Developing a Method to Automatically Extract Road Boundary and Linear Road Markings from a Mobile Mapping System Point Cloud Using Oriented Bounding Box Collision-Detection Techniques
Advancements in data-acquisition technology have led to the increasing demand for high-precision road data for autonomous driving. Specifically, road boundaries and linear road markings, like edge and lane markings, provide fundamental guidance for various applications. Unfortunately, their extracti...
Saved in:
| Published in: | Remote sensing (Basel, Switzerland) Vol. 15; no. 19; p. 4656 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.10.2023
|
| Subjects: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Advancements in data-acquisition technology have led to the increasing demand for high-precision road data for autonomous driving. Specifically, road boundaries and linear road markings, like edge and lane markings, provide fundamental guidance for various applications. Unfortunately, their extraction usually requires labor-intensive manual work, and the automatic extraction, which can be applied universally for diverse curved road types, presents a challenge. Given this context, this study proposes a method to automatically extract road boundaries and linear road markings by applying an oriented bounding box (OBB) collision-detection algorithm. The OBBs are generated from a reference line using the point cloud data’s position and intensity values. By applying the OBB collision-detection algorithm, road boundaries and linear road markings can be extracted efficiently and accurately in straight and curved roads by adjusting search length and width to detect OBB collision. This study assesses horizontal position accuracy using automatically extracted and manually digitized data to verify this method. The resulting RMSE for extracted road boundaries is +4.8 cm and +5.3 cm for linear road markings, indicating that high-accuracy road boundary and road marking extraction was possible. Therefore, our results demonstrate that the automatic extraction adjusting OBB detection parameters and integrating the OBB collision-detection algorithm enables efficient and precise extraction of road boundaries and linear road markings in various curving types of roads. Finally, this enhances its practicality and simplifies the implementation of the extraction process. |
|---|---|
| AbstractList | Advancements in data-acquisition technology have led to the increasing demand for high-precision road data for autonomous driving. Specifically, road boundaries and linear road markings, like edge and lane markings, provide fundamental guidance for various applications. Unfortunately, their extraction usually requires labor-intensive manual work, and the automatic extraction, which can be applied universally for diverse curved road types, presents a challenge. Given this context, this study proposes a method to automatically extract road boundaries and linear road markings by applying an oriented bounding box (OBB) collision-detection algorithm. The OBBs are generated from a reference line using the point cloud data’s position and intensity values. By applying the OBB collision-detection algorithm, road boundaries and linear road markings can be extracted efficiently and accurately in straight and curved roads by adjusting search length and width to detect OBB collision. This study assesses horizontal position accuracy using automatically extracted and manually digitized data to verify this method. The resulting RMSE for extracted road boundaries is +4.8 cm and +5.3 cm for linear road markings, indicating that high-accuracy road boundary and road marking extraction was possible. Therefore, our results demonstrate that the automatic extraction adjusting OBB detection parameters and integrating the OBB collision-detection algorithm enables efficient and precise extraction of road boundaries and linear road markings in various curving types of roads. Finally, this enhances its practicality and simplifies the implementation of the extraction process. |
| Audience | Academic |
| Author | Lee, Jeongwon Lee, Jiyeong Kang, Seokchan |
| Author_xml | – sequence: 1 givenname: Seokchan surname: Kang fullname: Kang, Seokchan – sequence: 2 givenname: Jeongwon orcidid: 0009-0001-2814-9486 surname: Lee fullname: Lee, Jeongwon – sequence: 3 givenname: Jiyeong orcidid: 0000-0001-8229-1267 surname: Lee fullname: Lee, Jiyeong |
| BookMark | eNptUk1vEzEQXaEiUUIv_AJLXBBSir129uOYpgUqpSqC9mx57dnUwesJtrdqfhl_D29TAaqwDx49v3mjNzOviyOPHoriLaOnnLf0Y4hswVpRLaoXxXFJ63IuyrY8-id-VZzEuKX5cM5aKo6LX-dwDw531m-IIleQ7tCQhGQ5JhxUslo5tycXDykoncg3VIac4eiNCnuivCFr60GFw8eVCj-yTiR9wGFSw846yPDuUf77PiYYyFe0PpGVw9GQ2zh9XAcLPsGT8oSc4QNZoXM2WvTzc0igU47IDeg7b3-OEN8UL3vlIpw8vbPi9tPFzerLfH39-XK1XM-14DzNDVPKADBmKqNb2nHG2gxUDRhOK2iMVgtDlSqrvm-7jorcFSqEqbu-Zro3fFZcHnQNqq3cBTtk5xKVlY8Aho1UIbfJgWSVZj0VpjG0ElSZjnYLU1MD1HS5aJ213h-0dgEnD0kONmpwTnnAMUpOBRVcNEJk6rtn1C2OwWensmzqqiqbJo9wVpweWBuV61vf4zSmfA0MVufl6HP_5bKuy3IaeZkTPhwSdMAYA_R_HDEqpx2Sf3cok-kzsrZJTXPIVaz7X8pvVCfNzQ |
| CitedBy_id | crossref_primary_10_3390_machines13080709 crossref_primary_10_1016_j_precisioneng_2025_01_001 crossref_primary_10_1016_j_precisioneng_2025_07_008 crossref_primary_10_1061_JCCEE5_CPENG_6263 |
| Cites_doi | 10.1080/14498596.2021.1960912 10.3390/rs14122768 10.1016/j.aei.2019.100936 10.1109/CISP-BMEI.2018.8633181 10.1109/TITS.2020.3028033 10.1109/ACCESS.2019.2958671 10.1109/ACCESS.2020.2985413 10.3390/ijgi9100608 10.1145/1653771.1653851 10.1088/1742-6596/1213/4/042079 10.1109/JSTARS.2019.2904514 10.3390/rs12091379 10.1109/DICTA.2015.7371262 10.1109/TPAMI.2020.3005434 10.3390/rs14143279 10.1177/0361198120981948 10.1016/j.isprsjprs.2014.12.027 10.3390/s19163466 10.5194/isprs-archives-XLVIII-1-W1-2023-93-2023 10.1109/TITS.2020.2990120 10.1016/j.neucom.2017.09.098 10.21307/ijanmc-2021-003 10.1088/1742-6596/1453/1/012141 10.1088/1361-6501/aa76a3 10.3390/rs8090710 10.1145/358669.358692 10.1080/22797254.2018.1535837 10.3390/rs13132612 10.3390/rs8060501 10.1109/JSTARS.2019.2893967 10.1109/JSEN.2021.3057999 10.1016/j.isprsjprs.2018.10.007 10.20965/ijat.2017.p0657 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs15194656 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Collection (ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_16c1f04d8d0640adb0b5d70de0db9ad7 A772200032 10_3390_rs15194656 |
| GeographicLocations | South Korea |
| GeographicLocations_xml | – name: South Korea |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c433t-d1aadee11d6dc90b3119ade68ed306e8dca5d0aa26ff9bb04190044d7bf71cfd3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001084847200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Mon Nov 10 04:28:46 EST 2025 Fri Sep 05 14:00:31 EDT 2025 Fri Jul 25 09:52:19 EDT 2025 Tue Nov 04 18:15:48 EST 2025 Tue Nov 18 21:41:53 EST 2025 Sat Nov 29 07:16:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c433t-d1aadee11d6dc90b3119ade68ed306e8dca5d0aa26ff9bb04190044d7bf71cfd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0001-2814-9486 0000-0001-8229-1267 |
| OpenAccessLink | https://www.proquest.com/docview/2876628803?pq-origsite=%requestingapplication% |
| PQID | 2876628803 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_16c1f04d8d0640adb0b5d70de0db9ad7 proquest_miscellaneous_3040434844 proquest_journals_2876628803 gale_infotracacademiconefile_A772200032 crossref_primary_10_3390_rs15194656 crossref_citationtrail_10_3390_rs15194656 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Chang (ref_14) 2023; XLVIII-1-W1-2023 Lin (ref_4) 2021; 21 Kang (ref_3) 2020; 1453 Zhang (ref_30) 2019; 1213 Wu (ref_34) 2019; 42 ref_36 ref_11 ref_33 ref_32 ref_19 Zhang (ref_2) 2023; 61 ref_18 ref_39 ref_38 Ye (ref_10) 2022; 23 ref_15 Miyazaki (ref_22) 2017; 11 Ma (ref_21) 2019; 12 Zhang (ref_35) 2019; 7 Xu (ref_17) 2019; 12 Wen (ref_9) 2019; 147 Gao (ref_13) 2017; 28 Tian (ref_8) 2018; 280 ref_25 ref_23 Kukolj (ref_12) 2021; 68 Prochazka (ref_31) 2019; 52 Zeybek (ref_16) 2021; 2675 ref_20 Lin (ref_24) 2015; 102 Siwei (ref_41) 2021; 6 Foley (ref_26) 1981; 24 ref_29 Ma (ref_5) 2021; 22 ref_28 ref_27 Fujita (ref_1) 2015; 15 Guo (ref_37) 2021; 43 Liu (ref_40) 2020; 8 ref_7 ref_6 |
| References_xml | – volume: 68 start-page: 245 year: 2021 ident: ref_12 article-title: Road Edge Detection Based on Combined Deep Learning and Spatial Statistics of LiDAR Data publication-title: J. Spat. Sci. doi: 10.1080/14498596.2021.1960912 – ident: ref_28 – ident: ref_39 doi: 10.3390/rs14122768 – ident: ref_32 – volume: 42 start-page: 100936 year: 2019 ident: ref_34 article-title: Road Pothole Extraction and Safety Evaluation by Integration of Point Cloud and Images Derived from Mobile Mapping Sensors publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2019.100936 – ident: ref_25 doi: 10.1109/CISP-BMEI.2018.8633181 – volume: 23 start-page: 1505 year: 2022 ident: ref_10 article-title: Robust Lane Extraction From MLS Point Clouds Towards HD Maps Especially in Curve Road publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3028033 – volume: 7 start-page: 179118 year: 2019 ident: ref_35 article-title: A Review of Deep Learning-Based Semantic Segmentation for Point Cloud publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2958671 – volume: 8 start-page: 64297 year: 2020 ident: ref_40 article-title: Image-Translation-Based Road Marking Extraction from Mobile Laser Point Clouds publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2985413 – ident: ref_6 doi: 10.3390/ijgi9100608 – ident: ref_18 doi: 10.1145/1653771.1653851 – volume: 1213 start-page: 042079 year: 2019 ident: ref_30 article-title: Collision Detection Based on OBB Simplified Modeling publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1213/4/042079 – volume: 12 start-page: 1572 year: 2019 ident: ref_21 article-title: Generation of Horizontally Curved Driving Lines in HD Maps Using Mobile Laser Scanning Point Clouds publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2904514 – ident: ref_11 doi: 10.3390/rs12091379 – ident: ref_27 doi: 10.1109/DICTA.2015.7371262 – volume: 43 start-page: 4338 year: 2021 ident: ref_37 article-title: Deep Learning for 3D Point Clouds: A Survey publication-title: IEEE Trans. Pattern. Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3005434 – ident: ref_20 doi: 10.3390/rs14143279 – volume: 2675 start-page: 30 year: 2021 ident: ref_16 article-title: Extraction of Road Lane Markings from Mobile Lidar Data publication-title: Transp. Res. Rec. doi: 10.1177/0361198120981948 – volume: 102 start-page: 172 year: 2015 ident: ref_24 article-title: Line Segment Extraction for Large Scale Unorganized Point Clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.12.027 – ident: ref_23 – volume: 15 start-page: 11 year: 2015 ident: ref_1 article-title: Attribute Assignment to Point Cloud Data and Its Usage publication-title: Glob. J. Comput. Sci. Technol. – ident: ref_36 doi: 10.3390/s19163466 – volume: XLVIII-1-W1-2023 start-page: 93 year: 2023 ident: ref_14 article-title: The implementation of semi-automated road surface markings extraction schemes utilizing mobile laser scanned point clouds for HD maps production publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLVIII-1-W1-2023-93-2023 – volume: 61 start-page: 5702314 year: 2023 ident: ref_2 article-title: Robust Extraction of Multiple-Type Support Positioning Devices in the Catenary System of Railway Dataset Based on MLS Point Clouds publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 22 start-page: 1981 year: 2021 ident: ref_5 article-title: Capsule-Based Networks for Road Marking Extraction and Classification From Mobile LiDAR Point Clouds publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2990120 – ident: ref_33 – volume: 280 start-page: 46 year: 2018 ident: ref_8 article-title: Lane Marking Detection via Deep Convolutional Neural Network publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.098 – volume: 6 start-page: 18 year: 2021 ident: ref_41 article-title: Review of Bounding Box Algorithm Based on 3D Point Cloud publication-title: Int. J. Adv. Netw. Monit. Control. doi: 10.21307/ijanmc-2021-003 – volume: 1453 start-page: 012141 year: 2020 ident: ref_3 article-title: Semi-Automatic Road Lane Marking Detection Based on Point-Cloud Data for Mapping publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1453/1/012141 – volume: 28 start-page: 085203 year: 2017 ident: ref_13 article-title: Automatic Extraction of Pavement Markings on Streets from Point Cloud Data of Mobile LiDAR publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aa76a3 – ident: ref_29 doi: 10.3390/rs8090710 – volume: 24 start-page: 381 year: 1981 ident: ref_26 article-title: Graphics and Image Processing Random Sample Consensus: A Paradigm for Model Fitting with Apphcatlons to Image Analysis and Automated Cartography publication-title: Commun. ACM doi: 10.1145/358669.358692 – volume: 52 start-page: 26 year: 2019 ident: ref_31 article-title: Automatic Lane Marking Extraction from Point Cloud into Polygon Map Layer publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2018.1535837 – ident: ref_7 doi: 10.3390/rs13132612 – ident: ref_15 doi: 10.3390/rs8060501 – volume: 12 start-page: 734 year: 2019 ident: ref_17 article-title: Power Line Extraction From Mobile LiDAR Point Clouds; Power Line Extraction from Mobile LiDAR Point Clouds publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2893967 – ident: ref_38 – volume: 21 start-page: 10029 year: 2021 ident: ref_4 article-title: An Automatic Lane Marking Detection Method with Low-Density Roadside LiDAR Data publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3057999 – volume: 147 start-page: 178 year: 2019 ident: ref_9 article-title: A Deep Learning Framework for Road Marking Extraction, Classification and Completion from Mobile Laser Scanning Point Clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.10.007 – ident: ref_19 – volume: 11 start-page: 657 year: 2017 ident: ref_22 article-title: Line-Based Planar Structure Extraction from a Point Cloud with an Anisotropic Distribution publication-title: Int. J. Autom. Technol. doi: 10.20965/ijat.2017.p0657 |
| SSID | ssj0000331904 |
| Score | 2.3824997 |
| Snippet | Advancements in data-acquisition technology have led to the increasing demand for high-precision road data for autonomous driving. Specifically, road... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 4656 |
| SubjectTerms | Algorithms automatic extraction Boundaries Data acquisition data collection Deep learning Electronic data processing extracts ground MMS survey Horizontal orientation Image processing Methods OBB collision-detection algorithm point cloud data remote sensing road boundary road marking Roads Roads & highways Sensors South Korea Streets |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA5SBH0Rr7haJaIgPgxNJpnMzONuL_hiLVKhbyGZk8HCMlN2ZqX7y_r3ek4yu1ZQfPE1CSHJObl8Sb7vMPahKYpGmgAZKAGZ9kJlFRARWEnVIqBARNbGYBPl6Wl1cVGf3Qn1RX_CkjxwGrgDaRrZCg0V0JuTAy98AaWAIMDXDiKPXJT1HTAV12CFriV00iNViOsPVgPubTWpg_22A0Wh_r8tx3GPOXnMHk2HQz5PjXrC7oXuKXswxSn_sXnGbo52HCfu-JcY_ZmPPZ-vxz5qr7rlcsOPr0fiPvFvvQO-iHGTVhvuOuCIPNGzUwaxdOianBPDhGrrPa4QmHwVq09S5vysv-xGfrjs18Dj9wL-lZSR8ZyaaqaURX_N6QIi0tSzozDG710dP9_qww7P2feT4_PDz9kUeiFrtFJjBtI5CEFKMNDUwispcbCDqQLa1IQKGleAcC43bVt7LzSOttAaSt-WsmlBvWB7Xd-Fl4z7yhAIM2XwWissrX2unXQFIr3cu3zGPm3NYZtJl5zCYywt4hMynf1luhl7vyt7ldQ4_lhqQVbdlSAF7ZiAfmUnv7L_8qsZ-0g-YWmek9HcRFfATpFilp0jLCGak8IO7G_dxk4LwGARiBqK5CzUjL3bZePUpfcY14V-PVglSNpIV1q_-h8tfs0e5ngCSz8N99neuFqHN-x-83O8HFZv4_y4Bc4bGXk priority: 102 providerName: Directory of Open Access Journals |
| Title | Developing a Method to Automatically Extract Road Boundary and Linear Road Markings from a Mobile Mapping System Point Cloud Using Oriented Bounding Box Collision-Detection Techniques |
| URI | https://www.proquest.com/docview/2876628803 https://www.proquest.com/docview/3040434844 https://doaj.org/article/16c1f04d8d0640adb0b5d70de0db9ad7 |
| Volume | 15 |
| WOSCitedRecordID | wos001084847200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagRYILb0SgVEYgIQ6r2rH3kRNK2lRwaFiVIhUuK3vHC5WidchuUHPhb_H3mPFuUiEBFy57sEejtWY89oxnvmHsZRnHpUwcRKAERNoKFWVAhcBKqgodCvTIqtBsIp3NsvPzUd4H3Jo-rXJjE4OhBl9SjPwAb_YJtcYV6s3iW0Rdo-h1tW-hcZ3tEkqCDKl7H7YxFqFQwYTuUEkVevcHywapRoQR9ts5FOD6_2aUw0lzfOd___Euu93fMfm4U4p77Jqr77Obfbvzr-sH7OfRtlSKG34Smkjz1vPxqvUBwtXM52s-vWyphIqfegN8EtovLdfc1MDRgcUN0k1QsQ9F2zkVqhA3b9HQ4PAisO8Q0XnuL-qWH879CnjIUuDvCWAZr7sdZxqZ-EtOcYxQ7R4duTZkidX8bAMz2zxkH4-nZ4dvo76DQ1RqpdoIpDHgnJSQQDkSVkk5woEkc6gaicugNDEIY4ZJVY2sFRrFJbSG1FapLCtQj9hO7Wv3mHGbJeTLJamzWiuk1naojTQxOoxDa4YD9nojz6Ls4c2py8a8QDeHZF9cyX7AXmxpFx2oxx-pJqQWWwoC4g4Dfvml6Pd1IZNSVkJDBvQkasAKG0MqwAmwuNR0wF6RUhVkLkhopq96wEUR8FYxRu-GqqUULmBvo1RFb0ea4kqjBuz5dhotAD3rmNr5VVMoQQhJOtP6yb9ZPGW3hnhF61IR99hOu1y5Z-xG-b29aJb7bHcyneWn-yEqsR82En1_TPGbx59xPn93kn_6BW1ULQw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLZGhzQu_EYUBhgBQhyi2bGbHweE2nXTqq2lQkXaTsGOHZhUJaVJYf2nuPLv8Z6TdEICbjtwdaynOP7ynp_t932EvEx7vZQH1nhGMONJzYQXGSwEFlxkkFBARpY5sYlwMolOT-PpFvnR1sLgtcrWJzpHbYoU98j3YGUfoDQuE-8WXz1UjcLT1VZCo4bFsV1_h5StfDsawvy-8v3Dg9n-kdeoCnipFKLyDFfKWMu5CUwaMy04j6EhiCy8bmAjk6qeYUr5QZbFWjMJIZNJaUKdhTzNjAC718i2RLB3yPZ0NJ6ebXZ1mABIM1nzoAoRs71lCTE1Rlay3yKfEwj4Wxhwse3w1v_2VW6Tm80qmvZr2N8hWza_S3YaQfcv63vk53BTDEYVHTuZbFoVtL-qCkdSq-bzNT24qLBIjH4olKEDJzC1XFOVGwopOoyqfoDlTHieQLEUB60VGlwpNC-c-ZrznU6L87yi-_NiZai7h0HfI4U0LOhry9gyKC4o7tS4en5vaCt3Dy6ns5ZIt7xPPl7Jd3tAOnmR24eE6ijAbDUIrZZSQG-pfam46kFK7Gvld8mbFj9J2hC4o47IPIFEDrGWXGKtS15s-i5q2pI_9hogDDc9kGrcNRTLz0njuRIepDxj0kQGD32V0Uz3TMiMZUbDUMMueY0gTtAh4qSppq4DBoXUYkkf8jesBxMwgN0WxEnjKcvkEsFd8nzzGHwcHlyp3BarMhEMOaBkJOWjf5t4RnaOZuOT5GQ0OX5MbviwIK0vXu6STrVc2SfkevqtOi-XT5sfl5JPV_1X_ALnAIjc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCFN2KhgBEgxCFaJ3ZeB4R2u11RFZYVKlLVi7FjByqtkiXJQveXIfHrmHGSrZCAWw9cHWuUScYzHnvm-wh5loVh5kfWeIYz4wnNuJcYbATmPs8hoYCMLHdkE_FslhwdpfMt8rPvhcGyyt4nOkdtygzPyIews4-QGpfxYd6VRcwn09fLrx4ySOFNa0-n0ZrIgV1_h_StfrU_gX_9PAime4e7b7yOYcDLBOeNZ3yljLW-byKTpUxz309hIEosvHpkE5Op0DClgijPU62ZgPDJhDCxzmM_yw0HuRfIxRg0wnLCeXi8Od9hHIybiRYRlfOUDasaomuK-GS_xUBHFfC3gOCi3PT6__x9bpBr3d6ajtrFcJNs2eIWudLRvH9Z3yY_JpsWMaroO0eeTZuSjlZN6aBr1WKxpnunDbaO0Q-lMnTsaKeqNVWFoZC4g1btA2xywlsGig06KK3U4GBheOnEt0jwdF6eFA3dXZQrQ111Bn2PwNKwzW8l48i4PKV4fuO6_L2JbVx1XEEPe3jd-g75eC7f7S7ZLsrC3iNUJxHmsFFstRAcZgsdCOWrEBLlQKtgQF72tiSzDtYd2UUWEtI7tDt5ZncD8nQzd9mCmfxx1hhNcjMDAcjdQFl9lp0_k36U-TkTJjF4FayMZjo0MTOWGQ2qxgPyAg1aopvEn6a6bg9QCgHH5AiyOuwS46DATm_QsvOftTyz5gF5snkMng-vs1Rhy1UtOUNkKJEIcf_fIh6Ty7AU5Nv92cEDcjWAXWpbjblDtptqZR-SS9m35qSuHrkVTMmn814SvwAhIpA_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+Method+to+Automatically+Extract+Road+Boundary+and+Linear+Road+Markings+from+a+Mobile+Mapping+System+Point+Cloud+Using+Oriented+Bounding+Box+Collision-Detection+Techniques&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Kang%2C+Seokchan&rft.au=Lee%2C+Jeongwon&rft.au=Lee%2C+Jiyeong&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=19&rft_id=info:doi/10.3390%2Frs15194656&rft.externalDocID=A772200032 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |