Explainable Artificial Intelligence (XAI) Model for Earthquake Spatial Probability Assessment in Arabian Peninsula
Among all the natural hazards, earthquake prediction is an arduous task. Although many studies have been published on earthquake hazard assessment (EHA), very few have been published on the use of artificial intelligence (AI) in spatial probability assessment (SPA). There is a great deal of complexi...
Gespeichert in:
| Veröffentlicht in: | Remote sensing (Basel, Switzerland) Jg. 15; H. 9; S. 2248 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
24.04.2023
|
| Schlagworte: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Among all the natural hazards, earthquake prediction is an arduous task. Although many studies have been published on earthquake hazard assessment (EHA), very few have been published on the use of artificial intelligence (AI) in spatial probability assessment (SPA). There is a great deal of complexity observed in the SPA modeling process due to the involvement of seismological to geophysical factors. Recent studies have shown that the insertion of certain integrated factors such as ground shaking, seismic gap, and tectonic contacts in the AI model improves accuracy to a great extent. Because of the black-box nature of AI models, this paper explores the use of an explainable artificial intelligence (XAI) model in SPA. This study aims to develop a hybrid Inception v3-ensemble extreme gradient boosting (XGBoost) model and shapely additive explanations (SHAP). The model would efficiently interpret and recognize factors’ behavior and their weighted contribution. The work explains the specific factors responsible for and their importance in SPA. The earthquake inventory data were collected from the US Geological Survey (USGS) for the past 22 years ranging the magnitudes from 5 Mw and above. Landsat-8 satellite imagery and digital elevation model (DEM) data were also incorporated in the analysis. Results revealed that the SHAP outputs align with the hybrid Inception v3-XGBoost model (87.9% accuracy) explanations, thus indicating the necessity to add new factors such as seismic gaps and tectonic contacts, where the absence of these factors makes the prediction model performs poorly. According to SHAP interpretations, peak ground accelerations (PGA), magnitude variation, seismic gap, and epicenter density are the most critical factors for SPA. The recent Turkey earthquakes (Mw 7.8, 7.5, and 6.7) due to the active east Anatolian fault validate the obtained AI-based earthquake SPA results. The conclusions drawn from the explainable algorithm depicted the importance of relevant, irrelevant, and new futuristic factors in AI-based SPA modeling. |
|---|---|
| AbstractList | Among all the natural hazards, earthquake prediction is an arduous task. Although many studies have been published on earthquake hazard assessment (EHA), very few have been published on the use of artificial intelligence (AI) in spatial probability assessment (SPA). There is a great deal of complexity observed in the SPA modeling process due to the involvement of seismological to geophysical factors. Recent studies have shown that the insertion of certain integrated factors such as ground shaking, seismic gap, and tectonic contacts in the AI model improves accuracy to a great extent. Because of the black-box nature of AI models, this paper explores the use of an explainable artificial intelligence (XAI) model in SPA. This study aims to develop a hybrid Inception v3-ensemble extreme gradient boosting (XGBoost) model and shapely additive explanations (SHAP). The model would efficiently interpret and recognize factors’ behavior and their weighted contribution. The work explains the specific factors responsible for and their importance in SPA. The earthquake inventory data were collected from the US Geological Survey (USGS) for the past 22 years ranging the magnitudes from 5 Mw and above. Landsat-8 satellite imagery and digital elevation model (DEM) data were also incorporated in the analysis. Results revealed that the SHAP outputs align with the hybrid Inception v3-XGBoost model (87.9% accuracy) explanations, thus indicating the necessity to add new factors such as seismic gaps and tectonic contacts, where the absence of these factors makes the prediction model performs poorly. According to SHAP interpretations, peak ground accelerations (PGA), magnitude variation, seismic gap, and epicenter density are the most critical factors for SPA. The recent Turkey earthquakes (Mw 7.8, 7.5, and 6.7) due to the active east Anatolian fault validate the obtained AI-based earthquake SPA results. The conclusions drawn from the explainable algorithm depicted the importance of relevant, irrelevant, and new futuristic factors in AI-based SPA modeling. Among all the natural hazards, earthquake prediction is an arduous task. Although many studies have been published on earthquake hazard assessment (EHA), very few have been published on the use of artificial intelligence (AI) in spatial probability assessment (SPA). There is a great deal of complexity observed in the SPA modeling process due to the involvement of seismological to geophysical factors. Recent studies have shown that the insertion of certain integrated factors such as ground shaking, seismic gap, and tectonic contacts in the AI model improves accuracy to a great extent. Because of the black-box nature of AI models, this paper explores the use of an explainable artificial intelligence (XAI) model in SPA. This study aims to develop a hybrid Inception v3-ensemble extreme gradient boosting (XGBoost) model and shapely additive explanations (SHAP). The model would efficiently interpret and recognize factors’ behavior and their weighted contribution. The work explains the specific factors responsible for and their importance in SPA. The earthquake inventory data were collected from the US Geological Survey (USGS) for the past 22 years ranging the magnitudes from 5 M[sub.w] and above. Landsat-8 satellite imagery and digital elevation model (DEM) data were also incorporated in the analysis. Results revealed that the SHAP outputs align with the hybrid Inception v3-XGBoost model (87.9% accuracy) explanations, thus indicating the necessity to add new factors such as seismic gaps and tectonic contacts, where the absence of these factors makes the prediction model performs poorly. According to SHAP interpretations, peak ground accelerations (PGA), magnitude variation, seismic gap, and epicenter density are the most critical factors for SPA. The recent Turkey earthquakes (M[sub.w] 7.8, 7.5, and 6.7) due to the active east Anatolian fault validate the obtained AI-based earthquake SPA results. The conclusions drawn from the explainable algorithm depicted the importance of relevant, irrelevant, and new futuristic factors in AI-based SPA modeling. |
| Audience | Academic |
| Author | Pradhan, Biswajeet Ghamisi, Pedram Shanableh, Abdallah Al-Ruzouq, Rami Ghorbanzadeh, Omid Jena, Ratiranjan Khalil, Mohamad Ali Gibril, Mohamed Barakat A. Ganapathy, Ganapathy Pattukandan |
| Author_xml | – sequence: 1 givenname: Ratiranjan orcidid: 0000-0002-6180-4673 surname: Jena fullname: Jena, Ratiranjan – sequence: 2 givenname: Abdallah orcidid: 0000-0002-9808-4120 surname: Shanableh fullname: Shanableh, Abdallah – sequence: 3 givenname: Rami orcidid: 0000-0001-7111-0061 surname: Al-Ruzouq fullname: Al-Ruzouq, Rami – sequence: 4 givenname: Biswajeet orcidid: 0000-0001-9863-2054 surname: Pradhan fullname: Pradhan, Biswajeet – sequence: 5 givenname: Mohamed Barakat A. orcidid: 0000-0002-6465-6231 surname: Gibril fullname: Gibril, Mohamed Barakat A. – sequence: 6 givenname: Mohamad Ali orcidid: 0000-0002-3338-0092 surname: Khalil fullname: Khalil, Mohamad Ali – sequence: 7 givenname: Omid orcidid: 0000-0002-9664-8770 surname: Ghorbanzadeh fullname: Ghorbanzadeh, Omid – sequence: 8 givenname: Ganapathy Pattukandan orcidid: 0000-0002-3356-6508 surname: Ganapathy fullname: Ganapathy, Ganapathy Pattukandan – sequence: 9 givenname: Pedram orcidid: 0000-0003-1203-741X surname: Ghamisi fullname: Ghamisi, Pedram |
| BookMark | eNptkV9rFDEUxQepYK198RMEfKnC1kz-TDKPS1ntQsWCCr6FO5mbNWs22SYz0H57s11RKSYPN1x-91xOzsvmJKaITfO6pZec9_R9Lq2kPWNCP2tOGVVsIVjPTv55v2jOS9nSejhveypOm7y63wfwEYaAZJkn77z1EMg6ThiC32C0SC6-L9dvyac0YiAuZbKCPP24m-Enki97mA78bU4DDD746YEsS8FSdhgn4mMVrX2I5Bajj2UO8Kp57iAUPP9dz5pvH1Zfr64XN58_rq-WNwsrOJ8WoLGXPdBulKDHQxGK8Y5Kicoxx6hoOcOu1Vpx6AahnaV6tBLU0Enkjp8166PumGBr9tnvID-YBN48NlLemOrD24BmRAZadEpyBcKObGBIoUXNGO3bHruqdXHU2ud0N2OZzM4XW38IIqa5GE4FFawTVFb0zRN0m-Ycq1PDdMsUZ4qySl0eqQ3U_T66NGWw9Y6487bm6nztL5WkHRc9p3Xg3XHA5lRKRvfHUUvNIX7zN_4K0yew9VMNKsW6xYf_jfwCYpaxtg |
| CitedBy_id | crossref_primary_10_1016_j_ijdrr_2023_104123 crossref_primary_10_1007_s41062_025_01937_8 crossref_primary_10_1016_j_aeolia_2024_100924 crossref_primary_10_1007_s13369_025_10017_z crossref_primary_10_1016_j_envpol_2023_123082 crossref_primary_10_1016_j_enbuild_2025_115815 crossref_primary_10_1007_s11069_025_07139_w crossref_primary_10_1007_s41651_024_00184_2 crossref_primary_10_3390_app14198884 crossref_primary_10_1109_MGRS_2024_3467001 crossref_primary_10_1007_s11069_025_07520_9 crossref_primary_10_1016_j_asoc_2025_113406 crossref_primary_10_1016_j_rsase_2023_101004 crossref_primary_10_1007_s11356_024_35521_x crossref_primary_10_1016_j_asr_2024_05_045 crossref_primary_10_1038_s41598_024_76483_x crossref_primary_10_1038_s41598_024_70125_y crossref_primary_10_1109_ACCESS_2024_3438556 crossref_primary_10_5194_nhess_24_4237_2024 |
| Cites_doi | 10.3390/geosciences9070308 10.1007/s11069-012-0232-3 10.1016/j.ijdrr.2021.102631 10.3389/feart.2019.00136 10.4209/aaqr.2019.08.0408 10.14311/NNW.2018.28.009 10.1109/ICCVW.2019.00516 10.1038/s41467-019-11958-4 10.1016/j.compchemeng.2021.107470 10.1016/j.scitotenv.2019.07.203 10.1002/0470869356 10.1029/2003JB002437 10.3390/su10103376 10.1111/j.1365-246X.2012.05520.x 10.1007/s11069-012-0412-1 10.3390/rs10060975 10.18702/acf.2022.6.8.1.51 10.1029/2004JB003190 10.1007/s11676-017-0452-1 10.1007/s00024-018-2033-4 10.3390/s21134489 10.1016/j.jafrearsci.2015.05.011 10.1016/j.jobe.2020.101689 10.1007/s10950-015-9522-z 10.1193/1.1585773 10.1080/1365881031000114071 10.3390/s20164369 10.1016/j.gsf.2019.07.006 10.1073/pnas.39.10.1095 10.1016/j.jseaes.2017.07.033 10.1007/s11069-016-2579-3 10.1007/s11069-016-2712-3 10.3390/ijgi9070430 10.1080/13632460209350432 10.1029/2011JB008966 10.1007/s10706-005-1148-4 10.1155/2021/2577375 10.1016/j.istruc.2021.08.088 10.1177/0013916581134001 10.1016/j.gsf.2020.11.007 10.1007/978-1-4842-5669-5 10.1130/0091-7613(1977)5<664:MOIAPA>2.0.CO;2 10.1785/0120050210 10.1109/MIS.2020.2972533 10.1016/j.enggeo.2017.09.004 10.1111/j.1365-246X.2004.02222.x 10.1029/2009TC002482 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs15092248 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Collection (ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_de2a8467537a4cd2b2e0a1e8220919e6 A750634930 10_3390_rs15092248 |
| GeographicLocations | United Arab Emirates Saudi Arabia Arabian Peninsula Iran Gulf of Aden Red Sea Gulf of Aqaba Indonesia Dead Sea |
| GeographicLocations_xml | – name: United Arab Emirates – name: Saudi Arabia – name: Arabian Peninsula – name: Iran – name: Dead Sea – name: Red Sea – name: Indonesia – name: Gulf of Aden – name: Gulf of Aqaba |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c433t-a8e959a06d5a8d06d547236055e7f2f204132e618873a6b48fc08dc5a7b65e3f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000988185400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:53:49 EDT 2025 Fri Sep 05 07:25:17 EDT 2025 Fri Jul 25 11:58:24 EDT 2025 Tue Nov 04 18:16:28 EST 2025 Tue Nov 18 22:02:32 EST 2025 Sat Nov 29 07:15:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c433t-a8e959a06d5a8d06d547236055e7f2f204132e618873a6b48fc08dc5a7b65e3f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9863-2054 0000-0002-3356-6508 0000-0001-7111-0061 0000-0002-9664-8770 0000-0002-6465-6231 0000-0002-3338-0092 0000-0002-6180-4673 0000-0003-1203-741X 0000-0002-9808-4120 |
| OpenAccessLink | https://doaj.org/article/de2a8467537a4cd2b2e0a1e8220919e6 |
| PQID | 2812732702 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_de2a8467537a4cd2b2e0a1e8220919e6 proquest_miscellaneous_3040426405 proquest_journals_2812732702 gale_infotracacademiconefile_A750634930 crossref_primary_10_3390_rs15092248 crossref_citationtrail_10_3390_rs15092248 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-24 |
| PublicationDateYYYYMMDD | 2023-04-24 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Deif (ref_25) 2012; 64 ref_58 ref_13 ref_12 ref_56 ref_55 Jackson (ref_4) 1981; 13 Babiker (ref_26) 2015; 109 ref_51 Khan (ref_30) 2022; 8 Chen (ref_52) 2015; 1 Siddiqi (ref_18) 1995; 7 Sakellariou (ref_41) 2017; 28 Yanilmaz (ref_1) 2021; 66 Asim (ref_60) 2017; 85 ref_59 Jena (ref_15) 2020; 11 Bommer (ref_6) 2002; 6 Wason (ref_40) 2012; 190 Somala (ref_57) 2021; 34 Dhar (ref_47) 2017; 86 Deif (ref_22) 2019; 176 Zebardast (ref_44) 2013; 65 ref_21 Rashed (ref_46) 2003; 17 Beyer (ref_37) 2006; 96 Huang (ref_61) 2018; 28 Fenton (ref_38) 2006; 24 ref_28 Soe (ref_45) 2009; 1 Huijer (ref_27) 2016; 20 Li (ref_53) 2020; 35 Shcherbakov (ref_10) 2019; 10 Magrin (ref_7) 2017; 229 Pourghasemi (ref_16) 2019; 692 ref_34 Deif (ref_35) 2017; 147 Ramaneswaran (ref_50) 2021; 2021 Allen (ref_19) 2004; 23 Hardebeck (ref_8) 2004; 109 Wenzel (ref_11) 2019; 7 Ma (ref_54) 2020; 20 Vernant (ref_20) 2004; 157 Khan (ref_29) 2020; 32 Shapley (ref_33) 1953; 39 Bulut (ref_23) 2012; 117 Parsons (ref_9) 2005; 110 Irwandi (ref_32) 2017; Volume 56 Bommer (ref_24) 2009; 3 Siddiqi (ref_17) 1994; 10 ref_43 ref_42 Jena (ref_14) 2021; 12 ref_3 Chakraborty (ref_31) 2021; 154 ref_2 ArRajehi (ref_39) 2010; 29 ref_49 ref_48 ref_5 Farhoudi (ref_36) 1977; 5 |
| References_xml | – ident: ref_12 doi: 10.3390/geosciences9070308 – volume: 64 start-page: 173 year: 2012 ident: ref_25 article-title: Probabilistic Seismic Hazard Maps for the Sultanate of Oman publication-title: Nat. Hazards doi: 10.1007/s11069-012-0232-3 – volume: 66 start-page: 102631 year: 2021 ident: ref_1 article-title: Extension of FEMA and SMUG Models with Bayesian Best-Worst Method for Disaster Risk Reduction publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2021.102631 – volume: 7 start-page: 136 year: 2019 ident: ref_11 article-title: Global Megathrust Earthquake Hazard—Maximum Magnitude Assessment Using Multi-Variate Machine Learning publication-title: Front. Earth Sci. doi: 10.3389/feart.2019.00136 – volume: 20 start-page: 128 year: 2020 ident: ref_54 article-title: Application of the XGBoost Machine Learning Method in PM2. 5 Prediction: A Case Study of Shanghai publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2019.08.0408 – ident: ref_55 – volume: 28 start-page: 149 year: 2018 ident: ref_61 article-title: Large Earthquake Magnitude Prediction in Taiwan Based on Deep Learning Neural Network publication-title: Neural Netw. World doi: 10.14311/NNW.2018.28.009 – ident: ref_34 doi: 10.1109/ICCVW.2019.00516 – volume: 10 start-page: 4051 year: 2019 ident: ref_10 article-title: Forecasting the Magnitude of the Largest Expected Earthquake publication-title: Nat. Commun. doi: 10.1038/s41467-019-11958-4 – volume: 154 start-page: 107470 year: 2021 ident: ref_31 article-title: AI-DARWIN: A First Principles-Based Model Discovery Engine Using Machine Learning publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107470 – volume: 692 start-page: 556 year: 2019 ident: ref_16 article-title: Multi-Hazard Probability Assessment and Mapping in Iran publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.203 – volume: 3 start-page: 1 year: 2009 ident: ref_24 article-title: Probabilistic Seismic Hazard Analysis for Rock Sites in the Cities of Abu Dhabi, Dubai and Ra’s Al Khaymah, United Arab Emirates publication-title: Georisk – ident: ref_5 doi: 10.1002/0470869356 – volume: 109 start-page: B04310 year: 2004 ident: ref_8 article-title: Stress Triggering and Earthquake Probability Estimates publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2003JB002437 – ident: ref_42 doi: 10.3390/su10103376 – volume: 190 start-page: 1091 year: 2012 ident: ref_40 article-title: Magnitude Conversion Problem Using General Orthogonal Regression publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2012.05520.x – volume: 1 start-page: 29 year: 2009 ident: ref_45 article-title: Remote Sensing and GIS Based Approach for Earthquake Probability Map: A Case Study of the Northern Sagaing Fault Area, Myanmar publication-title: J. Geol. Soc. Thail – volume: 65 start-page: 1331 year: 2013 ident: ref_44 article-title: Constructing a Social Vulnerability Index to Earthquake Hazards Using a Hybrid Factor Analysis and Analytic Network Process (F’ANP) Model publication-title: Nat. Hazards doi: 10.1007/s11069-012-0412-1 – ident: ref_48 doi: 10.3390/rs10060975 – ident: ref_56 – volume: 1 start-page: 1 year: 2015 ident: ref_52 article-title: Xgboost: Extreme Gradient Boosting publication-title: R Packag. Version 0.6-4 – volume: 8 start-page: 51 year: 2022 ident: ref_30 article-title: Comparative Study of Advanced Computational Techniques for Estimating the Compressive Strength of UHPC publication-title: J. Asian Concr. Fed. doi: 10.18702/acf.2022.6.8.1.51 – volume: 110 start-page: B05S02 year: 2005 ident: ref_9 article-title: Significance of Stress Transfer in Time-dependent Earthquake Probability Calculations publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2004JB003190 – volume: 28 start-page: 1107 year: 2017 ident: ref_41 article-title: Review of State-of-the-Art Decision Support Systems (DSSs) for Prevention and Suppression of Forest Fires publication-title: J. For. Res. doi: 10.1007/s11676-017-0452-1 – volume: 176 start-page: 1503 year: 2019 ident: ref_22 article-title: Probabilistic Seismic Hazard Assessment for the Arabian Peninsula publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-018-2033-4 – ident: ref_58 doi: 10.3390/s21134489 – volume: 109 start-page: 168 year: 2015 ident: ref_26 article-title: A Unified Mw-Based Earthquake Catalogue and Seismic Source Zones for the Red Sea Region publication-title: J. Afr. Earth Sci. doi: 10.1016/j.jafrearsci.2015.05.011 – volume: 32 start-page: 101689 year: 2020 ident: ref_29 article-title: Optimization of Concrete Stiffeners for Confined Brick Masonry Structures publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101689 – ident: ref_59 – ident: ref_28 – volume: 20 start-page: 233 year: 2016 ident: ref_27 article-title: Re-Evaluation and Updating of the Seismic Hazard of Lebanon publication-title: J. Seismol. doi: 10.1007/s10950-015-9522-z – volume: 10 start-page: 231 year: 1994 ident: ref_17 article-title: A Basis for Evaluation of Seismic Hazard and Design Criteria for Saudi Arabia publication-title: Earthq. Spectra doi: 10.1193/1.1585773 – volume: 23 start-page: TC2008 year: 2004 ident: ref_19 article-title: Late Cenozoic Reorganization of the Arabia-Eurasia Collision and the Comparison of Short-term and Long-term Deformation Rates publication-title: Tectonics – ident: ref_3 – volume: 17 start-page: 547 year: 2003 ident: ref_46 article-title: Assessing Vulnerability to Earthquake Hazards through Spatial Multicriteria Analysis of Urban Areas publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/1365881031000114071 – ident: ref_13 doi: 10.3390/s20164369 – volume: 11 start-page: 613 year: 2020 ident: ref_15 article-title: Integrated Model for Earthquake Risk Assessment Using Neural Network and Analytic Hierarchy Process: Aceh Province, Indonesia publication-title: Geosci. Front. doi: 10.1016/j.gsf.2019.07.006 – volume: 39 start-page: 1095 year: 1953 ident: ref_33 article-title: Stochastic Games publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.39.10.1095 – volume: 147 start-page: 345 year: 2017 ident: ref_35 article-title: Compiling an Earthquake Catalogue for the Arabian Plate, Western Asia publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2017.07.033 – volume: 85 start-page: 471 year: 2017 ident: ref_60 article-title: Earthquake Magnitude Prediction in Hindukush Region Using Machine Learning Techniques publication-title: Nat. Hazards doi: 10.1007/s11069-016-2579-3 – volume: 86 start-page: 695 year: 2017 ident: ref_47 article-title: Estimation of Seismic Hazard in Odisha by Remote Sensing and GIS Techniques publication-title: Nat. Hazards doi: 10.1007/s11069-016-2712-3 – ident: ref_49 doi: 10.3390/ijgi9070430 – volume: 6 start-page: 43 year: 2002 ident: ref_6 article-title: Deterministic vs. Probabilistic Seismic Hazard Assessment: An Exaggerated and Obstructive Dichotomy publication-title: J. Earthq. Eng. doi: 10.1080/13632460209350432 – volume: 117 start-page: 7304 year: 2012 ident: ref_23 article-title: The East Anatolian Fault Zone: Seismotectonic Setting and Spatiotemporal Characteristics of Seismicity Based on Precise Earthquake Locations publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2011JB008966 – volume: 24 start-page: 579 year: 2006 ident: ref_38 article-title: Seismic Hazards Assessment for Radioactive Waste Disposal Sites in Regions of Low Seismic Activity publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-005-1148-4 – ident: ref_21 – volume: 2021 start-page: 2577375 year: 2021 ident: ref_50 article-title: Hybrid Inception v3 XGBoost Model for Acute Lymphoblastic Leukemia Classification publication-title: Comput. Math. Methods Med. doi: 10.1155/2021/2577375 – volume: 34 start-page: 1560 year: 2021 ident: ref_57 article-title: Time Period Estimation of Masonry Infilled RC Frames Using Machine Learning Techniques publication-title: Structures doi: 10.1016/j.istruc.2021.08.088 – volume: 13 start-page: 387 year: 1981 ident: ref_4 article-title: Response to Earthquake Hazard: The West Coast of North America publication-title: Environ. Behav. doi: 10.1177/0013916581134001 – volume: 12 start-page: 101110 year: 2021 ident: ref_14 article-title: Earthquake Risk Assessment in NE India Using Deep Learning and Geospatial Analysis publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.11.007 – ident: ref_51 doi: 10.1007/978-1-4842-5669-5 – volume: 5 start-page: 664 year: 1977 ident: ref_36 article-title: Makran of Iran and Pakistan as an Active Arc System publication-title: Geology doi: 10.1130/0091-7613(1977)5<664:MOIAPA>2.0.CO;2 – volume: 96 start-page: 1512 year: 2006 ident: ref_37 article-title: Relationships between Median Values and between Aleatory Variabilities for Different Definitions of the Horizontal Component of Motion publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/0120050210 – volume: 35 start-page: 52 year: 2020 ident: ref_53 article-title: XGBoost Model and Its Application to Personal Credit Evaluation publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2020.2972533 – ident: ref_2 – volume: 229 start-page: 95 year: 2017 ident: ref_7 article-title: Neo-Deterministic Seismic Hazard Assessment and Earthquake Occurrence Rate publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2017.09.004 – volume: 157 start-page: 381 year: 2004 ident: ref_20 article-title: Present-Day Crustal Deformation and Plate Kinematics in the Middle East Constrained by GPS Measurements in Iran and Northern Oman publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2004.02222.x – ident: ref_43 – volume: Volume 56 start-page: 12007 year: 2017 ident: ref_32 article-title: Advantages of Realistic Model Based on Computational Method: NDSHA versus Standard PSHA publication-title: Proceedings of the IOP Conference Series: Earth and Environmental Science – volume: 7 start-page: 25 year: 1995 ident: ref_18 article-title: Seismic Design Recommendations for Building Structures in Saudi Arabia publication-title: J. King Saud Univ. Sci. – volume: 29 start-page: TC3011 year: 2010 ident: ref_39 article-title: Geodetic Constraints on Present-day Motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden Rifting publication-title: Tectonics doi: 10.1029/2009TC002482 |
| SSID | ssj0000331904 |
| Score | 2.4410758 |
| Snippet | Among all the natural hazards, earthquake prediction is an arduous task. Although many studies have been published on earthquake hazard assessment (EHA), very... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 2248 |
| SubjectTerms | Accuracy Algorithms Arabian peninsula Artificial intelligence Comparative analysis Deep learning Digital Elevation Models Digital imaging Earthquake prediction earthquake spatial probability assessment Earthquakes Explainable artificial intelligence Fault lines Geological hazards Geological surveys geophysics GIS Hazard assessment hazard characterization hybrids inception v3-XGBoost inventories Landsat Landsat satellites Machine learning Model accuracy Modelling Neural networks prediction Prediction models Probability probability analysis Remote sensing Satellite imagery Seismic activity Seismic hazard Seismology Shaking Tectonics Turkey (country) United States Geological Survey XAI |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEA5aBX3xt7haJaKgfViazY_d5ElOabEv5UCFewvZJNsWy167eyf0v3cml9sqqC8-HewNS5aZzHxJJt9HyNsWqrLwvAMPNLyUQZnSiShKo73mVdd0PIQkNtEcH-vFwszzhtuY2yq3OTEl6rD0uEe-z6ESNQJvT324uCxRNQpPV7OExk1yC1kSqtS692XaY2ECAozJDSupgNX9_jACADJQtvRvdSjR9f8tKadKc3j_f8f4gNzLGJPONkHxkNyI_SNyJ8udn149JgN23uVrU8lsQyNBj37h56TvF7OjPYpaaecUkC09gCA7vVy775GijjHazwfIBqm79orOJopPetbDSx2SmdN57FO3u3tCvh0efP30ucziC6WXQqxKp6NRxrE6KKcD_siGC1j8qAgO7DiD6sdjXUGSEq5upe4808Er17S1iqITT8lOv-zjM0IBA1XSCyPr2MjYahgZayESAHupzstYkL2tK6zPzOQokHFuYYWCbrPXbivIm8n2YsPH8Uerj-jRyQI5tNOD5XBi85S0IXKH6EuJxkkfeMsjc1UExAQYysS6IO8wHizOdBiOd_nCAnwUcmbZGYCtWkgjWEF2t_FgcwoY7XUwFOT19DdMXjyRcX1crkcrIIUiJGXq-b9f8YLcRZ17PMbicpfsrIZ1fElu-x-rs3F4laL-J8YVCrs priority: 102 providerName: ProQuest |
| Title | Explainable Artificial Intelligence (XAI) Model for Earthquake Spatial Probability Assessment in Arabian Peninsula |
| URI | https://www.proquest.com/docview/2812732702 https://www.proquest.com/docview/3040426405 https://doaj.org/article/de2a8467537a4cd2b2e0a1e8220919e6 |
| Volume | 15 |
| WOSCitedRecordID | wos000988185400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlKbSXkL6ok3RRaaHNwUSrhyUdN2VD99DF9AHbXoQsyyQ0OI13t5BLf3tnZGe7hZZeerHBGow0D80MGn1DyMsKvLIIvAEJaJ7LWtnciyhya4Lh40Y3vK5Tswk9n5vFwpZbrb6wJqyHB-4Zd1JH7tFHKqG9DDWveGR-HMGvgaezMYFtM223kqm0BwtQLSZ7PFIBef1Jt4TQx4LDMr95oATU_7ftOPmYs32yNwSHdNJP6gG5E9uH5N7Qp_z85hHpsGRuuO-UyHr8BzrbAtakrxeT2THFJmeXFEJSOoVFnl-v_ddIsQEx0pcdmHEqi72hkw02J71o4aceUchpGdtUpu4fk09n049v3uZD14Q8SCFWuTfRKutZUStvanxJzQVkLSoC5xvOwG3xWIxhdxG-qKRpAjN1UF5XhYqiEU_ITnvVxqeEQvAylkFYWUQtY2VgZqwCEULQpJogY0aObznpwgApjp0tLh2kFsh194vrGXmxof3WA2n8keoUBbKhQPDr9AFUwg0q4f6lEhl5heJ0aKIwneCHmwawKAS7chOIkgohrWAZObqVuBtsd-k4xDxa4D29jDzfDIPV4VGKb-PVeukE7H0YSzJ18D9mfEjuYxt7PKXi8ojsrLp1fEbuhu-ri2U3Irun03n5fpRUfITVqR_w-WMKz1J9gfFy9q78_BPmRgLf |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLVK58I0IFDACBD1EzdrO1wGhBVo1arvKoUjLyXUch1ZU2TbZBe2f4jcyk6-CBNx64BRpM7Kc9fPMS2y_B_Ayw6osDC9wBELuytyPXS2scOPIRHxchAXP88ZsIpxOo9ksTtfgR38WhrZV9jmxSdT53NA38m2OlSgUdHrq3fmFS65RtLraW2i0sNi3q-_4yla_TT7i-L7ifHfn6MOe27kKuEYKsXB1ZGM_1l6Q-zrK6SJDLpDV-xZ7VnAP0zq3wRhnn9BBJqPCeFFufB1mgW9FIbDda7AuCewjWE-Tw_Tz8FXHEwhpT7Y6qELE3nZVI-WKsVBGv1W-xiDgb2WgqW27t_63f-U23OxYNJu0sL8Da7a8CxudofvJ6h5UtLewOxjWhLVCGSz5RYGUvZlNki1GbnBnDLk728FpdHKx1F8tI6dmik8rzHfN_uEVmwwipuy0xEY1ybWz1JbNfn59Hz5dySM_gFE5L-1DYMjyxtKIWAY2lDaLsGdehlhHdukXRloHtvqhV6bTXicLkDOF72AEE3UJEwdeDLHnreLIH6PeE4KGCFIJb36YV19Ul3RUbrkmfumLUEuT84xbT48tckJkibENHHhN-FOUy7A7RndHMvChSBVMTZBOBkLGwnNgs8ef6pJcrS7B58Dz4TamJ1pz0qWdL2slsEgQ6fb8R_9u4hls7B0dHqiDZLr_GG5w5JK0aMflJowW1dI-gevm2-K0rp52c47B8VUD-ieQ_2dF |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoALb0SggBEg6CHarO08fEBooV2xKlrlANKKi3Ech1ZU2TbZBe1f49cxk1dBAm49cIq0GVnO5puZz_H4G4BnGWZlYXmBbyDmvsxD5RvhhK8Sm_BxERc8z5tmE_F8niwWKt2CH_1ZGCqr7GNiE6jzpaVv5COOmSgWdHpqVHRlEene9PXJqU8dpGintW-n0ULkwG2-4_KtfjXbw3f9nPPp_oe37_yuw4BvpRAr3yROhcoEUR6aJKeLjLlAhh86nGXBAwzx3EVj9ERhokwmhQ2S3IYmzqLQiULguBfgYoxrTConTMNPw_edQCC4A9kqogqhglFVI_lSmDKT33Jg0yrgbwmhyXLT6__z_3MDrnXcmk1aZ7gJW668BVe6Nu-Hm9tQUcVhd1ysMWvlM9jsF11S9nIxme0y6hF3zJDRs310rsPTtfnqGPVvJvu0wijYVBVv2GSQNmVHJQ5qSMSdpa5sqvzNHfh4Lo98F7bLZenuAUPuN5ZWKBm5WLoswZkFGXoAcs6wsNJ5sNvDQNtOkZ0agxxrXJkRZPQZZDx4OtietDokf7R6Q2gaLEg7vPlhWX3RXSjSueOGWGcoYiNtzjPuAjN2yBSROyoXefCCsKgpwuF0rOkOauBDkVaYniDJjIRUIvBgp8ei7kJfrc-A6MGT4TYGLdqJMqVbrmstMHUQFQ_C-_8e4jFcRhTr97P5wQO4ypFg0k4elzuwvarW7iFcst9WR3X1qHE-Bp_PG80_AdLWbqg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+Artificial+Intelligence+%28XAI%29+Model+for+Earthquake+Spatial+Probability+Assessment+in+Arabian+Peninsula&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ratiranjan+Jena&rft.au=Abdallah+Shanableh&rft.au=Rami+Al-Ruzouq&rft.au=Biswajeet+Pradhan&rft.date=2023-04-24&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=9&rft.spage=2248&rft_id=info:doi/10.3390%2Frs15092248&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_de2a8467537a4cd2b2e0a1e8220919e6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |