Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand

The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca(2+)-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Heart and circulatory physiology Vol. 304; no. 11; p. H1428
Main Authors: Yaniv, Yael, Spurgeon, Harold A, Ziman, Bruce D, Lyashkov, Alexey E, Lakatta, Edward G
Format: Journal Article
Language:English
Published: United States 01.06.2013
Subjects:
ISSN:1522-1539, 1522-1539
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca(2+)-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of SR Ca(2+) cycling and surface membrane ion channel proteins. When the throughput of this signaling increases, e.g., in response to β-adrenergic receptor activation, the resultant increase in spontaneous AP firing rate increases the demand for ATP. We hypothesized that an increase of ATP production to match the increased ATP demand is achieved via a direct effect of increased mitochondrial Ca(2+) (Ca(2+)m) and an indirect effect via enhanced Ca(2+)-cAMP/PKA-CaMKII signaling to mitochondria. To increase ATP demand, single isolated rabbit SANCs were superfused by physiological saline at 35 ± 0.5°C with isoproterenol, or by phosphodiesterase or protein phosphatase inhibition. We measured cytosolic and mitochondrial Ca(2+) and flavoprotein fluorescence in single SANC, and we measured cAMP, ATP, and O₂ consumption in SANC suspensions. Although the increase in spontaneous AP firing rate was accompanied by an increase in O₂ consumption, the ATP level and flavoprotein fluorescence remained constant, indicating that ATP production had increased. Both Ca(2+)m and cAMP increased concurrently with the increase in AP firing rate. When Ca(2+)m was reduced by Ru360, the increase in spontaneous AP firing rate in response to isoproterenol was reduced by 25%. Thus, both an increase in Ca(2+)m and an increase in Ca(2+) activated cAMP-PKA-CaMKII signaling regulate the increase in ATP supply to meet ATP demand above the basal level.
AbstractList The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca(2+)-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of SR Ca(2+) cycling and surface membrane ion channel proteins. When the throughput of this signaling increases, e.g., in response to β-adrenergic receptor activation, the resultant increase in spontaneous AP firing rate increases the demand for ATP. We hypothesized that an increase of ATP production to match the increased ATP demand is achieved via a direct effect of increased mitochondrial Ca(2+) (Ca(2+)m) and an indirect effect via enhanced Ca(2+)-cAMP/PKA-CaMKII signaling to mitochondria. To increase ATP demand, single isolated rabbit SANCs were superfused by physiological saline at 35 ± 0.5°C with isoproterenol, or by phosphodiesterase or protein phosphatase inhibition. We measured cytosolic and mitochondrial Ca(2+) and flavoprotein fluorescence in single SANC, and we measured cAMP, ATP, and O₂ consumption in SANC suspensions. Although the increase in spontaneous AP firing rate was accompanied by an increase in O₂ consumption, the ATP level and flavoprotein fluorescence remained constant, indicating that ATP production had increased. Both Ca(2+)m and cAMP increased concurrently with the increase in AP firing rate. When Ca(2+)m was reduced by Ru360, the increase in spontaneous AP firing rate in response to isoproterenol was reduced by 25%. Thus, both an increase in Ca(2+)m and an increase in Ca(2+) activated cAMP-PKA-CaMKII signaling regulate the increase in ATP supply to meet ATP demand above the basal level.The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca(2+)-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of SR Ca(2+) cycling and surface membrane ion channel proteins. When the throughput of this signaling increases, e.g., in response to β-adrenergic receptor activation, the resultant increase in spontaneous AP firing rate increases the demand for ATP. We hypothesized that an increase of ATP production to match the increased ATP demand is achieved via a direct effect of increased mitochondrial Ca(2+) (Ca(2+)m) and an indirect effect via enhanced Ca(2+)-cAMP/PKA-CaMKII signaling to mitochondria. To increase ATP demand, single isolated rabbit SANCs were superfused by physiological saline at 35 ± 0.5°C with isoproterenol, or by phosphodiesterase or protein phosphatase inhibition. We measured cytosolic and mitochondrial Ca(2+) and flavoprotein fluorescence in single SANC, and we measured cAMP, ATP, and O₂ consumption in SANC suspensions. Although the increase in spontaneous AP firing rate was accompanied by an increase in O₂ consumption, the ATP level and flavoprotein fluorescence remained constant, indicating that ATP production had increased. Both Ca(2+)m and cAMP increased concurrently with the increase in AP firing rate. When Ca(2+)m was reduced by Ru360, the increase in spontaneous AP firing rate in response to isoproterenol was reduced by 25%. Thus, both an increase in Ca(2+)m and an increase in Ca(2+) activated cAMP-PKA-CaMKII signaling regulate the increase in ATP supply to meet ATP demand above the basal level.
The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca(2+)-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of SR Ca(2+) cycling and surface membrane ion channel proteins. When the throughput of this signaling increases, e.g., in response to β-adrenergic receptor activation, the resultant increase in spontaneous AP firing rate increases the demand for ATP. We hypothesized that an increase of ATP production to match the increased ATP demand is achieved via a direct effect of increased mitochondrial Ca(2+) (Ca(2+)m) and an indirect effect via enhanced Ca(2+)-cAMP/PKA-CaMKII signaling to mitochondria. To increase ATP demand, single isolated rabbit SANCs were superfused by physiological saline at 35 ± 0.5°C with isoproterenol, or by phosphodiesterase or protein phosphatase inhibition. We measured cytosolic and mitochondrial Ca(2+) and flavoprotein fluorescence in single SANC, and we measured cAMP, ATP, and O₂ consumption in SANC suspensions. Although the increase in spontaneous AP firing rate was accompanied by an increase in O₂ consumption, the ATP level and flavoprotein fluorescence remained constant, indicating that ATP production had increased. Both Ca(2+)m and cAMP increased concurrently with the increase in AP firing rate. When Ca(2+)m was reduced by Ru360, the increase in spontaneous AP firing rate in response to isoproterenol was reduced by 25%. Thus, both an increase in Ca(2+)m and an increase in Ca(2+) activated cAMP-PKA-CaMKII signaling regulate the increase in ATP supply to meet ATP demand above the basal level.
Author Lyashkov, Alexey E
Spurgeon, Harold A
Yaniv, Yael
Lakatta, Edward G
Ziman, Bruce D
Author_xml – sequence: 1
  givenname: Yael
  surname: Yaniv
  fullname: Yaniv, Yael
  organization: Laboratory of Cardiovascular Science, Gerontology Research Center, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
– sequence: 2
  givenname: Harold A
  surname: Spurgeon
  fullname: Spurgeon, Harold A
– sequence: 3
  givenname: Bruce D
  surname: Ziman
  fullname: Ziman, Bruce D
– sequence: 4
  givenname: Alexey E
  surname: Lyashkov
  fullname: Lyashkov, Alexey E
– sequence: 5
  givenname: Edward G
  surname: Lakatta
  fullname: Lakatta, Edward G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23604710$$D View this record in MEDLINE/PubMed
BookMark eNpNUMtKw0AUHaRiH_oFgszSTeo8M82yFKtCRRd1J4R5tZmaTOLMZNG_N9IKchfncs-Dw52CkW-9BeAWoznGnDzIQ1dZGdIcoSIv5gRhcgEmA0MyzGkx-rePwTTGA0KIi5xegTGhOWICown4fLW6kt7FJsJUyQQbmXQFl9t3GPuuq48wtdDYRnoDnYdaBuOkhp3Uw-3LBqhtXUdo-uD8HlZuf_KeHNfgcifraG_OOAMf68ft6jnbvD29rJabTDNKU6ZYgZm2imOFtWELzpUViuZ2x9FAUMEQxpjuLDJUEs4KJRZC5kQrQZASmMzA_Sm3C-13b2MqGxd_i0lv2z6WmOYcDVMsBundWdqrxpqyC66R4Vj-fYT8AExeZT4
CitedBy_id crossref_primary_10_1016_j_exger_2017_12_015
crossref_primary_10_1016_j_hlc_2025_04_084
crossref_primary_10_1016_j_hrthm_2014_05_037
crossref_primary_10_1016_j_ceca_2018_12_008
crossref_primary_10_3389_fphys_2017_00584
crossref_primary_10_5483_BMBRep_2015_48_12_061
crossref_primary_10_1007_s11302_014_9436_1
crossref_primary_10_1091_mbc_E17_01_0041
crossref_primary_10_1113_jphysiol_2013_265090
crossref_primary_10_1016_j_yjmcc_2015_07_024
crossref_primary_10_3389_fphys_2020_00163
crossref_primary_10_1007_s00395_015_0468_7
crossref_primary_10_3390_ijms19082173
crossref_primary_10_1161_JAHA_118_009775
crossref_primary_10_1161_JAHA_118_009289
crossref_primary_10_3389_fphys_2016_00419
crossref_primary_10_1007_s12012_024_09931_9
crossref_primary_10_3389_fphys_2021_634816
crossref_primary_10_1111_acel_12483
crossref_primary_10_1016_j_yjmcc_2023_10_007
crossref_primary_10_3389_fphar_2014_00058
crossref_primary_10_3390_cells10113106
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/ajpheart.00969.2012
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1539
ExternalDocumentID 23604710
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
6J9
AAFWJ
ABJNI
ACBEA
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
CGR
CUY
CVF
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
NPM
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
UKR
W8F
WH7
WOQ
XSW
YSK
~02
7X8
ID FETCH-LOGICAL-c433t-b4914ceb51b1cd4855be7b36ef5014c37401113fe0d3a2549b787a62cb720b712
IEDL.DBID 7X8
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000319808200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1522-1539
IngestDate Fri Jul 11 08:34:55 EDT 2025
Thu Apr 03 06:56:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords bioenergetics
pacemaker automaticity
calcium-activated adenylyl cyclase
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-b4914ceb51b1cd4855be7b36ef5014c37401113fe0d3a2549b787a62cb720b712
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1152/ajpheart.00969.2012
PMID 23604710
PQID 1365050598
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1365050598
pubmed_primary_23604710
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of physiology. Heart and circulatory physiology
PublicationTitleAlternate Am J Physiol Heart Circ Physiol
PublicationYear 2013
References 18356168 - J Biol Chem. 2008 May 23;283(21):14461-8
9161982 - J Physiol. 1997 May 1;500 ( Pt 3):643-51
19325782 - Int J Mol Sci. 2008 May;9(5):751-67
9733088 - J Bioenerg Biomembr. 1998 Jun;30(3):207-22
21276796 - J Mol Cell Cardiol. 2011 Oct;51(4):468-73
20201896 - Ann N Y Acad Sci. 2010 Feb;1188:133-42
12878477 - J Mol Cell Cardiol. 2003 Aug;35(8):905-13
1638717 - Circulation. 1992 Aug;86(2):494-503
16043637 - Circulation. 2005 Aug 2;112(5):674-82
2912189 - Am J Physiol. 1989 Jan;256(1 Pt 2):H265-74
18375388 - J Biol Chem. 2008 May 30;283(22):15063-71
22022409 - PLoS One. 2011;6(10):e25539
23459256 - PLoS One. 2013;8(2):e57079
23243207 - Circ Res. 2013 Feb 1;112(3):424-31
22886415 - Am J Physiol Heart Circ Physiol. 2012 Oct 15;303(8):H940-66
20547682 - J Physiol. 2010 Aug 15;588(Pt 16):2987-98
7537039 - Biochem Biophys Res Commun. 1995 Apr 6;209(1):213-7
3403540 - J Biol Chem. 1988 Aug 15;263(23):11498-503
17540702 - J Physiol. 2007 Aug 1;582(Pt 3):1195-203
21978991 - J Cardiovasc Pharmacol. 2011 Oct;58(4):339-44
22666369 - PLoS One. 2012;7(5):e37582
16778127 - Circ Res. 2006 Jul 21;99(2):172-82
23077656 - PLoS One. 2012;7(10):e47652
18599868 - Circ Res. 2008 Aug 1;103(3):279-88
3704638 - Science. 1986 May 30;232(4754):1121-3
7775334 - J Appl Physiol (1985). 1995 Mar;78(3):890-900
19345225 - J Mol Cell Cardiol. 2009 Jun;46(6):1027-36
19289071 - Biophys J. 2009 Mar 18;96(6):2466-78
21937057 - J Electrocardiol. 2011 Nov-Dec;44(6):626-34
16410283 - J Physiol. 2006 Mar 1;571(Pt 2):253-73
20203315 - Circ Res. 2010 Mar 5;106(4):659-73
17467631 - Heart Rhythm. 2007 May;4(5):619-26
21835182 - J Mol Cell Cardiol. 2011 Nov;51(5):740-8
10200426 - J Physiol. 1999 May 1;516 ( Pt 3):793-804
18276917 - Circ Res. 2008 Apr 11;102(7):761-9
22201686 - J Clin Invest. 2012 Jan;122(1):291-302
2309919 - Am J Physiol. 1990 Feb;258(2 Pt 2):H574-86
10974216 - Cardiovasc Res. 2000 Sep;47(4):658-87
19249308 - J Mol Cell Cardiol. 2009 Jun;46(6):891-901
7587239 - Crit Care Med. 1995 Oct;23(10):1726-33
17525366 - Circ Res. 2007 Jun 22;100(12):1723-31
References_xml – reference: 22886415 - Am J Physiol Heart Circ Physiol. 2012 Oct 15;303(8):H940-66
– reference: 19345225 - J Mol Cell Cardiol. 2009 Jun;46(6):1027-36
– reference: 19249308 - J Mol Cell Cardiol. 2009 Jun;46(6):891-901
– reference: 20201896 - Ann N Y Acad Sci. 2010 Feb;1188:133-42
– reference: 7775334 - J Appl Physiol (1985). 1995 Mar;78(3):890-900
– reference: 20547682 - J Physiol. 2010 Aug 15;588(Pt 16):2987-98
– reference: 19325782 - Int J Mol Sci. 2008 May;9(5):751-67
– reference: 16778127 - Circ Res. 2006 Jul 21;99(2):172-82
– reference: 9161982 - J Physiol. 1997 May 1;500 ( Pt 3):643-51
– reference: 19289071 - Biophys J. 2009 Mar 18;96(6):2466-78
– reference: 18599868 - Circ Res. 2008 Aug 1;103(3):279-88
– reference: 23459256 - PLoS One. 2013;8(2):e57079
– reference: 22201686 - J Clin Invest. 2012 Jan;122(1):291-302
– reference: 7537039 - Biochem Biophys Res Commun. 1995 Apr 6;209(1):213-7
– reference: 23243207 - Circ Res. 2013 Feb 1;112(3):424-31
– reference: 3403540 - J Biol Chem. 1988 Aug 15;263(23):11498-503
– reference: 12878477 - J Mol Cell Cardiol. 2003 Aug;35(8):905-13
– reference: 2912189 - Am J Physiol. 1989 Jan;256(1 Pt 2):H265-74
– reference: 17540702 - J Physiol. 2007 Aug 1;582(Pt 3):1195-203
– reference: 18375388 - J Biol Chem. 2008 May 30;283(22):15063-71
– reference: 23077656 - PLoS One. 2012;7(10):e47652
– reference: 2309919 - Am J Physiol. 1990 Feb;258(2 Pt 2):H574-86
– reference: 17467631 - Heart Rhythm. 2007 May;4(5):619-26
– reference: 1638717 - Circulation. 1992 Aug;86(2):494-503
– reference: 10974216 - Cardiovasc Res. 2000 Sep;47(4):658-87
– reference: 7587239 - Crit Care Med. 1995 Oct;23(10):1726-33
– reference: 10200426 - J Physiol. 1999 May 1;516 ( Pt 3):793-804
– reference: 18356168 - J Biol Chem. 2008 May 23;283(21):14461-8
– reference: 17525366 - Circ Res. 2007 Jun 22;100(12):1723-31
– reference: 21835182 - J Mol Cell Cardiol. 2011 Nov;51(5):740-8
– reference: 20203315 - Circ Res. 2010 Mar 5;106(4):659-73
– reference: 18276917 - Circ Res. 2008 Apr 11;102(7):761-9
– reference: 16043637 - Circulation. 2005 Aug 2;112(5):674-82
– reference: 21978991 - J Cardiovasc Pharmacol. 2011 Oct;58(4):339-44
– reference: 22022409 - PLoS One. 2011;6(10):e25539
– reference: 22666369 - PLoS One. 2012;7(5):e37582
– reference: 16410283 - J Physiol. 2006 Mar 1;571(Pt 2):253-73
– reference: 21276796 - J Mol Cell Cardiol. 2011 Oct;51(4):468-73
– reference: 21937057 - J Electrocardiol. 2011 Nov-Dec;44(6):626-34
– reference: 3704638 - Science. 1986 May 30;232(4754):1121-3
– reference: 9733088 - J Bioenerg Biomembr. 1998 Jun;30(3):207-22
SSID ssj0005763
Score 2.2311082
Snippet The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca(2+)-calmodulin activated adenylyl...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage H1428
SubjectTerms Adenosine Triphosphate - metabolism
Animals
Biological Clocks - physiology
Calcium Signaling - physiology
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - physiology
Cell Separation
Cyclic AMP - metabolism
Cyclic AMP-Dependent Protein Kinases - physiology
Cytosol - metabolism
Flavoproteins - metabolism
Heart - physiology
Heart Rate - physiology
In Vitro Techniques
Mitochondria, Heart - metabolism
Mitochondria, Heart - physiology
Myocardial Contraction - physiology
Myocardium - cytology
Myocardium - metabolism
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - physiology
Oxygen Consumption - physiology
Phosphoprotein Phosphatases - antagonists & inhibitors
Rabbits
Receptors, Adrenergic, beta - physiology
Respiratory Rate - physiology
Title Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand
URI https://www.ncbi.nlm.nih.gov/pubmed/23604710
https://www.proquest.com/docview/1365050598
Volume 304
WOSCitedRecordID wos000319808200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UinhxaV3qxgjibWySyXqSIhYvLT1U6EEIs4VWaVqbKPTf-94kpSdB8BLIMjBM3pv53voRcqfBRIiNBjPVZDHzVRCwhCuP6TARQoFFxI22ZBPRYBCPx8mwdrgVdVrlek-0G7WeK_SRdzAdC1nXkvhx8cmQNQqjqzWFxjZpcIAyKNXReNMtHLC0TbAHjMFAs5O66xDcd8T7AhmjywfE8FiwgpSUv2FMe9b0Dv87yyNyUKNM2q3E4phsmbxJWt0cLOzZit5Tm_dpHepNstevw-st8tY3WAg8LWYFLSeipABn1YR2R0NaIPvnipZzqs1M5JpOc6qsdCkKZjc8-zBLimGAglaljxQ7Idux1YgT8tp7Hj29sJp-gSmf85JJP3F9ZWTgSldpbCIjTSR5aDKMRSqOXH6uyzPjaC7QzpSg_CL0lIw8R0aud0p28nluzgnNhB9mgLwyeA3fBSLwktgRRiutHOPxNrldL2cK4o2TFbmZfxXpZkHb5Kz6J-mi6sORejx04Gx1Lv4w-pLsexWRBXPcK9LIQLnNNdlV3-W0WN5YuYHrYNj_AZaDzJ8
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+that+match+ATP+supply+to+demand+in+cardiac+pacemaker+cells+during+high+ATP+demand&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Yaniv%2C+Yael&rft.au=Spurgeon%2C+Harold+A&rft.au=Ziman%2C+Bruce+D&rft.au=Lyashkov%2C+Alexey+E&rft.date=2013-06-01&rft.issn=1522-1539&rft.eissn=1522-1539&rft.volume=304&rft.issue=11&rft.spage=H1428&rft_id=info:doi/10.1152%2Fajpheart.00969.2012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-1539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-1539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-1539&client=summon