Explainable Artificial Intelligence (XAI) Model for Earthquake Spatial Probability Assessment in Arabian Peninsula

Among all the natural hazards, earthquake prediction is an arduous task. Although many studies have been published on earthquake hazard assessment (EHA), very few have been published on the use of artificial intelligence (AI) in spatial probability assessment (SPA). There is a great deal of complexi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 15; H. 9; S. 2248
Hauptverfasser: Jena, Ratiranjan, Shanableh, Abdallah, Al-Ruzouq, Rami, Pradhan, Biswajeet, Gibril, Mohamed Barakat A., Khalil, Mohamad Ali, Ghorbanzadeh, Omid, Ganapathy, Ganapathy Pattukandan, Ghamisi, Pedram
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 24.04.2023
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Among all the natural hazards, earthquake prediction is an arduous task. Although many studies have been published on earthquake hazard assessment (EHA), very few have been published on the use of artificial intelligence (AI) in spatial probability assessment (SPA). There is a great deal of complexity observed in the SPA modeling process due to the involvement of seismological to geophysical factors. Recent studies have shown that the insertion of certain integrated factors such as ground shaking, seismic gap, and tectonic contacts in the AI model improves accuracy to a great extent. Because of the black-box nature of AI models, this paper explores the use of an explainable artificial intelligence (XAI) model in SPA. This study aims to develop a hybrid Inception v3-ensemble extreme gradient boosting (XGBoost) model and shapely additive explanations (SHAP). The model would efficiently interpret and recognize factors’ behavior and their weighted contribution. The work explains the specific factors responsible for and their importance in SPA. The earthquake inventory data were collected from the US Geological Survey (USGS) for the past 22 years ranging the magnitudes from 5 Mw and above. Landsat-8 satellite imagery and digital elevation model (DEM) data were also incorporated in the analysis. Results revealed that the SHAP outputs align with the hybrid Inception v3-XGBoost model (87.9% accuracy) explanations, thus indicating the necessity to add new factors such as seismic gaps and tectonic contacts, where the absence of these factors makes the prediction model performs poorly. According to SHAP interpretations, peak ground accelerations (PGA), magnitude variation, seismic gap, and epicenter density are the most critical factors for SPA. The recent Turkey earthquakes (Mw 7.8, 7.5, and 6.7) due to the active east Anatolian fault validate the obtained AI-based earthquake SPA results. The conclusions drawn from the explainable algorithm depicted the importance of relevant, irrelevant, and new futuristic factors in AI-based SPA modeling.
AbstractList Among all the natural hazards, earthquake prediction is an arduous task. Although many studies have been published on earthquake hazard assessment (EHA), very few have been published on the use of artificial intelligence (AI) in spatial probability assessment (SPA). There is a great deal of complexity observed in the SPA modeling process due to the involvement of seismological to geophysical factors. Recent studies have shown that the insertion of certain integrated factors such as ground shaking, seismic gap, and tectonic contacts in the AI model improves accuracy to a great extent. Because of the black-box nature of AI models, this paper explores the use of an explainable artificial intelligence (XAI) model in SPA. This study aims to develop a hybrid Inception v3-ensemble extreme gradient boosting (XGBoost) model and shapely additive explanations (SHAP). The model would efficiently interpret and recognize factors’ behavior and their weighted contribution. The work explains the specific factors responsible for and their importance in SPA. The earthquake inventory data were collected from the US Geological Survey (USGS) for the past 22 years ranging the magnitudes from 5 Mw and above. Landsat-8 satellite imagery and digital elevation model (DEM) data were also incorporated in the analysis. Results revealed that the SHAP outputs align with the hybrid Inception v3-XGBoost model (87.9% accuracy) explanations, thus indicating the necessity to add new factors such as seismic gaps and tectonic contacts, where the absence of these factors makes the prediction model performs poorly. According to SHAP interpretations, peak ground accelerations (PGA), magnitude variation, seismic gap, and epicenter density are the most critical factors for SPA. The recent Turkey earthquakes (Mw 7.8, 7.5, and 6.7) due to the active east Anatolian fault validate the obtained AI-based earthquake SPA results. The conclusions drawn from the explainable algorithm depicted the importance of relevant, irrelevant, and new futuristic factors in AI-based SPA modeling.
Among all the natural hazards, earthquake prediction is an arduous task. Although many studies have been published on earthquake hazard assessment (EHA), very few have been published on the use of artificial intelligence (AI) in spatial probability assessment (SPA). There is a great deal of complexity observed in the SPA modeling process due to the involvement of seismological to geophysical factors. Recent studies have shown that the insertion of certain integrated factors such as ground shaking, seismic gap, and tectonic contacts in the AI model improves accuracy to a great extent. Because of the black-box nature of AI models, this paper explores the use of an explainable artificial intelligence (XAI) model in SPA. This study aims to develop a hybrid Inception v3-ensemble extreme gradient boosting (XGBoost) model and shapely additive explanations (SHAP). The model would efficiently interpret and recognize factors’ behavior and their weighted contribution. The work explains the specific factors responsible for and their importance in SPA. The earthquake inventory data were collected from the US Geological Survey (USGS) for the past 22 years ranging the magnitudes from 5 M[sub.w] and above. Landsat-8 satellite imagery and digital elevation model (DEM) data were also incorporated in the analysis. Results revealed that the SHAP outputs align with the hybrid Inception v3-XGBoost model (87.9% accuracy) explanations, thus indicating the necessity to add new factors such as seismic gaps and tectonic contacts, where the absence of these factors makes the prediction model performs poorly. According to SHAP interpretations, peak ground accelerations (PGA), magnitude variation, seismic gap, and epicenter density are the most critical factors for SPA. The recent Turkey earthquakes (M[sub.w] 7.8, 7.5, and 6.7) due to the active east Anatolian fault validate the obtained AI-based earthquake SPA results. The conclusions drawn from the explainable algorithm depicted the importance of relevant, irrelevant, and new futuristic factors in AI-based SPA modeling.
Audience Academic
Author Pradhan, Biswajeet
Ghamisi, Pedram
Shanableh, Abdallah
Al-Ruzouq, Rami
Ghorbanzadeh, Omid
Jena, Ratiranjan
Khalil, Mohamad Ali
Gibril, Mohamed Barakat A.
Ganapathy, Ganapathy Pattukandan
Author_xml – sequence: 1
  givenname: Ratiranjan
  orcidid: 0000-0002-6180-4673
  surname: Jena
  fullname: Jena, Ratiranjan
– sequence: 2
  givenname: Abdallah
  orcidid: 0000-0002-9808-4120
  surname: Shanableh
  fullname: Shanableh, Abdallah
– sequence: 3
  givenname: Rami
  orcidid: 0000-0001-7111-0061
  surname: Al-Ruzouq
  fullname: Al-Ruzouq, Rami
– sequence: 4
  givenname: Biswajeet
  orcidid: 0000-0001-9863-2054
  surname: Pradhan
  fullname: Pradhan, Biswajeet
– sequence: 5
  givenname: Mohamed Barakat A.
  orcidid: 0000-0002-6465-6231
  surname: Gibril
  fullname: Gibril, Mohamed Barakat A.
– sequence: 6
  givenname: Mohamad Ali
  orcidid: 0000-0002-3338-0092
  surname: Khalil
  fullname: Khalil, Mohamad Ali
– sequence: 7
  givenname: Omid
  orcidid: 0000-0002-9664-8770
  surname: Ghorbanzadeh
  fullname: Ghorbanzadeh, Omid
– sequence: 8
  givenname: Ganapathy Pattukandan
  orcidid: 0000-0002-3356-6508
  surname: Ganapathy
  fullname: Ganapathy, Ganapathy Pattukandan
– sequence: 9
  givenname: Pedram
  orcidid: 0000-0003-1203-741X
  surname: Ghamisi
  fullname: Ghamisi, Pedram
BookMark eNptkV9rFDEUxQepYK198RMEfKnC1kz-TDKPS1ntQsWCCr6FO5mbNWs22SYz0H57s11RKSYPN1x-91xOzsvmJKaITfO6pZec9_R9Lq2kPWNCP2tOGVVsIVjPTv55v2jOS9nSejhveypOm7y63wfwEYaAZJkn77z1EMg6ThiC32C0SC6-L9dvyac0YiAuZbKCPP24m-Enki97mA78bU4DDD746YEsS8FSdhgn4mMVrX2I5Bajj2UO8Kp57iAUPP9dz5pvH1Zfr64XN58_rq-WNwsrOJ8WoLGXPdBulKDHQxGK8Y5Kicoxx6hoOcOu1Vpx6AahnaV6tBLU0Enkjp8166PumGBr9tnvID-YBN48NlLemOrD24BmRAZadEpyBcKObGBIoUXNGO3bHruqdXHU2ud0N2OZzM4XW38IIqa5GE4FFawTVFb0zRN0m-Ycq1PDdMsUZ4qySl0eqQ3U_T66NGWw9Y6487bm6nztL5WkHRc9p3Xg3XHA5lRKRvfHUUvNIX7zN_4K0yew9VMNKsW6xYf_jfwCYpaxtg
CitedBy_id crossref_primary_10_1016_j_ijdrr_2023_104123
crossref_primary_10_1007_s41062_025_01937_8
crossref_primary_10_1016_j_aeolia_2024_100924
crossref_primary_10_1007_s13369_025_10017_z
crossref_primary_10_1016_j_envpol_2023_123082
crossref_primary_10_1016_j_enbuild_2025_115815
crossref_primary_10_1007_s11069_025_07139_w
crossref_primary_10_1007_s41651_024_00184_2
crossref_primary_10_3390_app14198884
crossref_primary_10_1109_MGRS_2024_3467001
crossref_primary_10_1007_s11069_025_07520_9
crossref_primary_10_1016_j_asoc_2025_113406
crossref_primary_10_1016_j_rsase_2023_101004
crossref_primary_10_1007_s11356_024_35521_x
crossref_primary_10_1016_j_asr_2024_05_045
crossref_primary_10_1038_s41598_024_76483_x
crossref_primary_10_1038_s41598_024_70125_y
crossref_primary_10_1109_ACCESS_2024_3438556
crossref_primary_10_5194_nhess_24_4237_2024
Cites_doi 10.3390/geosciences9070308
10.1007/s11069-012-0232-3
10.1016/j.ijdrr.2021.102631
10.3389/feart.2019.00136
10.4209/aaqr.2019.08.0408
10.14311/NNW.2018.28.009
10.1109/ICCVW.2019.00516
10.1038/s41467-019-11958-4
10.1016/j.compchemeng.2021.107470
10.1016/j.scitotenv.2019.07.203
10.1002/0470869356
10.1029/2003JB002437
10.3390/su10103376
10.1111/j.1365-246X.2012.05520.x
10.1007/s11069-012-0412-1
10.3390/rs10060975
10.18702/acf.2022.6.8.1.51
10.1029/2004JB003190
10.1007/s11676-017-0452-1
10.1007/s00024-018-2033-4
10.3390/s21134489
10.1016/j.jafrearsci.2015.05.011
10.1016/j.jobe.2020.101689
10.1007/s10950-015-9522-z
10.1193/1.1585773
10.1080/1365881031000114071
10.3390/s20164369
10.1016/j.gsf.2019.07.006
10.1073/pnas.39.10.1095
10.1016/j.jseaes.2017.07.033
10.1007/s11069-016-2579-3
10.1007/s11069-016-2712-3
10.3390/ijgi9070430
10.1080/13632460209350432
10.1029/2011JB008966
10.1007/s10706-005-1148-4
10.1155/2021/2577375
10.1016/j.istruc.2021.08.088
10.1177/0013916581134001
10.1016/j.gsf.2020.11.007
10.1007/978-1-4842-5669-5
10.1130/0091-7613(1977)5<664:MOIAPA>2.0.CO;2
10.1785/0120050210
10.1109/MIS.2020.2972533
10.1016/j.enggeo.2017.09.004
10.1111/j.1365-246X.2004.02222.x
10.1029/2009TC002482
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15092248
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Collection (ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_de2a8467537a4cd2b2e0a1e8220919e6
A750634930
10_3390_rs15092248
GeographicLocations United Arab Emirates
Saudi Arabia
Arabian Peninsula
Iran
Gulf of Aden
Red Sea
Gulf of Aqaba
Indonesia
Dead Sea
GeographicLocations_xml – name: United Arab Emirates
– name: Saudi Arabia
– name: Arabian Peninsula
– name: Iran
– name: Dead Sea
– name: Red Sea
– name: Indonesia
– name: Gulf of Aden
– name: Gulf of Aqaba
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-a8e959a06d5a8d06d547236055e7f2f204132e618873a6b48fc08dc5a7b65e3f3
IEDL.DBID DOA
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000988185400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:53:49 EDT 2025
Fri Sep 05 07:25:17 EDT 2025
Fri Jul 25 11:58:24 EDT 2025
Tue Nov 04 18:16:28 EST 2025
Tue Nov 18 22:02:32 EST 2025
Sat Nov 29 07:15:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-a8e959a06d5a8d06d547236055e7f2f204132e618873a6b48fc08dc5a7b65e3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9863-2054
0000-0002-3356-6508
0000-0001-7111-0061
0000-0002-9664-8770
0000-0002-6465-6231
0000-0002-3338-0092
0000-0002-6180-4673
0000-0003-1203-741X
0000-0002-9808-4120
OpenAccessLink https://doaj.org/article/de2a8467537a4cd2b2e0a1e8220919e6
PQID 2812732702
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_de2a8467537a4cd2b2e0a1e8220919e6
proquest_miscellaneous_3040426405
proquest_journals_2812732702
gale_infotracacademiconefile_A750634930
crossref_primary_10_3390_rs15092248
crossref_citationtrail_10_3390_rs15092248
PublicationCentury 2000
PublicationDate 2023-04-24
PublicationDateYYYYMMDD 2023-04-24
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-24
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Deif (ref_25) 2012; 64
ref_58
ref_13
ref_12
ref_56
ref_55
Jackson (ref_4) 1981; 13
Babiker (ref_26) 2015; 109
ref_51
Khan (ref_30) 2022; 8
Chen (ref_52) 2015; 1
Siddiqi (ref_18) 1995; 7
Sakellariou (ref_41) 2017; 28
Yanilmaz (ref_1) 2021; 66
Asim (ref_60) 2017; 85
ref_59
Jena (ref_15) 2020; 11
Bommer (ref_6) 2002; 6
Wason (ref_40) 2012; 190
Somala (ref_57) 2021; 34
Dhar (ref_47) 2017; 86
Deif (ref_22) 2019; 176
Zebardast (ref_44) 2013; 65
ref_21
Rashed (ref_46) 2003; 17
Beyer (ref_37) 2006; 96
Huang (ref_61) 2018; 28
Fenton (ref_38) 2006; 24
ref_28
Soe (ref_45) 2009; 1
Huijer (ref_27) 2016; 20
Li (ref_53) 2020; 35
Shcherbakov (ref_10) 2019; 10
Magrin (ref_7) 2017; 229
Pourghasemi (ref_16) 2019; 692
ref_34
Deif (ref_35) 2017; 147
Ramaneswaran (ref_50) 2021; 2021
Allen (ref_19) 2004; 23
Hardebeck (ref_8) 2004; 109
Wenzel (ref_11) 2019; 7
Ma (ref_54) 2020; 20
Vernant (ref_20) 2004; 157
Khan (ref_29) 2020; 32
Shapley (ref_33) 1953; 39
Bulut (ref_23) 2012; 117
Parsons (ref_9) 2005; 110
Irwandi (ref_32) 2017; Volume 56
Bommer (ref_24) 2009; 3
Siddiqi (ref_17) 1994; 10
ref_43
ref_42
Jena (ref_14) 2021; 12
ref_3
Chakraborty (ref_31) 2021; 154
ref_2
ArRajehi (ref_39) 2010; 29
ref_49
ref_48
ref_5
Farhoudi (ref_36) 1977; 5
References_xml – ident: ref_12
  doi: 10.3390/geosciences9070308
– volume: 64
  start-page: 173
  year: 2012
  ident: ref_25
  article-title: Probabilistic Seismic Hazard Maps for the Sultanate of Oman
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0232-3
– volume: 66
  start-page: 102631
  year: 2021
  ident: ref_1
  article-title: Extension of FEMA and SMUG Models with Bayesian Best-Worst Method for Disaster Risk Reduction
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2021.102631
– volume: 7
  start-page: 136
  year: 2019
  ident: ref_11
  article-title: Global Megathrust Earthquake Hazard—Maximum Magnitude Assessment Using Multi-Variate Machine Learning
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2019.00136
– volume: 20
  start-page: 128
  year: 2020
  ident: ref_54
  article-title: Application of the XGBoost Machine Learning Method in PM2. 5 Prediction: A Case Study of Shanghai
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2019.08.0408
– ident: ref_55
– volume: 28
  start-page: 149
  year: 2018
  ident: ref_61
  article-title: Large Earthquake Magnitude Prediction in Taiwan Based on Deep Learning Neural Network
  publication-title: Neural Netw. World
  doi: 10.14311/NNW.2018.28.009
– ident: ref_34
  doi: 10.1109/ICCVW.2019.00516
– volume: 10
  start-page: 4051
  year: 2019
  ident: ref_10
  article-title: Forecasting the Magnitude of the Largest Expected Earthquake
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11958-4
– volume: 154
  start-page: 107470
  year: 2021
  ident: ref_31
  article-title: AI-DARWIN: A First Principles-Based Model Discovery Engine Using Machine Learning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107470
– volume: 692
  start-page: 556
  year: 2019
  ident: ref_16
  article-title: Multi-Hazard Probability Assessment and Mapping in Iran
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.203
– volume: 3
  start-page: 1
  year: 2009
  ident: ref_24
  article-title: Probabilistic Seismic Hazard Analysis for Rock Sites in the Cities of Abu Dhabi, Dubai and Ra’s Al Khaymah, United Arab Emirates
  publication-title: Georisk
– ident: ref_5
  doi: 10.1002/0470869356
– volume: 109
  start-page: B04310
  year: 2004
  ident: ref_8
  article-title: Stress Triggering and Earthquake Probability Estimates
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2003JB002437
– ident: ref_42
  doi: 10.3390/su10103376
– volume: 190
  start-page: 1091
  year: 2012
  ident: ref_40
  article-title: Magnitude Conversion Problem Using General Orthogonal Regression
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2012.05520.x
– volume: 1
  start-page: 29
  year: 2009
  ident: ref_45
  article-title: Remote Sensing and GIS Based Approach for Earthquake Probability Map: A Case Study of the Northern Sagaing Fault Area, Myanmar
  publication-title: J. Geol. Soc. Thail
– volume: 65
  start-page: 1331
  year: 2013
  ident: ref_44
  article-title: Constructing a Social Vulnerability Index to Earthquake Hazards Using a Hybrid Factor Analysis and Analytic Network Process (F’ANP) Model
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0412-1
– ident: ref_48
  doi: 10.3390/rs10060975
– ident: ref_56
– volume: 1
  start-page: 1
  year: 2015
  ident: ref_52
  article-title: Xgboost: Extreme Gradient Boosting
  publication-title: R Packag. Version 0.6-4
– volume: 8
  start-page: 51
  year: 2022
  ident: ref_30
  article-title: Comparative Study of Advanced Computational Techniques for Estimating the Compressive Strength of UHPC
  publication-title: J. Asian Concr. Fed.
  doi: 10.18702/acf.2022.6.8.1.51
– volume: 110
  start-page: B05S02
  year: 2005
  ident: ref_9
  article-title: Significance of Stress Transfer in Time-dependent Earthquake Probability Calculations
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2004JB003190
– volume: 28
  start-page: 1107
  year: 2017
  ident: ref_41
  article-title: Review of State-of-the-Art Decision Support Systems (DSSs) for Prevention and Suppression of Forest Fires
  publication-title: J. For. Res.
  doi: 10.1007/s11676-017-0452-1
– volume: 176
  start-page: 1503
  year: 2019
  ident: ref_22
  article-title: Probabilistic Seismic Hazard Assessment for the Arabian Peninsula
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-018-2033-4
– ident: ref_58
  doi: 10.3390/s21134489
– volume: 109
  start-page: 168
  year: 2015
  ident: ref_26
  article-title: A Unified Mw-Based Earthquake Catalogue and Seismic Source Zones for the Red Sea Region
  publication-title: J. Afr. Earth Sci.
  doi: 10.1016/j.jafrearsci.2015.05.011
– volume: 32
  start-page: 101689
  year: 2020
  ident: ref_29
  article-title: Optimization of Concrete Stiffeners for Confined Brick Masonry Structures
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101689
– ident: ref_59
– ident: ref_28
– volume: 20
  start-page: 233
  year: 2016
  ident: ref_27
  article-title: Re-Evaluation and Updating of the Seismic Hazard of Lebanon
  publication-title: J. Seismol.
  doi: 10.1007/s10950-015-9522-z
– volume: 10
  start-page: 231
  year: 1994
  ident: ref_17
  article-title: A Basis for Evaluation of Seismic Hazard and Design Criteria for Saudi Arabia
  publication-title: Earthq. Spectra
  doi: 10.1193/1.1585773
– volume: 23
  start-page: TC2008
  year: 2004
  ident: ref_19
  article-title: Late Cenozoic Reorganization of the Arabia-Eurasia Collision and the Comparison of Short-term and Long-term Deformation Rates
  publication-title: Tectonics
– ident: ref_3
– volume: 17
  start-page: 547
  year: 2003
  ident: ref_46
  article-title: Assessing Vulnerability to Earthquake Hazards through Spatial Multicriteria Analysis of Urban Areas
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/1365881031000114071
– ident: ref_13
  doi: 10.3390/s20164369
– volume: 11
  start-page: 613
  year: 2020
  ident: ref_15
  article-title: Integrated Model for Earthquake Risk Assessment Using Neural Network and Analytic Hierarchy Process: Aceh Province, Indonesia
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2019.07.006
– volume: 39
  start-page: 1095
  year: 1953
  ident: ref_33
  article-title: Stochastic Games
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.39.10.1095
– volume: 147
  start-page: 345
  year: 2017
  ident: ref_35
  article-title: Compiling an Earthquake Catalogue for the Arabian Plate, Western Asia
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2017.07.033
– volume: 85
  start-page: 471
  year: 2017
  ident: ref_60
  article-title: Earthquake Magnitude Prediction in Hindukush Region Using Machine Learning Techniques
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2579-3
– volume: 86
  start-page: 695
  year: 2017
  ident: ref_47
  article-title: Estimation of Seismic Hazard in Odisha by Remote Sensing and GIS Techniques
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2712-3
– ident: ref_49
  doi: 10.3390/ijgi9070430
– volume: 6
  start-page: 43
  year: 2002
  ident: ref_6
  article-title: Deterministic vs. Probabilistic Seismic Hazard Assessment: An Exaggerated and Obstructive Dichotomy
  publication-title: J. Earthq. Eng.
  doi: 10.1080/13632460209350432
– volume: 117
  start-page: 7304
  year: 2012
  ident: ref_23
  article-title: The East Anatolian Fault Zone: Seismotectonic Setting and Spatiotemporal Characteristics of Seismicity Based on Precise Earthquake Locations
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2011JB008966
– volume: 24
  start-page: 579
  year: 2006
  ident: ref_38
  article-title: Seismic Hazards Assessment for Radioactive Waste Disposal Sites in Regions of Low Seismic Activity
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-005-1148-4
– ident: ref_21
– volume: 2021
  start-page: 2577375
  year: 2021
  ident: ref_50
  article-title: Hybrid Inception v3 XGBoost Model for Acute Lymphoblastic Leukemia Classification
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/2577375
– volume: 34
  start-page: 1560
  year: 2021
  ident: ref_57
  article-title: Time Period Estimation of Masonry Infilled RC Frames Using Machine Learning Techniques
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.08.088
– volume: 13
  start-page: 387
  year: 1981
  ident: ref_4
  article-title: Response to Earthquake Hazard: The West Coast of North America
  publication-title: Environ. Behav.
  doi: 10.1177/0013916581134001
– volume: 12
  start-page: 101110
  year: 2021
  ident: ref_14
  article-title: Earthquake Risk Assessment in NE India Using Deep Learning and Geospatial Analysis
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.11.007
– ident: ref_51
  doi: 10.1007/978-1-4842-5669-5
– volume: 5
  start-page: 664
  year: 1977
  ident: ref_36
  article-title: Makran of Iran and Pakistan as an Active Arc System
  publication-title: Geology
  doi: 10.1130/0091-7613(1977)5<664:MOIAPA>2.0.CO;2
– volume: 96
  start-page: 1512
  year: 2006
  ident: ref_37
  article-title: Relationships between Median Values and between Aleatory Variabilities for Different Definitions of the Horizontal Component of Motion
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/0120050210
– volume: 35
  start-page: 52
  year: 2020
  ident: ref_53
  article-title: XGBoost Model and Its Application to Personal Credit Evaluation
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2020.2972533
– ident: ref_2
– volume: 229
  start-page: 95
  year: 2017
  ident: ref_7
  article-title: Neo-Deterministic Seismic Hazard Assessment and Earthquake Occurrence Rate
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2017.09.004
– volume: 157
  start-page: 381
  year: 2004
  ident: ref_20
  article-title: Present-Day Crustal Deformation and Plate Kinematics in the Middle East Constrained by GPS Measurements in Iran and Northern Oman
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2004.02222.x
– ident: ref_43
– volume: Volume 56
  start-page: 12007
  year: 2017
  ident: ref_32
  article-title: Advantages of Realistic Model Based on Computational Method: NDSHA versus Standard PSHA
  publication-title: Proceedings of the IOP Conference Series: Earth and Environmental Science
– volume: 7
  start-page: 25
  year: 1995
  ident: ref_18
  article-title: Seismic Design Recommendations for Building Structures in Saudi Arabia
  publication-title: J. King Saud Univ. Sci.
– volume: 29
  start-page: TC3011
  year: 2010
  ident: ref_39
  article-title: Geodetic Constraints on Present-day Motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden Rifting
  publication-title: Tectonics
  doi: 10.1029/2009TC002482
SSID ssj0000331904
Score 2.4410758
Snippet Among all the natural hazards, earthquake prediction is an arduous task. Although many studies have been published on earthquake hazard assessment (EHA), very...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2248
SubjectTerms Accuracy
Algorithms
Arabian peninsula
Artificial intelligence
Comparative analysis
Deep learning
Digital Elevation Models
Digital imaging
Earthquake prediction
earthquake spatial probability assessment
Earthquakes
Explainable artificial intelligence
Fault lines
Geological hazards
Geological surveys
geophysics
GIS
Hazard assessment
hazard characterization
hybrids
inception v3-XGBoost
inventories
Landsat
Landsat satellites
Machine learning
Model accuracy
Modelling
Neural networks
prediction
Prediction models
Probability
probability analysis
Remote sensing
Satellite imagery
Seismic activity
Seismic hazard
Seismology
Shaking
Tectonics
Turkey (country)
United States Geological Survey
XAI
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEA5aBX3xt7haJaKgfViazY_d5ElOabEv5UCFewvZJNsWy167eyf0v3cml9sqqC8-HewNS5aZzHxJJt9HyNsWqrLwvAMPNLyUQZnSiShKo73mVdd0PIQkNtEcH-vFwszzhtuY2yq3OTEl6rD0uEe-z6ESNQJvT324uCxRNQpPV7OExk1yC1kSqtS692XaY2ECAozJDSupgNX9_jACADJQtvRvdSjR9f8tKadKc3j_f8f4gNzLGJPONkHxkNyI_SNyJ8udn149JgN23uVrU8lsQyNBj37h56TvF7OjPYpaaecUkC09gCA7vVy775GijjHazwfIBqm79orOJopPetbDSx2SmdN57FO3u3tCvh0efP30ucziC6WXQqxKp6NRxrE6KKcD_siGC1j8qAgO7DiD6sdjXUGSEq5upe4808Er17S1iqITT8lOv-zjM0IBA1XSCyPr2MjYahgZayESAHupzstYkL2tK6zPzOQokHFuYYWCbrPXbivIm8n2YsPH8Uerj-jRyQI5tNOD5XBi85S0IXKH6EuJxkkfeMsjc1UExAQYysS6IO8wHizOdBiOd_nCAnwUcmbZGYCtWkgjWEF2t_FgcwoY7XUwFOT19DdMXjyRcX1crkcrIIUiJGXq-b9f8YLcRZ17PMbicpfsrIZ1fElu-x-rs3F4laL-J8YVCrs
  priority: 102
  providerName: ProQuest
Title Explainable Artificial Intelligence (XAI) Model for Earthquake Spatial Probability Assessment in Arabian Peninsula
URI https://www.proquest.com/docview/2812732702
https://www.proquest.com/docview/3040426405
https://doaj.org/article/de2a8467537a4cd2b2e0a1e8220919e6
Volume 15
WOSCitedRecordID wos000988185400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlKbSXkL6ok3RRaaHNwUSrhyUdN2VD99DF9AHbXoQsyyQ0OI13t5BLf3tnZGe7hZZeerHBGow0D80MGn1DyMsKvLIIvAEJaJ7LWtnciyhya4Lh40Y3vK5Tswk9n5vFwpZbrb6wJqyHB-4Zd1JH7tFHKqG9DDWveGR-HMGvgaezMYFtM223kqm0BwtQLSZ7PFIBef1Jt4TQx4LDMr95oATU_7ftOPmYs32yNwSHdNJP6gG5E9uH5N7Qp_z85hHpsGRuuO-UyHr8BzrbAtakrxeT2THFJmeXFEJSOoVFnl-v_ddIsQEx0pcdmHEqi72hkw02J71o4aceUchpGdtUpu4fk09n049v3uZD14Q8SCFWuTfRKutZUStvanxJzQVkLSoC5xvOwG3xWIxhdxG-qKRpAjN1UF5XhYqiEU_ITnvVxqeEQvAylkFYWUQtY2VgZqwCEULQpJogY0aObznpwgApjp0tLh2kFsh194vrGXmxof3WA2n8keoUBbKhQPDr9AFUwg0q4f6lEhl5heJ0aKIwneCHmwawKAS7chOIkgohrWAZObqVuBtsd-k4xDxa4D29jDzfDIPV4VGKb-PVeukE7H0YSzJ18D9mfEjuYxt7PKXi8ojsrLp1fEbuhu-ri2U3Irun03n5fpRUfITVqR_w-WMKz1J9gfFy9q78_BPmRgLf
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLVK58I0IFDACBD1EzdrO1wGhBVo1arvKoUjLyXUch1ZU2TbZBe2f4jcyk6-CBNx64BRpM7Kc9fPMS2y_B_Ayw6osDC9wBELuytyPXS2scOPIRHxchAXP88ZsIpxOo9ksTtfgR38WhrZV9jmxSdT53NA38m2OlSgUdHrq3fmFS65RtLraW2i0sNi3q-_4yla_TT7i-L7ifHfn6MOe27kKuEYKsXB1ZGM_1l6Q-zrK6SJDLpDV-xZ7VnAP0zq3wRhnn9BBJqPCeFFufB1mgW9FIbDda7AuCewjWE-Tw_Tz8FXHEwhpT7Y6qELE3nZVI-WKsVBGv1W-xiDgb2WgqW27t_63f-U23OxYNJu0sL8Da7a8CxudofvJ6h5UtLewOxjWhLVCGSz5RYGUvZlNki1GbnBnDLk728FpdHKx1F8tI6dmik8rzHfN_uEVmwwipuy0xEY1ybWz1JbNfn59Hz5dySM_gFE5L-1DYMjyxtKIWAY2lDaLsGdehlhHdukXRloHtvqhV6bTXicLkDOF72AEE3UJEwdeDLHnreLIH6PeE4KGCFIJb36YV19Ul3RUbrkmfumLUEuT84xbT48tckJkibENHHhN-FOUy7A7RndHMvChSBVMTZBOBkLGwnNgs8ef6pJcrS7B58Dz4TamJ1pz0qWdL2slsEgQ6fb8R_9u4hls7B0dHqiDZLr_GG5w5JK0aMflJowW1dI-gevm2-K0rp52c47B8VUD-ieQ_2dF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoALb0SggBEg6CHarO08fEBooV2xKlrlANKKi3Ech1ZU2TbZBe1f49cxk1dBAm49cIq0GVnO5puZz_H4G4BnGWZlYXmBbyDmvsxD5RvhhK8Sm_BxERc8z5tmE_F8niwWKt2CH_1ZGCqr7GNiE6jzpaVv5COOmSgWdHpqVHRlEene9PXJqU8dpGintW-n0ULkwG2-4_KtfjXbw3f9nPPp_oe37_yuw4BvpRAr3yROhcoEUR6aJKeLjLlAhh86nGXBAwzx3EVj9ERhokwmhQ2S3IYmzqLQiULguBfgYoxrTConTMNPw_edQCC4A9kqogqhglFVI_lSmDKT33Jg0yrgbwmhyXLT6__z_3MDrnXcmk1aZ7gJW668BVe6Nu-Hm9tQUcVhd1ysMWvlM9jsF11S9nIxme0y6hF3zJDRs310rsPTtfnqGPVvJvu0wijYVBVv2GSQNmVHJQ5qSMSdpa5sqvzNHfh4Lo98F7bLZenuAUPuN5ZWKBm5WLoswZkFGXoAcs6wsNJ5sNvDQNtOkZ0agxxrXJkRZPQZZDx4OtietDokf7R6Q2gaLEg7vPlhWX3RXSjSueOGWGcoYiNtzjPuAjN2yBSROyoXefCCsKgpwuF0rOkOauBDkVaYniDJjIRUIvBgp8ei7kJfrc-A6MGT4TYGLdqJMqVbrmstMHUQFQ_C-_8e4jFcRhTr97P5wQO4ypFg0k4elzuwvarW7iFcst9WR3X1qHE-Bp_PG80_AdLWbqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+Artificial+Intelligence+%28XAI%29+Model+for+Earthquake+Spatial+Probability+Assessment+in+Arabian+Peninsula&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ratiranjan+Jena&rft.au=Abdallah+Shanableh&rft.au=Rami+Al-Ruzouq&rft.au=Biswajeet+Pradhan&rft.date=2023-04-24&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=9&rft.spage=2248&rft_id=info:doi/10.3390%2Frs15092248&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_de2a8467537a4cd2b2e0a1e8220919e6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon