An Extended Primal-Dual Algorithm Framework for Nonconvex Problems: Application to Image Reconstruction in Spectral CT

Using the convexity of each component of the forward operator, we propose an extended primal-dual algorithm framework for solving a kind of nonconvex and probably nonsmooth optimization problems in spectral CT image reconstruction. Following the proposed algorithm framework, we present six different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems Jg. 38; H. 8
Hauptverfasser: Gao, Yu, Pan, Xiaochuan, Chen, Chong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 01.08.2022
Schlagworte:
ISSN:0266-5611
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Using the convexity of each component of the forward operator, we propose an extended primal-dual algorithm framework for solving a kind of nonconvex and probably nonsmooth optimization problems in spectral CT image reconstruction. Following the proposed algorithm framework, we present six different iterative schemes or algorithms, and then establish the relationship to some existing algorithms. Under appropriate conditions, we prove the convergence of these schemes for the general case. Moreover, when the proposed schemes are applied to solving a specific problem in spectral CT image reconstruction, namely, total variation regularized nonlinear least-squares problem with nonnegative constraint, we also prove the particular convergence for these schemes by using some special properties. The numerical experiments with densely and sparsely data demonstrate the convergence and accuracy of the proposed algorithm framework in terms of visual inspection of images of realistic anatomic complexity and quantitative analysis with metrics structural similarity, peak signal-to-noise ratio, mean square error and maximum pixel difference. We analyze the computational complexity of these schemes, and discuss the extended applications of this algorithm framework in other nonlinear imaging problems.
AbstractList Using the convexity of each component of the forward operator, we propose an extended primal-dual algorithm framework for solving a kind of nonconvex and probably nonsmooth optimization problems in spectral CT image reconstruction. Following the proposed algorithm framework, we present six different iterative schemes or algorithms, and then establish the relationship to some existing algorithms. Under appropriate conditions, we prove the convergence of these schemes for the general case. Moreover, when the proposed schemes are applied to solving a specific problem in spectral CT image reconstruction, namely, total variation regularized nonlinear least-squares problem with nonnegative constraint, we also prove the particular convergence for these schemes by using some special properties. The numerical experiments with densely and sparsely data demonstrate the convergence and accuracy of the proposed algorithm framework in terms of visual inspection of images of realistic anatomic complexity and quantitative analysis with metrics structural similarity, peak signal-to-noise ratio, mean square error and maximum pixel difference. We analyze the computational complexity of these schemes, and discuss the extended applications of this algorithm framework in other nonlinear imaging problems.Using the convexity of each component of the forward operator, we propose an extended primal-dual algorithm framework for solving a kind of nonconvex and probably nonsmooth optimization problems in spectral CT image reconstruction. Following the proposed algorithm framework, we present six different iterative schemes or algorithms, and then establish the relationship to some existing algorithms. Under appropriate conditions, we prove the convergence of these schemes for the general case. Moreover, when the proposed schemes are applied to solving a specific problem in spectral CT image reconstruction, namely, total variation regularized nonlinear least-squares problem with nonnegative constraint, we also prove the particular convergence for these schemes by using some special properties. The numerical experiments with densely and sparsely data demonstrate the convergence and accuracy of the proposed algorithm framework in terms of visual inspection of images of realistic anatomic complexity and quantitative analysis with metrics structural similarity, peak signal-to-noise ratio, mean square error and maximum pixel difference. We analyze the computational complexity of these schemes, and discuss the extended applications of this algorithm framework in other nonlinear imaging problems.
Using the convexity of each component of the forward operator, we propose an extended primal-dual algorithm framework for solving a kind of nonconvex and probably nonsmooth optimization problems in spectral CT image reconstruction. Following the proposed algorithm framework, we present six different iterative schemes or algorithms, and then establish the relationship to some existing algorithms. Under appropriate conditions, we prove the convergence of these schemes for the general case. Moreover, when the proposed schemes are applied to solving a specific problem in spectral CT image reconstruction, namely, total variation regularized nonlinear least-squares problem with nonnegative constraint, we also prove the particular convergence for these schemes by using some special properties. The numerical experiments with densely and sparsely data demonstrate the convergence and accuracy of the proposed algorithm framework in terms of visual inspection of images of realistic anatomic complexity and quantitative analysis with metrics structural similarity, peak signal-to-noise ratio, mean square error and maximum pixel difference. We analyze the computational complexity of these schemes, and discuss the extended applications of this algorithm framework in other nonlinear imaging problems.
Author Gao, Yu
Chen, Chong
Pan, Xiaochuan
Author_xml – sequence: 1
  givenname: Yu
  surname: Gao
  fullname: Gao, Yu
  organization: LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 2
  givenname: Xiaochuan
  surname: Pan
  fullname: Pan, Xiaochuan
  organization: Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
– sequence: 3
  givenname: Chong
  surname: Chen
  fullname: Chen, Chong
  organization: LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36185463$$D View this record in MEDLINE/PubMed
BookMark eNo10D1PwzAYBGAPRfQDdibkkSXUdmwnYYtKC0gVIChz5DhvSiCxg52U8u8JUKaTTo9uuCkaGWsAoTNKLimJ4zkNJQ0kZ2SudJToeIQmhEkZCEnpGE29fyOE0phGx2g80FhwGU7QLjV4ue_AFFDgR1c1qg6ue1XjtN5aV3WvDV451cCnde-4tA7fW6Ot2cF-0DavofFXOG3butKqq6zBncV3jdoCfoLB-c71-revDH5uQXdu2F5sTtBRqWoPp4ecoZfVcrO4DdYPN3eLdB1oHoZdoIlMgCsNhQiLPGaaxiCTSIiw1ApKVtKI06EvKaey1MClFDxMciJyInmSsBm6-Nttnf3owXdZU3kNda0M2N5nLGIkYTIS0UDPD7TPGyiy9ucM95X9f8W-AT9ybGw
CitedBy_id crossref_primary_10_1007_s10851_024_01198_7
crossref_primary_10_1088_1361_6420_ad49ca
crossref_primary_10_1137_24M164776X
ContentType Journal Article
DBID NPM
7X8
DOI 10.1088/1361-6420/ac79c8
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Mathematics
ExternalDocumentID 36185463
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB026282
– fundername: NCI NIH HHS
  grantid: R21 CA263660
GroupedDBID -~X
.DC
02O
1JI
1WK
29J
4.4
5B3
5GY
5PX
5VS
5ZH
5ZI
7.M
7.Q
9BW
AAGCD
AAGCF
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHFT
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACARI
ACBEA
ACGFO
ACGFS
ACHIP
ACWPO
ADACN
ADEQX
AEFHF
AENEX
AERVB
AETNG
AFFNX
AFYNE
AGQPQ
AHSEE
AI.
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ARNYC
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
KZ1
LAP
LMP
M45
N5L
N9A
NPM
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RKQ
RNS
RO9
ROL
RPA
S3P
SY9
T37
TN5
VH1
W28
XOL
XPP
ZMT
ZY4
~02
7X8
AEINN
ID FETCH-LOGICAL-c433t-c069e4aced53db82c18e697553fcaef2f1741b82f1416fce4665439b05b064992
IEDL.DBID 7X8
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000825102900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-5611
IngestDate Sun Nov 09 10:23:02 EST 2025
Mon Jul 21 05:57:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords nonconvex problems
nonlinear imaging
convexity
extended primal-dual algorithm framework
spectral CT image reconstruction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-c069e4aced53db82c18e697553fcaef2f1741b82f1416fce4665439b05b064992
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1088/1361-6420/ac79c8
PMID 36185463
PQID 2720926757
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2720926757
pubmed_primary_36185463
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Inverse problems
PublicationTitleAlternate Inverse Probl
PublicationYear 2022
SSID ssj0011817
Score 2.3941922
Snippet Using the convexity of each component of the forward operator, we propose an extended primal-dual algorithm framework for solving a kind of nonconvex and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
Title An Extended Primal-Dual Algorithm Framework for Nonconvex Problems: Application to Image Reconstruction in Spectral CT
URI https://www.ncbi.nlm.nih.gov/pubmed/36185463
https://www.proquest.com/docview/2720926757
Volume 38
WOSCitedRecordID wos000825102900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN6o9aAH34_6ypp4JQWW13oxpLbRxJIequmNwLKrTVqoQht_vjNAxYuJiRcSCGzIzu7st9_MzkfIjVBgVIfDTLMkslU6-EFmM6Q5EpMpALGlJMvLkxsE3njMhzXhltdplSufWDrqJBPIkXcwXshNgLfu3fxdQ9UojK7WEhrrpMUAymBKlztuogiwerkVx-JogBOMOkwJE6tjMMfQAHvrnUi4XHi_A8xyoenv_vcX98hODTGpX42JfbIm0wOy_aPwINwNvqu15odk6ae0V5PhdIjlJ6ba_QKbmL5C-8XbjPZXOVwUQC4NsrTMVv-Et0s9mvyW-k0knBYZfZyBo6K4uW1K1NJJSlHvHskV2h0dked-b9R90Go9Bk1YjBWa0B0urUjIxGZJ7JnC8KTDXdtmSkRSmQp2NwY8VwagPCWkhcrGjMe6HQPw4dw8JhtplspTQmUEMEzGOo8VYErYJkuuWAzoVJngEQynTa5XXRzCeMcgRpTKbJGHTSe3yUllp3BeFeYIwaYelvc_-8PX52TLxJMMZS7fBWkpmO3ykmyKZTHJP67KgQTXYDj4Ahz-0bA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Extended+Primal-Dual+Algorithm+Framework+for+Nonconvex+Problems%3A+Application+to+Image+Reconstruction+in+Spectral+CT&rft.jtitle=Inverse+problems&rft.au=Gao%2C+Yu&rft.au=Pan%2C+Xiaochuan&rft.au=Chen%2C+Chong&rft.date=2022-08-01&rft.issn=0266-5611&rft.volume=38&rft.issue=8&rft_id=info:doi/10.1088%2F1361-6420%2Fac79c8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon