecast.2019.05.010_b42) 2011; 160
Zou (10.1016/j.ijforecast.2019.05.010_b87) 2006; 101
10.1016/j.ijforecast.2019.05.010_b90
Racine (10.1016/j.ijforecast.2019.05.010_b71) 2000; 99
Da (10.1016/j.ijforecast.2019.05.010_b32) 2015; 28
Bollerslev (10.1016/j.ijforecast.2019.05.010_b15) 2006; 4
Zhang (10.1016/j.ijforecast.2019.05.010_b85) 2011; 26
Mittnik (10.1016/j.ijforecast.2019.05.010_b62) 2015; 58
Campbell (10.1016/j.ijforecast.2019.05.010_b22) 2008; 21
Barndorff-Nielsen (10.1016/j.ijforecast.2019.05.010_b10) 2002; 64
Nonejad (10.1016/j.ijforecast.2019.05.010_b65) 2017; 42
Deriu (10.1016/j.ijforecast.2019.05.010_b35) 2017
Tseng (10.1016/j.ijforecast.2019.05.010_b80) 2006; 3
Lee (10.1016/j.ijforecast.2019.05.010_b54) 2007; 21
Welch (10.1016/j.ijforecast.2019.05.010_b84) 2008; 21
Holm (10.1016/j.ijforecast.2019.05.010_b48) 1979; 6
Sun (10.1016/j.ijforecast.2019.05.010_b78) 2016; 73
Bollen (10.1016/j.ijforecast.2019.05.010_b14) 2011; 2
Zou (10.1016/j.ijforecast.2019.05.010_b88) 2007; 35
Fama (10.1016/j.ijforecast.2019.05.010_b39) 1970; 25
Gilbert (10.1016/j.ijforecast.2019.05.010_b41) 2010
Paye (10.1016/j.ijforecast.2019.05.010_b68) 2012; 106
Andersen (10.1016/j.ijforecast.2019.05.010_b4) 2012; 169
Steinberger (10.1016/j.ijforecast.2019.05.010_b77) 2016; 10
Hamid (10.1016/j.ijforecast.2019.05.010_b45) 2015; 117
Ho (10.1016/j.ijforecast.2019.05.010_b47) 2013; 26
Evans (10.1016/j.ijforecast.2019.05.010_b38) 2011; 35
Lustig (10.1016/j.ijforecast.2019.05.010_b57) 2011; 24
Corsi (10.1016/j.ijforecast.2019.05.010_b30) 2012; 30
Goodfellow (10.1016/j.ijforecast.2019.05.010_b44) 2016
Lustig (10.1016/j.ijforecast.2019.05.010_b58) 2014; 111
Saavedra (10.1016/j.ijforecast.2019.05.010_b73) 2011; 6
Andersen (10.1016/j.ijforecast.2019.05.010_b3) 2003; 71
References_xml – volume: 57
  start-page: 41
  year: 2001
  end-page: 51
  ident: b81
  article-title: News or noise? Internet postings and stock prices
  publication-title: Financial Analysts Journal
– volume: 28
  start-page: 1
  year: 2015
  end-page: 32
  ident: b32
  article-title: The sum of all FEARS investor sentiment and asset prices
  publication-title: Review of Financial Studies
– start-page: 1
  year: 2016
  end-page: 18
  ident: b63
  article-title: SemEval-2016 Task 4: Sentiment analysis in Twitter
  publication-title: Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016)
– volume: 39
  start-page: 111
  year: 2018
  end-page: 128
  ident: b8
  article-title: Oracle properties, bias correction, and bootstrap inference for adaptive lasso for time series M-estimators
  publication-title: Journal of Time Series Analysis
– volume: 22
  start-page: 367
  year: 2004
  end-page: 381
  ident: b37
  article-title: CAViaR: Conditional autoregressive value at risk by regression quantiles
  publication-title: Journal of Business & Economic Statistics
– volume: 12
  year: 2008
  ident: b9
  article-title: Realized kernels in practice: trades and quotes
  publication-title: The Econometrics Journal
– volume: 26
  start-page: 55
  year: 2011
  end-page: 62
  ident: b85
  article-title: Predicting stock market indicators through Twitter “I hope it is not as bad as I fear”
  publication-title: Procedia — Social and Behavioral Sciences
– start-page: 59
  year: 2010
  end-page: 65
  ident: b41
  article-title: Widespread worry and the stock market
  publication-title: Proceedings of the international conference on weblogs and social media
– volume: 27
  start-page: 1116
  year: 2011
  end-page: 1127
  ident: b51
  article-title: Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search
  publication-title: International Journal of Forecasting
– volume: 42
  start-page: 131
  year: 2017
  end-page: 154
  ident: b65
  article-title: Forecasting aggregate stock market volatility using financial and macroeconomic predictors: Which models forecast best, when and why?
  publication-title: Journal of Empirical Finance
– volume: 117
  start-page: 134
  year: 2013
  end-page: 149
  ident: b82
  article-title: Generalized F test for high dimensional linear regression coefficients
  publication-title: Journal of Multivariate Analysis
– start-page: 1045
  year: 2017
  end-page: 1052
  ident: b35
  article-title: Leveraging large amounts of weakly supervised data for multi-language sentiment classification
  publication-title: Proceedings of the 26th international conference on world wide web
– reference: ).
– volume: 147
  start-page: 104
  year: 2008
  end-page: 119
  ident: b60
  article-title: A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries
  publication-title: Journal of Econometrics
– volume: 27
  start-page: 10
  year: 2008
  end-page: 45
  ident: b61
  article-title: Realized volatility: A review
  publication-title: Econometric Reviews
– volume: 73
  start-page: 147
  year: 2016
  end-page: 164
  ident: b78
  article-title: Stock return predictability and investor sentiment: A high-frequency perspective
  publication-title: Journal of Banking & Finance
– volume: 32
  start-page: 1317
  year: 2016
  end-page: 1339
  ident: b21
  article-title: Global equity market volatility spillovers: A broader role for the United States
  publication-title: International Journal of Forecasting
– volume: 1
  start-page: 5
  year: 1998
  end-page: 19
  ident: b49
  article-title: Incorporating volatility updating into the historical simulation method for value at risk
  publication-title: Journal of Risk
– volume: 22
  start-page: 109
  year: 2006
  end-page: 123
  ident: b83
  article-title: The relationships between sentiment, returns and volatility
  publication-title: International Journal of Forecasting
– volume: 160
  start-page: 129
  year: 2011
  end-page: 144
  ident: b42
  article-title: Box–Cox transforms for realized volatility
  publication-title: Journal of Econometrics
– volume: 20
  start-page: 629
  year: 2004
  end-page: 645
  ident: b43
  article-title: Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood
  publication-title: International Journal of Forecasting
– start-page: 363
  year: 2012
  end-page: 382
  ident: b28
  article-title: HAR modeling for realized volatility forecasting
  publication-title: Handbook of volatility models and their applications
– volume: 26
  start-page: 436
  year: 2013
  end-page: 456
  ident: b47
  article-title: How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches
  publication-title: The North American Journal of Economics and Finance
– volume: 111
  start-page: 527
  year: 2014
  end-page: 553
  ident: b58
  article-title: Countercyclical currency risk premia
  publication-title: Journal of Financial Economic
– volume: 89
  start-page: 701
  year: 2007
  end-page: 720
  ident: b1
  article-title: Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility
  publication-title: The Review of Economics and Statistics
– volume: 41
  start-page: 528
  year: 1986
  end-page: 543
  ident: b13
  article-title: Noise
  publication-title: The Journal of Finance
– volume: 27
  start-page: 956
  year: 2012
  end-page: 977
  ident: b24
  article-title: A comprehensive look at financial volatility prediction by economic variables
  publication-title: Journal of Applied Econometrics
– volume: 30
  start-page: 368
  year: 2012
  end-page: 380
  ident: b30
  article-title: Discrete-time volatility forecasting with persistent leverage effect and the link with continuous-time volatility modeling
  publication-title: Journal of Business & Economic Statistics
– volume: 2
  start-page: 1
  year: 2011
  end-page: 8
  ident: b14
  article-title: Twitter mood predicts the stock market
  publication-title: Journal of Computer Science
– volume: 24
  start-page: 3731
  year: 2011
  end-page: 3777
  ident: b57
  article-title: Common risk factors in currency markets
  publication-title: Review of Financial Studies
– volume: 35
  start-page: 2511
  year: 2011
  end-page: 2527
  ident: b38
  article-title: Intraday jumps and US macroeconomic news announcements
  publication-title: Journal of Banking & Finance
– volume: 25
  start-page: 383
  year: 1970
  end-page: 417
  ident: b39
  article-title: Efficient capital markets: A review of theory and empirical work
  publication-title: The Journal of Finance
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: b87
  article-title: The adaptive lasso and its oracle properties
  publication-title: Journal of the American Statistical Association
– volume: 96
  start-page: 355
  year: 2018
  end-page: 367
  ident: b11
  article-title: The Twitter myth revisited: Intraday investor sentiment, Twitter activity and individual-level stock return volatility
  publication-title: Journal of Banking & Finance
– volume: 7
  start-page: 1
  year: 2012
  end-page: 17
  ident: b17
  article-title: Web search queries can predict stock market volumes
  publication-title: PLoS One
– volume: 5
  start-page: 35
  year: 2017
  ident: b23
  article-title: Building news measures from textual data and an application to volatility forecasting
  publication-title: Econometrics
– volume: 3
  start-page: 73
  year: 1995
  end-page: 84
  ident: b52
  article-title: Techniques for verifying the accuracy of risk measurement models
  publication-title: The Journal of Derivatives
– volume: 188
  start-page: 196
  year: 2015
  end-page: 218
  ident: b40
  article-title: Specification and structural break tests for additive models with applications to realized variance data
  publication-title: Journal of Econometrics
– volume: 98
  start-page: 703
  year: 1990
  end-page: 738
  ident: b56
  article-title: Noise trader risk in financial markets
  publication-title: Journal of Political Economy
– volume: 78
  start-page: 130
  year: 2017
  end-page: 141
  ident: b76
  article-title: Divergence of sentiment and stock market trading
  publication-title: Journal of Banking & Finance
– year: 2011
  ident: b20
  article-title: Statistics for high-dimensional data: methods, theory and applications
– volume: 28
  start-page: 33
  year: 2015
  end-page: 72
  ident: b5
  article-title: Investor attention and stock market volatility
  publication-title: Review of Financial Studies
– volume: 21
  start-page: 1455
  year: 2008
  end-page: 1508
  ident: b84
  article-title: A comprehensive look at the empirical performance of equity premium prediction
  publication-title: Review of Financial Studies
– volume: 35
  start-page: 674
  year: 2013
  end-page: 681
  ident: b7
  article-title: Investor attention and stock market activity: Evidence from France
  publication-title: Economic Modelling
– volume: 15
  start-page: 1217
  year: 2015
  end-page: 1242
  ident: b19
  article-title: News, volatility and jumps: the case of natural gas futures
  publication-title: Quantitative Finance
– volume: 35
  start-page: 2173
  year: 2007
  end-page: 2192
  ident: b88
  article-title: On the “degrees of freedom” of the lasso
  publication-title: The Annals of Statistics
– reference: Porshnev, A., Lakshina, V., & Redkin, I. (2016). Could emotional markers in Twitter posts add information to the stock market ARMAX-GARCH model (Higher School of Economics research paper No. WP BRP 54/FE/2016).
– volume: 59
  start-page: 1259
  year: 2004
  end-page: 1294
  ident: b6
  article-title: Is all that talk just noise? the information content of internet stock message boards
  publication-title: The Journal of Finance
– volume: 34
  start-page: 547
  year: 2016
  end-page: 563
  ident: b86
  article-title: Distillation of news flow into analysis of stock reactions
  publication-title: Journal of Business & Economic Statistics
– volume: 7
  start-page: 174
  year: 2009
  end-page: 196
  ident: b27
  article-title: A simple approximate long-memory model of realized volatility
  publication-title: Journal of Financial Economic
– year: 2016
  ident: b44
  article-title: Deep learning, Vol. 1
– volume: 71
  start-page: 579
  year: 2003
  end-page: 625
  ident: b3
  article-title: Modeling and forecasting realized volatility
  publication-title: Econometrica
– volume: 23
  start-page: 528
  year: 2013
  end-page: 543
  ident: b74
  article-title: The power of prediction with social media
  publication-title: Internet Research
– volume: 159
  start-page: 276
  year: 2010
  end-page: 288
  ident: b29
  article-title: Threshold bipower variation and the impact of jumps on volatility forecasting
  publication-title: Journal of Econometrics
– volume: 22
  start-page: 171
  year: 2015
  end-page: 192
  ident: b36
  article-title: Can internet search queries help to predict stock market volatility?
  publication-title: European Financial Management
– volume: 6
  start-page: 65
  year: 1979
  end-page: 70
  ident: b48
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scandinavian Journal of Statistics
– volume: 138
  start-page: 291
  year: 2007
  end-page: 311
  ident: b26
  article-title: Approximately normal tests for equal predictive accuracy in nested models
  publication-title: Journal of Econometrics
– volume: 79
  start-page: 453
  year: 2011
  end-page: 497
  ident: b46
  article-title: The model confidence set
  publication-title: Econometrica
– volume: 21
  start-page: 1509
  year: 2008
  end-page: 1531
  ident: b22
  article-title: Predicting excess stock returns out of sample: Can anything beat the historical average?
  publication-title: Review of Financial Studies
– volume: 49
  start-page: 139
  year: 2002
  end-page: 209
  ident: b33
  article-title: Investor psychology in capital markets: evidence and policy implications
  publication-title: Journal of Monetary Economics
– volume: 27
  start-page: 283
  year: 2017
  end-page: 296
  ident: b75
  article-title: Market sentiment dispersion and its effects on stock return and volatility
  publication-title: Electronic Markets
– volume: 45
  start-page: 20
  year: 1983
  end-page: 31
  ident: b50
  article-title: Affect, generalization, and the perception of risk
  publication-title: Journal of Personality and Social Psychology
– volume: 3
  start-page: 1684
  year: 2013
  ident: b70
  article-title: Quantifying trading behavior in financial markets using Google Trends
  publication-title: Scientific Reports
– volume: 192
  start-page: 1
  year: 2016
  end-page: 18
  ident: b16
  article-title: Exploiting the errors: A simple approach for improved volatility forecasting
  publication-title: Journal of Econometrics
– volume: 21
  start-page: 2535
  year: 2007
  end-page: 2563
  ident: b54
  article-title: Jumps in financial markets: A new nonparametric test and jump dynamics
  publication-title: Review of Financial Studies
– volume: 6
  start-page: 1
  year: 2011
  end-page: 7
  ident: b73
  article-title: Tracking traders’ understanding of the market using e-communication data
  publication-title: PLoS One
– volume: 4
  start-page: 353
  year: 2006
  end-page: 384
  ident: b15
  article-title: Leverage and volatility feedback effects in high-frequency data
  publication-title: Journal of Financial Economic
– volume: 169
  start-page: 75
  year: 2012
  end-page: 93
  ident: b4
  article-title: Jump-robust volatility estimation using nearest neighbour truncation
  publication-title: Journal of Econometrics
– volume: 58
  start-page: 267
  year: 1994
  end-page: 288
  ident: b79
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society. Series B.
– volume: 106
  start-page: 527
  year: 2012
  end-page: 546
  ident: b68
  article-title: Déjà vol: Predictive regressions for aggregate stock market volatility using macroeconomic variables
  publication-title: Journal of Financial Economic
– reference: Mao, H., Counts, S., & Bollen, J. (2011). Predicting financial markets: Comparing survey, news, Twitter and search engine data (arXiv preprint,
– start-page: 1124
  year: 2016
  end-page: 1128
  ident: b34
  article-title: SwissCheese at SemEval-2016 Task 4: Sentiment classification using an ensemble of convolutional neural networks with distant supervision
  publication-title: Proceedings of the 10th international workshop on semantic evaluation
– volume: 99
  start-page: 39
  year: 2000
  end-page: 61
  ident: b71
  article-title: Consistent cross-validatory model-selection for dependent data:
  publication-title: Journal of Econometrics
– volume: 10
  start-page: 2584
  year: 2016
  end-page: 2640
  ident: b77
  article-title: The relative effects of dimensionality and multiplicity of hypotheses on the F-test in linear regression
  publication-title: Electronic Journal of Statistics
– volume: 58
  start-page: 1
  year: 2015
  end-page: 14
  ident: b62
  article-title: Stock market volatility: Identifying major drivers and the nature of their impact
  publication-title: Journal of Banking & Finance
– volume: 64
  start-page: 253
  year: 2002
  end-page: 280
  ident: b10
  article-title: Econometric analysis of realized volatility and its use in estimating stochastic volatility models
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
– volume: 191
  start-page: 192
  year: 2012
  end-page: 213
  ident: b12
  article-title: On the use of cross-validation for time series predictor evaluation
  publication-title: Information Sciences
– volume: 57
  start-page: 229
  year: 2015
  end-page: 242
  ident: b64
  article-title: Using Twitter to predict the stock market
  publication-title: Business and Information Systems Engineering
– volume: 66
  start-page: 1461
  year: 2011
  end-page: 1499
  ident: b31
  article-title: In search of attention
  publication-title: The Journal of Finance
– volume: 39
  start-page: 841
  year: 1998
  end-page: 862
  ident: b25
  article-title: Evaluating interval forecasts
  publication-title: International Economic Review
– volume: 26
  start-page: 893
  year: 2011
  end-page: 921
  ident: b53
  article-title: Jumps, cojumps and macro announcements
  publication-title: Journal of Applied Econometrics
– volume: 3
  start-page: 7
  year: 2006
  end-page: 18
  ident: b80
  article-title: Behavioral finance, bounded rationality, neuro-finance, and traditional finance
  publication-title: Investment Management and Financial Innovations
– reference: Borovkova, S., Garmaev, E., Lammers, P., & Rustige, J. (2017). SenSR: A sentiment-based systemic risk indicator (De Nederlandsche Bank Working Paper No. 553).
– volume: 117
  start-page: 62
  year: 2015
  end-page: 81
  ident: b45
  article-title: Forecasting volatility with empirical similarity and Google Trends
  publication-title: Journal of Economic Behaviour and Organization
– volume: 97
  start-page: 683
  year: 2015
  end-page: 697
  ident: b67
  article-title: Good volatility, bad volatility: Signed jumps and the persistence of volatility
  publication-title: The Review of Economics and Statistics
– volume: 61
  start-page: 43
  year: 2001
  end-page: 76
  ident: b2
  article-title: The distribution of realized stock return volatility
  publication-title: Journal of Financial Economic
– reference: Liew, J. K.-S., & Budavári, T. (2016). Do tweet sentiments still predict the stock market? (SSRN Working Paper No. 2820269).
– volume: 84
  start-page: 25
  year: 2017
  end-page: 40
  ident: b72
  article-title: Intraday online investor sentiment and return patterns in the U.S. stock market
  publication-title: Journal of Banking & Finance
– start-page: 355
  year: 2013
  end-page: 365
  ident: b66
  article-title: On the predictability of stock market behavior using StockTwits sentiment and posting volume
  publication-title: Progress in artificial intelligence
– volume: 7
  start-page: 1
  issue: 7
  year: 2012
  ident: 10.1016/j.ijforecast.2019.05.010_b17
  article-title: Web search queries can predict stock market volumes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0040014
– volume: 35
  start-page: 2173
  issue: 5
  year: 2007
  ident: 10.1016/j.ijforecast.2019.05.010_b88
  article-title: On the “degrees of freedom” of the lasso
  publication-title: The Annals of Statistics
  doi: 10.1214/009053607000000127
– start-page: 1045
  year: 2017
  ident: 10.1016/j.ijforecast.2019.05.010_b35
  article-title: Leveraging large amounts of weakly supervised data for multi-language sentiment classification
– ident: 10.1016/j.ijforecast.2019.05.010_b18
  doi: 10.2139/ssrn.2951036
– start-page: 1
  year: 2016
  ident: 10.1016/j.ijforecast.2019.05.010_b63
  article-title: SemEval-2016 Task 4: Sentiment analysis in Twitter
– volume: 57
  start-page: 229
  issue: 4
  year: 2015
  ident: 10.1016/j.ijforecast.2019.05.010_b64
  article-title: Using Twitter to predict the stock market
  publication-title: Business and Information Systems Engineering
  doi: 10.1007/s12599-015-0390-4
– volume: 97
  start-page: 683
  issue: 3
  year: 2015
  ident: 10.1016/j.ijforecast.2019.05.010_b67
  article-title: Good volatility, bad volatility: Signed jumps and the persistence of volatility
  publication-title: The Review of Economics and Statistics
  doi: 10.1162/REST_a_00503
– volume: 7
  start-page: 174
  issue: 2
  year: 2009
  ident: 10.1016/j.ijforecast.2019.05.010_b27
  article-title: A simple approximate long-memory model of realized volatility
  publication-title: Journal of Financial Economic
– volume: 24
  start-page: 3731
  issue: 11
  year: 2011
  ident: 10.1016/j.ijforecast.2019.05.010_b57
  article-title: Common risk factors in currency markets
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/hhr068
– volume: 10
  start-page: 2584
  issue: 2
  year: 2016
  ident: 10.1016/j.ijforecast.2019.05.010_b77
  article-title: The relative effects of dimensionality and multiplicity of hypotheses on the F-test in linear regression
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/16-EJS1186
– volume: 34
  start-page: 547
  issue: 4
  year: 2016
  ident: 10.1016/j.ijforecast.2019.05.010_b86
  article-title: Distillation of news flow into analysis of stock reactions
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1080/07350015.2015.1110525
– volume: 71
  start-page: 579
  issue: 2
  year: 2003
  ident: 10.1016/j.ijforecast.2019.05.010_b3
  article-title: Modeling and forecasting realized volatility
  publication-title: Econometrica
  doi: 10.1111/1468-0262.00418
– volume: 2
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.ijforecast.2019.05.010_b89
  article-title: Power and bipower variation with stochastic volatility and jumps
  publication-title: Journal of Financial Econometrics
  doi: 10.1093/jjfinec/nbh001
– volume: 39
  start-page: 111
  issue: 2
  year: 2018
  ident: 10.1016/j.ijforecast.2019.05.010_b8
  article-title: Oracle properties, bias correction, and bootstrap inference for adaptive lasso for time series M-estimators
  publication-title: Journal of Time Series Analysis
  doi: 10.1111/jtsa.12270
– volume: 21
  start-page: 2535
  issue: 6
  year: 2007
  ident: 10.1016/j.ijforecast.2019.05.010_b54
  article-title: Jumps in financial markets: A new nonparametric test and jump dynamics
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/hhm056
– ident: 10.1016/j.ijforecast.2019.05.010_b59
– volume: 89
  start-page: 701
  issue: 4
  year: 2007
  ident: 10.1016/j.ijforecast.2019.05.010_b1
  article-title: Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility
  publication-title: The Review of Economics and Statistics
  doi: 10.1162/rest.89.4.701
– volume: 26
  start-page: 436
  year: 2013
  ident: 10.1016/j.ijforecast.2019.05.010_b47
  article-title: How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches
  publication-title: The North American Journal of Economics and Finance
  doi: 10.1016/j.najef.2013.02.015
– volume: 159
  start-page: 276
  issue: 2
  year: 2010
  ident: 10.1016/j.ijforecast.2019.05.010_b29
  article-title: Threshold bipower variation and the impact of jumps on volatility forecasting
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2010.07.008
– volume: 25
  start-page: 383
  issue: 2
  year: 1970
  ident: 10.1016/j.ijforecast.2019.05.010_b39
  article-title: Efficient capital markets: A review of theory and empirical work
  publication-title: The Journal of Finance
  doi: 10.2307/2325486
– volume: 5
  start-page: 35
  issue: 3
  year: 2017
  ident: 10.1016/j.ijforecast.2019.05.010_b23
  article-title: Building news measures from textual data and an application to volatility forecasting
  publication-title: Econometrics
  doi: 10.3390/econometrics5030035
– volume: 66
  start-page: 1461
  issue: 5
  year: 2011
  ident: 10.1016/j.ijforecast.2019.05.010_b31
  article-title: In search of attention
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.2011.01679.x
– volume: 22
  start-page: 109
  issue: 1
  year: 2006
  ident: 10.1016/j.ijforecast.2019.05.010_b83
  article-title: The relationships between sentiment, returns and volatility
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2005.04.019
– volume: 26
  start-page: 55
  year: 2011
  ident: 10.1016/j.ijforecast.2019.05.010_b85
  article-title: Predicting stock market indicators through Twitter “I hope it is not as bad as I fear”
  publication-title: Procedia — Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2011.10.562
– volume: 35
  start-page: 674
  year: 2013
  ident: 10.1016/j.ijforecast.2019.05.010_b7
  article-title: Investor attention and stock market activity: Evidence from France
  publication-title: Economic Modelling
  doi: 10.1016/j.econmod.2013.08.034
– volume: 138
  start-page: 291
  issue: 1
  year: 2007
  ident: 10.1016/j.ijforecast.2019.05.010_b26
  article-title: Approximately normal tests for equal predictive accuracy in nested models
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2006.05.023
– volume: 61
  start-page: 43
  issue: 1
  year: 2001
  ident: 10.1016/j.ijforecast.2019.05.010_b2
  article-title: The distribution of realized stock return volatility
  publication-title: Journal of Financial Economic
  doi: 10.1016/S0304-405X(01)00055-1
– volume: 111
  start-page: 527
  issue: 3
  year: 2014
  ident: 10.1016/j.ijforecast.2019.05.010_b58
  article-title: Countercyclical currency risk premia
  publication-title: Journal of Financial Economic
  doi: 10.1016/j.jfineco.2013.12.005
– volume: 78
  start-page: 130
  year: 2017
  ident: 10.1016/j.ijforecast.2019.05.010_b76
  article-title: Divergence of sentiment and stock market trading
  publication-title: Journal of Banking & Finance
  doi: 10.1016/j.jbankfin.2017.02.005
– volume: 22
  start-page: 171
  issue: 2
  year: 2015
  ident: 10.1016/j.ijforecast.2019.05.010_b36
  article-title: Can internet search queries help to predict stock market volatility?
  publication-title: European Financial Management
  doi: 10.1111/eufm.12058
– volume: 58
  start-page: 267
  year: 1994
  ident: 10.1016/j.ijforecast.2019.05.010_b79
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society. Series B.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: 10.1016/j.ijforecast.2019.05.010_b90
  doi: 10.1609/icwsm.v8i1.14550
– volume: 192
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.ijforecast.2019.05.010_b16
  article-title: Exploiting the errors: A simple approach for improved volatility forecasting
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2015.10.007
– volume: 41
  start-page: 528
  issue: 3
  year: 1986
  ident: 10.1016/j.ijforecast.2019.05.010_b13
  article-title: Noise
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1986.tb04513.x
– volume: 15
  start-page: 1217
  issue: 7
  year: 2015
  ident: 10.1016/j.ijforecast.2019.05.010_b19
  article-title: News, volatility and jumps: the case of natural gas futures
  publication-title: Quantitative Finance
  doi: 10.1080/14697688.2014.986513
– ident: 10.1016/j.ijforecast.2019.05.010_b55
  doi: 10.2139/ssrn.2820269
– volume: 101
  start-page: 1418
  issue: 476
  year: 2006
  ident: 10.1016/j.ijforecast.2019.05.010_b87
  article-title: The adaptive lasso and its oracle properties
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214506000000735
– volume: 4
  start-page: 353
  issue: 3
  year: 2006
  ident: 10.1016/j.ijforecast.2019.05.010_b15
  article-title: Leverage and volatility feedback effects in high-frequency data
  publication-title: Journal of Financial Economic
– volume: 1
  start-page: 5
  year: 1998
  ident: 10.1016/j.ijforecast.2019.05.010_b49
  article-title: Incorporating volatility updating into the historical simulation method for value at risk
  publication-title: Journal of Risk
  doi: 10.21314/JOR.1998.001
– volume: 191
  start-page: 192
  year: 2012
  ident: 10.1016/j.ijforecast.2019.05.010_b12
  article-title: On the use of cross-validation for time series predictor evaluation
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.12.028
– volume: 45
  start-page: 20
  issue: 1
  year: 1983
  ident: 10.1016/j.ijforecast.2019.05.010_b50
  article-title: Affect, generalization, and the perception of risk
  publication-title: Journal of Personality and Social Psychology
  doi: 10.1037/0022-3514.45.1.20
– volume: 64
  start-page: 253
  issue: 2
  year: 2002
  ident: 10.1016/j.ijforecast.2019.05.010_b10
  article-title: Econometric analysis of realized volatility and its use in estimating stochastic volatility models
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/1467-9868.00336
– volume: 57
  start-page: 41
  issue: 3
  year: 2001
  ident: 10.1016/j.ijforecast.2019.05.010_b81
  article-title: News or noise? Internet postings and stock prices
  publication-title: Financial Analysts Journal
  doi: 10.2469/faj.v57.n3.2449
– volume: 39
  start-page: 841
  issue: 4
  year: 1998
  ident: 10.1016/j.ijforecast.2019.05.010_b25
  article-title: Evaluating interval forecasts
  publication-title: International Economic Review
  doi: 10.2307/2527341
– volume: 98
  start-page: 703
  issue: 4
  year: 1990
  ident: 10.1016/j.ijforecast.2019.05.010_b56
  article-title: Noise trader risk in financial markets
  publication-title: Journal of Political Economy
  doi: 10.1086/261703
– volume: 49
  start-page: 139
  issue: 1
  year: 2002
  ident: 10.1016/j.ijforecast.2019.05.010_b33
  article-title: Investor psychology in capital markets: evidence and policy implications
  publication-title: Journal of Monetary Economics
  doi: 10.1016/S0304-3932(01)00091-5
– volume: 27
  start-page: 283
  issue: 3
  year: 2017
  ident: 10.1016/j.ijforecast.2019.05.010_b75
  article-title: Market sentiment dispersion and its effects on stock return and volatility
  publication-title: Electronic Markets
  doi: 10.1007/s12525-017-0254-5
– volume: 35
  start-page: 2511
  issue: 10
  year: 2011
  ident: 10.1016/j.ijforecast.2019.05.010_b38
  article-title: Intraday jumps and US macroeconomic news announcements
  publication-title: Journal of Banking & Finance
  doi: 10.1016/j.jbankfin.2011.02.018
– volume: 30
  start-page: 368
  issue: 3
  year: 2012
  ident: 10.1016/j.ijforecast.2019.05.010_b30
  article-title: Discrete-time volatility forecasting with persistent leverage effect and the link with continuous-time volatility modeling
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1080/07350015.2012.663261
– volume: 58
  start-page: 1
  issue: Supplement C
  year: 2015
  ident: 10.1016/j.ijforecast.2019.05.010_b62
  article-title: Stock market volatility: Identifying major drivers and the nature of their impact
  publication-title: Journal of Banking & Finance
  doi: 10.1016/j.jbankfin.2015.04.003
– volume: 27
  start-page: 1116
  issue: 4
  year: 2011
  ident: 10.1016/j.ijforecast.2019.05.010_b51
  article-title: Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2010.11.001
– volume: 27
  start-page: 956
  issue: 6
  year: 2012
  ident: 10.1016/j.ijforecast.2019.05.010_b24
  article-title: A comprehensive look at financial volatility prediction by economic variables
  publication-title: Journal of Applied Econometrics
  doi: 10.1002/jae.2298
– volume: 117
  start-page: 62
  year: 2015
  ident: 10.1016/j.ijforecast.2019.05.010_b45
  article-title: Forecasting volatility with empirical similarity and Google Trends
  publication-title: Journal of Economic Behaviour and Organization
  doi: 10.1016/j.jebo.2015.06.005
– volume: 22
  start-page: 367
  year: 2004
  ident: 10.1016/j.ijforecast.2019.05.010_b37
  article-title: CAViaR: Conditional autoregressive value at risk by regression quantiles
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1198/073500104000000370
– volume: 188
  start-page: 196
  issue: 1
  year: 2015
  ident: 10.1016/j.ijforecast.2019.05.010_b40
  article-title: Specification and structural break tests for additive models with applications to realized variance data
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2015.04.002
– volume: 73
  start-page: 147
  year: 2016
  ident: 10.1016/j.ijforecast.2019.05.010_b78
  article-title: Stock return predictability and investor sentiment: A high-frequency perspective
  publication-title: Journal of Banking & Finance
  doi: 10.1016/j.jbankfin.2016.09.010
– volume: 42
  start-page: 131
  issue: Supplement C
  year: 2017
  ident: 10.1016/j.ijforecast.2019.05.010_b65
  article-title: Forecasting aggregate stock market volatility using financial and macroeconomic predictors: Which models forecast best, when and why?
  publication-title: Journal of Empirical Finance
  doi: 10.1016/j.jempfin.2017.03.003
– year: 2011
  ident: 10.1016/j.ijforecast.2019.05.010_b20
– volume: 32
  start-page: 1317
  issue: 4
  year: 2016
  ident: 10.1016/j.ijforecast.2019.05.010_b21
  article-title: Global equity market volatility spillovers: A broader role for the United States
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2016.05.001
– volume: 106
  start-page: 527
  issue: 3
  year: 2012
  ident: 10.1016/j.ijforecast.2019.05.010_b68
  article-title: Déjà vol: Predictive regressions for aggregate stock market volatility using macroeconomic variables
  publication-title: Journal of Financial Economic
  doi: 10.1016/j.jfineco.2012.06.005
– volume: 3
  start-page: 1684
  year: 2013
  ident: 10.1016/j.ijforecast.2019.05.010_b70
  article-title: Quantifying trading behavior in financial markets using Google Trends
  publication-title: Scientific Reports
  doi: 10.1038/srep01684
– start-page: 363
  year: 2012
  ident: 10.1016/j.ijforecast.2019.05.010_b28
  article-title: HAR modeling for realized volatility forecasting
– volume: 20
  start-page: 629
  issue: 4
  year: 2004
  ident: 10.1016/j.ijforecast.2019.05.010_b43
  article-title: Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2003.10.003
– volume: 79
  start-page: 453
  issue: 2
  year: 2011
  ident: 10.1016/j.ijforecast.2019.05.010_b46
  article-title: The model confidence set
  publication-title: Econometrica
  doi: 10.3982/ECTA5771
– start-page: 355
  year: 2013
  ident: 10.1016/j.ijforecast.2019.05.010_b66
  article-title: On the predictability of stock market behavior using StockTwits sentiment and posting volume
– volume: 59
  start-page: 1259
  issue: 3
  year: 2004
  ident: 10.1016/j.ijforecast.2019.05.010_b6
  article-title: Is all that talk just noise? the information content of internet stock message boards
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.2004.00662.x
– volume: 28
  start-page: 33
  issue: 1
  year: 2015
  ident: 10.1016/j.ijforecast.2019.05.010_b5
  article-title: Investor attention and stock market volatility
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/hhu059
– volume: 21
  start-page: 1509
  issue: 4
  year: 2008
  ident: 10.1016/j.ijforecast.2019.05.010_b22
  article-title: Predicting excess stock returns out of sample: Can anything beat the historical average?
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/hhm055
– volume: 84
  start-page: 25
  year: 2017
  ident: 10.1016/j.ijforecast.2019.05.010_b72
  article-title: Intraday online investor sentiment and return patterns in the U.S. stock market
  publication-title: Journal of Banking & Finance
  doi: 10.1016/j.jbankfin.2017.07.002
– volume: 169
  start-page: 75
  issue: 1
  year: 2012
  ident: 10.1016/j.ijforecast.2019.05.010_b4
  article-title: Jump-robust volatility estimation using nearest neighbour truncation
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2012.01.011
– volume: 28
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.ijforecast.2019.05.010_b32
  article-title: The sum of all FEARS investor sentiment and asset prices
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/hhu072
– volume: 3
  start-page: 73
  issue: 2
  year: 1995
  ident: 10.1016/j.ijforecast.2019.05.010_b52
  article-title: Techniques for verifying the accuracy of risk measurement models
  publication-title: The Journal of Derivatives
  doi: 10.3905/jod.1995.407942
– year: 2016
  ident: 10.1016/j.ijforecast.2019.05.010_b44
– volume: 6
  start-page: 1
  issue: 10
  year: 2011
  ident: 10.1016/j.ijforecast.2019.05.010_b73
  article-title: Tracking traders’ understanding of the market using e-communication data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0026705
– volume: 12
  issue: 3
  year: 2008
  ident: 10.1016/j.ijforecast.2019.05.010_b9
  article-title: Realized kernels in practice: trades and quotes
  publication-title: The Econometrics Journal
  doi: 10.1111/j.1368-423X.2008.00275.x
– start-page: 1124
  year: 2016
  ident: 10.1016/j.ijforecast.2019.05.010_b34
  article-title: SwissCheese at SemEval-2016 Task 4: Sentiment classification using an ensemble of convolutional neural networks with distant supervision
– volume: 21
  start-page: 1455
  issue: 4
  year: 2008
  ident: 10.1016/j.ijforecast.2019.05.010_b84
  article-title: A comprehensive look at the empirical performance of equity premium prediction
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/hhm014
– volume: 6
  start-page: 65
  issue: 2
  year: 1979
  ident: 10.1016/j.ijforecast.2019.05.010_b48
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scandinavian Journal of Statistics
– volume: 147
  start-page: 104
  issue: 1
  year: 2008
  ident: 10.1016/j.ijforecast.2019.05.010_b60
  article-title: A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2008.09.032
– volume: 23
  start-page: 528
  issue: 5
  year: 2013
  ident: 10.1016/j.ijforecast.2019.05.010_b74
  article-title: The power of prediction with social media
  publication-title: Internet Research
  doi: 10.1108/IntR-06-2013-0115
– volume: 117
  start-page: 134
  year: 2013
  ident: 10.1016/j.ijforecast.2019.05.010_b82
  article-title: Generalized F test for high dimensional linear regression coefficients
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2013.02.010
– start-page: 59
  year: 2010
  ident: 10.1016/j.ijforecast.2019.05.010_b41
  article-title: Widespread worry and the stock market
– volume: 2
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.ijforecast.2019.05.010_b14
  article-title: Twitter mood predicts the stock market
  publication-title: Journal of Computer Science
  doi: 10.1016/j.jocs.2010.12.007
– volume: 160
  start-page: 129
  issue: 1
  year: 2011
  ident: 10.1016/j.ijforecast.2019.05.010_b42
  article-title: Box–Cox transforms for realized volatility
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2010.03.026
– volume: 26
  start-page: 893
  issue: 6
  year: 2011
  ident: 10.1016/j.ijforecast.2019.05.010_b53
  article-title: Jumps, cojumps and macro announcements
  publication-title: Journal of Applied Econometrics
  doi: 10.1002/jae.1149
– volume: 3
  start-page: 7
  issue: 4
  year: 2006
  ident: 10.1016/j.ijforecast.2019.05.010_b80
  article-title: Behavioral finance, bounded rationality, neuro-finance, and traditional finance
  publication-title: Investment Management and Financial Innovations
– volume: 99
  start-page: 39
  issue: 1
  year: 2000
  ident: 10.1016/j.ijforecast.2019.05.010_b71
  article-title: Consistent cross-validatory model-selection for dependent data: hv-block cross-validation
  publication-title: Journal of Econometrics
  doi: 10.1016/S0304-4076(00)00030-0
– volume: 96
  start-page: 355
  year: 2018
  ident: 10.1016/j.ijforecast.2019.05.010_b11
  article-title: The Twitter myth revisited: Intraday investor sentiment, Twitter activity and individual-level stock return volatility
  publication-title: Journal of Banking & Finance
  doi: 10.1016/j.jbankfin.2018.09.016
– ident: 10.1016/j.ijforecast.2019.05.010_b69
  doi: 10.2139/ssrn.2763583
– volume: 27
  start-page: 10
  issue: 1–3
  year: 2008
  ident: 10.1016/j.ijforecast.2019.05.010_b61
  article-title: Realized volatility: A review
  publication-title: Econometric Reviews
  doi: 10.1080/07474930701853509
SSID ssj0005711
Score 2.6220338
Snippet We analyze the impact of sentiment and attention variables on the stock market volatility by using a novel and extensive dataset that combines social media,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 334
SubjectTerms High-dimensional regression
Investor attention
Investor sentiment
Realized volatility
Volatility prediction
Title The impact of sentiment and attention measures on stock market volatility
URI https://dx.doi.org/10.1016/j.ijforecast.2019.05.010
Volume 36
WOSCitedRecordID wos000527898100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8200
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005711
  issn: 0169-2070
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuiKdYXvKBA6hKlcSJH-JUUBFFqEKioL1FjmOjbLfZandb9TfwqxlnnAdqJYoQlyjyytnE8-34y-w3M4S80jnPJK-SSBnDosyoLCpzV0Y65U54ylu27du-fxZHR3I-V18mk59dLszFUjSNvLxUZ__V1DAGxvaps39h7v6iMADnYHQ4gtnheGPDD7mPPreo7oXkvpgmyhtPMTbY_lkA_M-c7J62-c-74K7gQp6cj3nr74HDUbkJ4LzW6M222wE9ds6rdd129Ma2HXZjVn0gp_7hvUr7mS7rfvydXraZweO093FAIo1HOpY2SnYlUwYDl1yBmbBJyJ5FZysFeGOsVNp7YyyHElCXjlwrC0FP3KUZlrW-sgFgLGKxVy-65_fyPYXVWeNh0-uliF_9nfkbAybry43lt8hOKnIlp2Rn__Bg_mkQDIkEu1uGJwm6MFQLXv9915OdEYE5vkfuhjcPuo-IuU8mtnlAZpieTYOL39DXoQ75m4fkEJBEEUl05WiPJApIoj2SaIckCuctkigiiQ5IekS-fTg4fv8xCp03IpMxto2qxGmVyti4RNg8LWWaM864qmQlODeldCp3imsv4dAWGCoTsebWctg-HbMpe0ymzaqxTwhlic1NKVysmcmsTUsHL7FCM1HmUmuVzYjolqgwoSy9746yLDr94aIYFrfwi1vEeQGLOyNJP_MMS7PcYM7bzgpFoJhIHQsA0B9nP_2n2c_IneHn8pxMt-tz-4LcNhfberN-GdD2C8ZuqW0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+sentiment+and+attention+measures+on+stock+market+volatility&rft.jtitle=International+journal+of+forecasting&rft.au=Audrino%2C+Francesco&rft.au=Sigrist%2C+Fabio&rft.au=Ballinari%2C+Daniele&rft.date=2020-04-01&rft.pub=Elsevier+B.V&rft.issn=0169-2070&rft.eissn=1872-8200&rft.volume=36&rft.issue=2&rft.spage=334&rft.epage=357&rft_id=info:doi/10.1016%2Fj.ijforecast.2019.05.010&rft.externalDocID=S0169207019301645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2070&client=summon