Developing a Method to Automatically Extract Road Boundary and Linear Road Markings from a Mobile Mapping System Point Cloud Using Oriented Bounding Box Collision-Detection Techniques

Advancements in data-acquisition technology have led to the increasing demand for high-precision road data for autonomous driving. Specifically, road boundaries and linear road markings, like edge and lane markings, provide fundamental guidance for various applications. Unfortunately, their extracti...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 15; no. 19; p. 4656
Main Authors: Kang, Seokchan, Lee, Jeongwon, Lee, Jiyeong
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2023
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Advancements in data-acquisition technology have led to the increasing demand for high-precision road data for autonomous driving. Specifically, road boundaries and linear road markings, like edge and lane markings, provide fundamental guidance for various applications. Unfortunately, their extraction usually requires labor-intensive manual work, and the automatic extraction, which can be applied universally for diverse curved road types, presents a challenge. Given this context, this study proposes a method to automatically extract road boundaries and linear road markings by applying an oriented bounding box (OBB) collision-detection algorithm. The OBBs are generated from a reference line using the point cloud data’s position and intensity values. By applying the OBB collision-detection algorithm, road boundaries and linear road markings can be extracted efficiently and accurately in straight and curved roads by adjusting search length and width to detect OBB collision. This study assesses horizontal position accuracy using automatically extracted and manually digitized data to verify this method. The resulting RMSE for extracted road boundaries is +4.8 cm and +5.3 cm for linear road markings, indicating that high-accuracy road boundary and road marking extraction was possible. Therefore, our results demonstrate that the automatic extraction adjusting OBB detection parameters and integrating the OBB collision-detection algorithm enables efficient and precise extraction of road boundaries and linear road markings in various curving types of roads. Finally, this enhances its practicality and simplifies the implementation of the extraction process.
AbstractList Advancements in data-acquisition technology have led to the increasing demand for high-precision road data for autonomous driving. Specifically, road boundaries and linear road markings, like edge and lane markings, provide fundamental guidance for various applications. Unfortunately, their extraction usually requires labor-intensive manual work, and the automatic extraction, which can be applied universally for diverse curved road types, presents a challenge. Given this context, this study proposes a method to automatically extract road boundaries and linear road markings by applying an oriented bounding box (OBB) collision-detection algorithm. The OBBs are generated from a reference line using the point cloud data’s position and intensity values. By applying the OBB collision-detection algorithm, road boundaries and linear road markings can be extracted efficiently and accurately in straight and curved roads by adjusting search length and width to detect OBB collision. This study assesses horizontal position accuracy using automatically extracted and manually digitized data to verify this method. The resulting RMSE for extracted road boundaries is +4.8 cm and +5.3 cm for linear road markings, indicating that high-accuracy road boundary and road marking extraction was possible. Therefore, our results demonstrate that the automatic extraction adjusting OBB detection parameters and integrating the OBB collision-detection algorithm enables efficient and precise extraction of road boundaries and linear road markings in various curving types of roads. Finally, this enhances its practicality and simplifies the implementation of the extraction process.
Audience Academic
Author Lee, Jeongwon
Lee, Jiyeong
Kang, Seokchan
Author_xml – sequence: 1
  givenname: Seokchan
  surname: Kang
  fullname: Kang, Seokchan
– sequence: 2
  givenname: Jeongwon
  orcidid: 0009-0001-2814-9486
  surname: Lee
  fullname: Lee, Jeongwon
– sequence: 3
  givenname: Jiyeong
  orcidid: 0000-0001-8229-1267
  surname: Lee
  fullname: Lee, Jiyeong
BookMark eNptUk1vEzEQXaEiUUIv_AJLXBBSir129uOYpgUqpSqC9mx57dnUwesJtrdqfhl_D29TAaqwDx49v3mjNzOviyOPHoriLaOnnLf0Y4hswVpRLaoXxXFJ63IuyrY8-id-VZzEuKX5cM5aKo6LX-dwDw531m-IIleQ7tCQhGQ5JhxUslo5tycXDykoncg3VIac4eiNCnuivCFr60GFw8eVCj-yTiR9wGFSw846yPDuUf77PiYYyFe0PpGVw9GQ2zh9XAcLPsGT8oSc4QNZoXM2WvTzc0igU47IDeg7b3-OEN8UL3vlIpw8vbPi9tPFzerLfH39-XK1XM-14DzNDVPKADBmKqNb2nHG2gxUDRhOK2iMVgtDlSqrvm-7jorcFSqEqbu-Zro3fFZcHnQNqq3cBTtk5xKVlY8Aho1UIbfJgWSVZj0VpjG0ElSZjnYLU1MD1HS5aJ213h-0dgEnD0kONmpwTnnAMUpOBRVcNEJk6rtn1C2OwWensmzqqiqbJo9wVpweWBuV61vf4zSmfA0MVufl6HP_5bKuy3IaeZkTPhwSdMAYA_R_HDEqpx2Sf3cok-kzsrZJTXPIVaz7X8pvVCfNzQ
CitedBy_id crossref_primary_10_3390_machines13080709
crossref_primary_10_1016_j_precisioneng_2025_01_001
crossref_primary_10_1016_j_precisioneng_2025_07_008
crossref_primary_10_1061_JCCEE5_CPENG_6263
Cites_doi 10.1080/14498596.2021.1960912
10.3390/rs14122768
10.1016/j.aei.2019.100936
10.1109/CISP-BMEI.2018.8633181
10.1109/TITS.2020.3028033
10.1109/ACCESS.2019.2958671
10.1109/ACCESS.2020.2985413
10.3390/ijgi9100608
10.1145/1653771.1653851
10.1088/1742-6596/1213/4/042079
10.1109/JSTARS.2019.2904514
10.3390/rs12091379
10.1109/DICTA.2015.7371262
10.1109/TPAMI.2020.3005434
10.3390/rs14143279
10.1177/0361198120981948
10.1016/j.isprsjprs.2014.12.027
10.3390/s19163466
10.5194/isprs-archives-XLVIII-1-W1-2023-93-2023
10.1109/TITS.2020.2990120
10.1016/j.neucom.2017.09.098
10.21307/ijanmc-2021-003
10.1088/1742-6596/1453/1/012141
10.1088/1361-6501/aa76a3
10.3390/rs8090710
10.1145/358669.358692
10.1080/22797254.2018.1535837
10.3390/rs13132612
10.3390/rs8060501
10.1109/JSTARS.2019.2893967
10.1109/JSEN.2021.3057999
10.1016/j.isprsjprs.2018.10.007
10.20965/ijat.2017.p0657
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15194656
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Collection (ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_16c1f04d8d0640adb0b5d70de0db9ad7
A772200032
10_3390_rs15194656
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-d1aadee11d6dc90b3119ade68ed306e8dca5d0aa26ff9bb04190044d7bf71cfd3
IEDL.DBID M7S
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001084847200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Mon Nov 10 04:28:46 EST 2025
Fri Sep 05 14:00:31 EDT 2025
Fri Jul 25 09:52:19 EDT 2025
Tue Nov 04 18:15:48 EST 2025
Tue Nov 18 21:41:53 EST 2025
Sat Nov 29 07:16:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-d1aadee11d6dc90b3119ade68ed306e8dca5d0aa26ff9bb04190044d7bf71cfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-2814-9486
0000-0001-8229-1267
OpenAccessLink https://www.proquest.com/docview/2876628803?pq-origsite=%requestingapplication%
PQID 2876628803
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_16c1f04d8d0640adb0b5d70de0db9ad7
proquest_miscellaneous_3040434844
proquest_journals_2876628803
gale_infotracacademiconefile_A772200032
crossref_primary_10_3390_rs15194656
crossref_citationtrail_10_3390_rs15194656
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chang (ref_14) 2023; XLVIII-1-W1-2023
Lin (ref_4) 2021; 21
Kang (ref_3) 2020; 1453
Zhang (ref_30) 2019; 1213
Wu (ref_34) 2019; 42
ref_36
ref_11
ref_33
ref_32
ref_19
Zhang (ref_2) 2023; 61
ref_18
ref_39
ref_38
Ye (ref_10) 2022; 23
ref_15
Miyazaki (ref_22) 2017; 11
Ma (ref_21) 2019; 12
Zhang (ref_35) 2019; 7
Xu (ref_17) 2019; 12
Wen (ref_9) 2019; 147
Gao (ref_13) 2017; 28
Tian (ref_8) 2018; 280
ref_25
ref_23
Kukolj (ref_12) 2021; 68
Prochazka (ref_31) 2019; 52
Zeybek (ref_16) 2021; 2675
ref_20
Lin (ref_24) 2015; 102
Siwei (ref_41) 2021; 6
Foley (ref_26) 1981; 24
ref_29
Ma (ref_5) 2021; 22
ref_28
ref_27
Fujita (ref_1) 2015; 15
Guo (ref_37) 2021; 43
Liu (ref_40) 2020; 8
ref_7
ref_6
References_xml – volume: 68
  start-page: 245
  year: 2021
  ident: ref_12
  article-title: Road Edge Detection Based on Combined Deep Learning and Spatial Statistics of LiDAR Data
  publication-title: J. Spat. Sci.
  doi: 10.1080/14498596.2021.1960912
– ident: ref_28
– ident: ref_39
  doi: 10.3390/rs14122768
– ident: ref_32
– volume: 42
  start-page: 100936
  year: 2019
  ident: ref_34
  article-title: Road Pothole Extraction and Safety Evaluation by Integration of Point Cloud and Images Derived from Mobile Mapping Sensors
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2019.100936
– ident: ref_25
  doi: 10.1109/CISP-BMEI.2018.8633181
– volume: 23
  start-page: 1505
  year: 2022
  ident: ref_10
  article-title: Robust Lane Extraction From MLS Point Clouds Towards HD Maps Especially in Curve Road
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3028033
– volume: 7
  start-page: 179118
  year: 2019
  ident: ref_35
  article-title: A Review of Deep Learning-Based Semantic Segmentation for Point Cloud
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2958671
– volume: 8
  start-page: 64297
  year: 2020
  ident: ref_40
  article-title: Image-Translation-Based Road Marking Extraction from Mobile Laser Point Clouds
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2985413
– ident: ref_6
  doi: 10.3390/ijgi9100608
– ident: ref_18
  doi: 10.1145/1653771.1653851
– volume: 1213
  start-page: 042079
  year: 2019
  ident: ref_30
  article-title: Collision Detection Based on OBB Simplified Modeling
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1213/4/042079
– volume: 12
  start-page: 1572
  year: 2019
  ident: ref_21
  article-title: Generation of Horizontally Curved Driving Lines in HD Maps Using Mobile Laser Scanning Point Clouds
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2904514
– ident: ref_11
  doi: 10.3390/rs12091379
– ident: ref_27
  doi: 10.1109/DICTA.2015.7371262
– volume: 43
  start-page: 4338
  year: 2021
  ident: ref_37
  article-title: Deep Learning for 3D Point Clouds: A Survey
  publication-title: IEEE Trans. Pattern. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3005434
– ident: ref_20
  doi: 10.3390/rs14143279
– volume: 2675
  start-page: 30
  year: 2021
  ident: ref_16
  article-title: Extraction of Road Lane Markings from Mobile Lidar Data
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198120981948
– volume: 102
  start-page: 172
  year: 2015
  ident: ref_24
  article-title: Line Segment Extraction for Large Scale Unorganized Point Clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.12.027
– ident: ref_23
– volume: 15
  start-page: 11
  year: 2015
  ident: ref_1
  article-title: Attribute Assignment to Point Cloud Data and Its Usage
  publication-title: Glob. J. Comput. Sci. Technol.
– ident: ref_36
  doi: 10.3390/s19163466
– volume: XLVIII-1-W1-2023
  start-page: 93
  year: 2023
  ident: ref_14
  article-title: The implementation of semi-automated road surface markings extraction schemes utilizing mobile laser scanned point clouds for HD maps production
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLVIII-1-W1-2023-93-2023
– volume: 61
  start-page: 5702314
  year: 2023
  ident: ref_2
  article-title: Robust Extraction of Multiple-Type Support Positioning Devices in the Catenary System of Railway Dataset Based on MLS Point Clouds
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 22
  start-page: 1981
  year: 2021
  ident: ref_5
  article-title: Capsule-Based Networks for Road Marking Extraction and Classification From Mobile LiDAR Point Clouds
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2990120
– ident: ref_33
– volume: 280
  start-page: 46
  year: 2018
  ident: ref_8
  article-title: Lane Marking Detection via Deep Convolutional Neural Network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.098
– volume: 6
  start-page: 18
  year: 2021
  ident: ref_41
  article-title: Review of Bounding Box Algorithm Based on 3D Point Cloud
  publication-title: Int. J. Adv. Netw. Monit. Control.
  doi: 10.21307/ijanmc-2021-003
– volume: 1453
  start-page: 012141
  year: 2020
  ident: ref_3
  article-title: Semi-Automatic Road Lane Marking Detection Based on Point-Cloud Data for Mapping
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1453/1/012141
– volume: 28
  start-page: 085203
  year: 2017
  ident: ref_13
  article-title: Automatic Extraction of Pavement Markings on Streets from Point Cloud Data of Mobile LiDAR
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa76a3
– ident: ref_29
  doi: 10.3390/rs8090710
– volume: 24
  start-page: 381
  year: 1981
  ident: ref_26
  article-title: Graphics and Image Processing Random Sample Consensus: A Paradigm for Model Fitting with Apphcatlons to Image Analysis and Automated Cartography
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– volume: 52
  start-page: 26
  year: 2019
  ident: ref_31
  article-title: Automatic Lane Marking Extraction from Point Cloud into Polygon Map Layer
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2018.1535837
– ident: ref_7
  doi: 10.3390/rs13132612
– ident: ref_15
  doi: 10.3390/rs8060501
– volume: 12
  start-page: 734
  year: 2019
  ident: ref_17
  article-title: Power Line Extraction From Mobile LiDAR Point Clouds; Power Line Extraction from Mobile LiDAR Point Clouds
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2893967
– ident: ref_38
– volume: 21
  start-page: 10029
  year: 2021
  ident: ref_4
  article-title: An Automatic Lane Marking Detection Method with Low-Density Roadside LiDAR Data
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3057999
– volume: 147
  start-page: 178
  year: 2019
  ident: ref_9
  article-title: A Deep Learning Framework for Road Marking Extraction, Classification and Completion from Mobile Laser Scanning Point Clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.10.007
– ident: ref_19
– volume: 11
  start-page: 657
  year: 2017
  ident: ref_22
  article-title: Line-Based Planar Structure Extraction from a Point Cloud with an Anisotropic Distribution
  publication-title: Int. J. Autom. Technol.
  doi: 10.20965/ijat.2017.p0657
SSID ssj0000331904
Score 2.3824997
Snippet Advancements in data-acquisition technology have led to the increasing demand for high-precision road data for autonomous driving. Specifically, road...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4656
SubjectTerms Algorithms
automatic extraction
Boundaries
Data acquisition
data collection
Deep learning
Electronic data processing
extracts
ground MMS survey
Horizontal orientation
Image processing
Methods
OBB collision-detection algorithm
point cloud data
remote sensing
road boundary
road marking
Roads
Roads & highways
Sensors
South Korea
Streets
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA5SBH0Rr7haJaIgPgxNJpnMzONuL_hiLVKhbyGZk8HCMlN2ZqX7y_r3ek4yu1ZQfPE1CSHJObl8Sb7vMPahKYpGmgAZKAGZ9kJlFRARWEnVIqBARNbGYBPl6Wl1cVGf3Qn1RX_CkjxwGrgDaRrZCg0V0JuTAy98AaWAIMDXDiKPXJT1HTAV12CFriV00iNViOsPVgPubTWpg_22A0Wh_r8tx3GPOXnMHk2HQz5PjXrC7oXuKXswxSn_sXnGbo52HCfu-JcY_ZmPPZ-vxz5qr7rlcsOPr0fiPvFvvQO-iHGTVhvuOuCIPNGzUwaxdOianBPDhGrrPa4QmHwVq09S5vysv-xGfrjs18Dj9wL-lZSR8ZyaaqaURX_N6QIi0tSzozDG710dP9_qww7P2feT4_PDz9kUeiFrtFJjBtI5CEFKMNDUwispcbCDqQLa1IQKGleAcC43bVt7LzSOttAaSt-WsmlBvWB7Xd-Fl4z7yhAIM2XwWissrX2unXQFIr3cu3zGPm3NYZtJl5zCYywt4hMynf1luhl7vyt7ldQ4_lhqQVbdlSAF7ZiAfmUnv7L_8qsZ-0g-YWmek9HcRFfATpFilp0jLCGak8IO7G_dxk4LwGARiBqK5CzUjL3bZePUpfcY14V-PVglSNpIV1q_-h8tfs0e5ngCSz8N99neuFqHN-x-83O8HFZv4_y4Bc4bGXk
  priority: 102
  providerName: Directory of Open Access Journals
Title Developing a Method to Automatically Extract Road Boundary and Linear Road Markings from a Mobile Mapping System Point Cloud Using Oriented Bounding Box Collision-Detection Techniques
URI https://www.proquest.com/docview/2876628803
https://www.proquest.com/docview/3040434844
https://doaj.org/article/16c1f04d8d0640adb0b5d70de0db9ad7
Volume 15
WOSCitedRecordID wos001084847200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagRYILb0SgVEYgIQ6r2rH3kRNK2lRwaFiVIhUuK3vHC5WidchuUHPhb_H3mPFuUiEBFy57sEejtWY89oxnvmHsZRnHpUwcRKAERNoKFWVAhcBKqgodCvTIqtBsIp3NsvPzUd4H3Jo-rXJjE4OhBl9SjPwAb_YJtcYV6s3iW0Rdo-h1tW-hcZ3tEkqCDKl7H7YxFqFQwYTuUEkVevcHywapRoQR9ts5FOD6_2aUw0lzfOd___Euu93fMfm4U4p77Jqr77Obfbvzr-sH7OfRtlSKG34Smkjz1vPxqvUBwtXM52s-vWyphIqfegN8EtovLdfc1MDRgcUN0k1QsQ9F2zkVqhA3b9HQ4PAisO8Q0XnuL-qWH879CnjIUuDvCWAZr7sdZxqZ-EtOcYxQ7R4duTZkidX8bAMz2zxkH4-nZ4dvo76DQ1RqpdoIpDHgnJSQQDkSVkk5woEkc6gaicugNDEIY4ZJVY2sFRrFJbSG1FapLCtQj9hO7Wv3mHGbJeTLJamzWiuk1naojTQxOoxDa4YD9nojz6Ls4c2py8a8QDeHZF9cyX7AXmxpFx2oxx-pJqQWWwoC4g4Dfvml6Pd1IZNSVkJDBvQkasAKG0MqwAmwuNR0wF6RUhVkLkhopq96wEUR8FYxRu-GqqUULmBvo1RFb0ea4kqjBuz5dhotAD3rmNr5VVMoQQhJOtP6yb9ZPGW3hnhF61IR99hOu1y5Z-xG-b29aJb7bHcyneWn-yEqsR82En1_TPGbx59xPn93kn_6BW1ULQw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLZGhzQu_EYUBhgBQhyi2bGbHweE2nXTqq2lQkXaTsGOHZhUJaVJYf2nuPLv8Z6TdEICbjtwdaynOP7ynp_t932EvEx7vZQH1nhGMONJzYQXGSwEFlxkkFBARpY5sYlwMolOT-PpFvnR1sLgtcrWJzpHbYoU98j3YGUfoDQuE-8WXz1UjcLT1VZCo4bFsV1_h5StfDsawvy-8v3Dg9n-kdeoCnipFKLyDFfKWMu5CUwaMy04j6EhiCy8bmAjk6qeYUr5QZbFWjMJIZNJaUKdhTzNjAC718i2RLB3yPZ0NJ6ebXZ1mABIM1nzoAoRs71lCTE1Rlay3yKfEwj4Wxhwse3w1v_2VW6Tm80qmvZr2N8hWza_S3YaQfcv63vk53BTDEYVHTuZbFoVtL-qCkdSq-bzNT24qLBIjH4olKEDJzC1XFOVGwopOoyqfoDlTHieQLEUB60VGlwpNC-c-ZrznU6L87yi-_NiZai7h0HfI4U0LOhry9gyKC4o7tS4en5vaCt3Dy6ns5ZIt7xPPl7Jd3tAOnmR24eE6ijAbDUIrZZSQG-pfam46kFK7Gvld8mbFj9J2hC4o47IPIFEDrGWXGKtS15s-i5q2pI_9hogDDc9kGrcNRTLz0njuRIepDxj0kQGD32V0Uz3TMiMZUbDUMMueY0gTtAh4qSppq4DBoXUYkkf8jesBxMwgN0WxEnjKcvkEsFd8nzzGHwcHlyp3BarMhEMOaBkJOWjf5t4RnaOZuOT5GQ0OX5MbviwIK0vXu6STrVc2SfkevqtOi-XT5sfl5JPV_1X_ALnAIjc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCFN2KhgBEgxCFaJ3ZeB4R2u11RFZYVKlLVi7FjByqtkiXJQveXIfHrmHGSrZCAWw9cHWuUScYzHnvm-wh5loVh5kfWeIYz4wnNuJcYbATmPs8hoYCMLHdkE_FslhwdpfMt8rPvhcGyyt4nOkdtygzPyIews4-QGpfxYd6VRcwn09fLrx4ySOFNa0-n0ZrIgV1_h_StfrU_gX_9PAime4e7b7yOYcDLBOeNZ3yljLW-byKTpUxz309hIEosvHpkE5Op0DClgijPU62ZgPDJhDCxzmM_yw0HuRfIxRg0wnLCeXi8Od9hHIybiRYRlfOUDasaomuK-GS_xUBHFfC3gOCi3PT6__x9bpBr3d6ajtrFcJNs2eIWudLRvH9Z3yY_JpsWMaroO0eeTZuSjlZN6aBr1WKxpnunDbaO0Q-lMnTsaKeqNVWFoZC4g1btA2xywlsGig06KK3U4GBheOnEt0jwdF6eFA3dXZQrQ111Bn2PwNKwzW8l48i4PKV4fuO6_L2JbVx1XEEPe3jd-g75eC7f7S7ZLsrC3iNUJxHmsFFstRAcZgsdCOWrEBLlQKtgQF72tiSzDtYd2UUWEtI7tDt5ZncD8nQzd9mCmfxx1hhNcjMDAcjdQFl9lp0_k36U-TkTJjF4FayMZjo0MTOWGQ2qxgPyAg1aopvEn6a6bg9QCgHH5AiyOuwS46DATm_QsvOftTyz5gF5snkMng-vs1Rhy1UtOUNkKJEIcf_fIh6Ty7AU5Nv92cEDcjWAXWpbjblDtptqZR-SS9m35qSuHrkVTMmn814SvwAhIpA_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+Method+to+Automatically+Extract+Road+Boundary+and+Linear+Road+Markings+from+a+Mobile+Mapping+System+Point+Cloud+Using+Oriented+Bounding+Box+Collision-Detection+Techniques&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Kang%2C+Seokchan&rft.au=Lee%2C+Jeongwon&rft.au=Lee%2C+Jiyeong&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=19&rft_id=info:doi/10.3390%2Frs15194656&rft.externalDocID=A772200032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon