Estimating Three-Dimensional Resistivity Distribution with Magnetotelluric Data and a Deep Learning Algorithm

In this study, we describe a deep learning (DL)-based workflow for the three-dimensional (3D) geophysical inversion of magnetotelluric (MT) data. We derived a mathematical connection between a 3D resistivity model and the surface-observed electric/magnetic field response by using a fully connected n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 16; číslo 18; s. 3400
Hlavní autoři: Liu, Xiaojun, Craven, James A., Tschirhart, Victoria, Grasby, Stephen E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2024
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this study, we describe a deep learning (DL)-based workflow for the three-dimensional (3D) geophysical inversion of magnetotelluric (MT) data. We derived a mathematical connection between a 3D resistivity model and the surface-observed electric/magnetic field response by using a fully connected neural network framework (U-Net). Limited by computer hardware functionality, the resistivity models were generated by using a random walk technique to enlarge the generalization coverage of the neural network model, and 15,000 paired datasets were utilized to train and validate it. Grid search was used to select the optimal configuration parameters. With the optimal model framework from the parameter tuning phase, the metrics showed stable convergence during model training/validation. In the test period, the trained model was applied to predict the resistivity distribution by using both the simulated synthetic and the real MT data from the Mount Meager area, British Columbia. The reliability of the model prediction was verified with noised input data from the synthetic model. The calculated results can be used to reconstruct the position and shape trends of bodies with anomalous resistivity, which verifies the stability and performance of the DL-based 3D inversion algorithm and showcases its potential practical applications.
AbstractList In this study, we describe a deep learning (DL)-based workflow for the three-dimensional (3D) geophysical inversion of magnetotelluric (MT) data. We derived a mathematical connection between a 3D resistivity model and the surface-observed electric/magnetic field response by using a fully connected neural network framework (U-Net). Limited by computer hardware functionality, the resistivity models were generated by using a random walk technique to enlarge the generalization coverage of the neural network model, and 15,000 paired datasets were utilized to train and validate it. Grid search was used to select the optimal configuration parameters. With the optimal model framework from the parameter tuning phase, the metrics showed stable convergence during model training/validation. In the test period, the trained model was applied to predict the resistivity distribution by using both the simulated synthetic and the real MT data from the Mount Meager area, British Columbia. The reliability of the model prediction was verified with noised input data from the synthetic model. The calculated results can be used to reconstruct the position and shape trends of bodies with anomalous resistivity, which verifies the stability and performance of the DL-based 3D inversion algorithm and showcases its potential practical applications.
Audience Academic
Author Craven, James A.
Grasby, Stephen E.
Tschirhart, Victoria
Liu, Xiaojun
Author_xml – sequence: 1
  givenname: Xiaojun
  orcidid: 0000-0002-6324-5932
  surname: Liu
  fullname: Liu, Xiaojun
– sequence: 2
  givenname: James A.
  surname: Craven
  fullname: Craven, James A.
– sequence: 3
  givenname: Victoria
  orcidid: 0000-0003-2400-0550
  surname: Tschirhart
  fullname: Tschirhart, Victoria
– sequence: 4
  givenname: Stephen E.
  surname: Grasby
  fullname: Grasby, Stephen E.
BookMark eNptUcFu1DAQjVCRKKUXvsASF4SUMraTbHxcdQtUWoSEyjlynHHqVWIvtlPUv2fCIkAV9sGjmffezPi9LM588FgUrzlcSangfUy84a2sAJ4V5wI2oqyEEmf_xC-Ky5QOQEdKrqA6L-ablN2ss_Mju7uPiOXOzeiTC15P7CsmR_UHlx_ZjqLo-iVTif1w-Z591qPHHDJO0xKdYTudNdN-YJrtEI9sjzr6VXg7jSESY35VPLd6Snj5-70ovn24ubv-VO6_fLy93u5LU0mZS73Bvh9UP9RCobBgBShrhOBcIShp202PYKEVvWlr5HUlpOFcqmaw1jSmlhfF7Ul3CPrQHSNtGB-7oF33KxHi2OmYnZmwk30vG2N5UxlTkRY1NBUfoAWhlRADab09aR1j-L5gyt3skqGdtcewpE7yWra1AgUEffMEeghLpI9cURyaVtXViro6oUZN_Z23IUdt6A44O0OWWkf5bcthQ0MoSYR3J4KJIaWI9s9GHLrV-e6v8wSGJ2Djsl5Noy5u-h_lJ9Tise8
CitedBy_id crossref_primary_10_3389_feart_2024_1510962
Cites_doi 10.1016/0031-9201(93)90137-X
10.1111/j.1365-246X.1993.tb05600.x
10.1111/j.1365-246X.2011.05347.x
10.1190/tle38070512.1
10.1093/gji/ggaa161
10.4095/326740
10.1016/j.cageo.2020.104450
10.1016/j.jappgeo.2008.02.002
10.3390/min13040461
10.1016/j.cageo.2014.07.013
10.1111/j.1365-246X.1986.tb04552.x
10.1016/j.pepi.2021.106653
10.1190/1.1442303
10.1007/978-3-319-46723-8_49
10.1142/S0218488598000094
10.1190/geo2018-0838.1
10.1190/geo2019-0409.1
10.1007/s11770-021-0909-z
10.1190/tle37120894.1
10.1109/CVPR.2015.7298965
10.1093/gji/ggz204
10.1139/cjes-2022-0136
10.1016/j.cageo.2014.01.010
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs16183400
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_3bb36cf164cc4e159e2c41d0802a922d
A810780293
10_3390_rs16183400
GeographicLocations Canada
British Columbia
GeographicLocations_xml – name: Canada
– name: British Columbia
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c433t-a7ebbd9bd529e2f0f209fc22119e093f87be0f082bc85e15423c11396dffc6c53
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001322958000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:37:10 EDT 2025
Thu Sep 04 19:26:54 EDT 2025
Fri Jul 25 11:53:45 EDT 2025
Tue Nov 04 18:15:01 EST 2025
Sat Nov 29 07:14:06 EST 2025
Tue Nov 18 22:44:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-a7ebbd9bd529e2f0f209fc22119e093f87be0f082bc85e15423c11396dffc6c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2400-0550
0000-0002-6324-5932
OpenAccessLink https://www.proquest.com/docview/3110689540?pq-origsite=%requestingapplication%
PQID 3110689540
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_3bb36cf164cc4e159e2c41d0802a922d
proquest_miscellaneous_3153859090
proquest_journals_3110689540
gale_infotracacademiconefile_A810780293
crossref_primary_10_3390_rs16183400
crossref_citationtrail_10_3390_rs16183400
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Russell (ref_6) 2019; 38
Chen (ref_16) 2020; 138
Puzyrev (ref_8) 2019; 218
Ronneberger (ref_15) 2015; Volume 9351
ref_14
ref_13
Zhou (ref_25) 2018; Volume 11045
Egbert (ref_21) 2012; 189
Hochreiter (ref_24) 1998; 6
Kelbert (ref_30) 2014; 66
Krieger (ref_26) 2014; 72
Moghadas (ref_9) 2020; 222
Hu (ref_11) 2021; 311
ref_23
Das (ref_7) 2019; 84
Ward (ref_17) 1987; 1
Constable (ref_22) 1987; 52
ref_1
Egbert (ref_18) 1986; 87
Guo (ref_10) 2020; 85
ref_3
Mackie (ref_19) 1993; 115
ref_2
Kim (ref_5) 2018; 37
Wang (ref_12) 2021; 18
ref_29
ref_28
ref_27
ref_4
Farquharson (ref_20) 2009; 68
Jones (ref_31) 1993; 81
References_xml – ident: ref_28
– volume: 81
  start-page: 289
  year: 1993
  ident: ref_31
  article-title: Electromagnetic images of a volcanic zone
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/0031-9201(93)90137-X
– volume: 115
  start-page: 215
  year: 1993
  ident: ref_19
  article-title: Three-dimensional magnetotelluric inversion using conjugate gradients
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1993.tb05600.x
– volume: 189
  start-page: 251
  year: 2012
  ident: ref_21
  article-title: Computational recipes for electromagnetic inverse problems
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2011.05347.x
– volume: 38
  start-page: 512
  year: 2019
  ident: ref_6
  article-title: Machine learning and geophysical inversion; a numerical study
  publication-title: Lead. Edge
  doi: 10.1190/tle38070512.1
– volume: 222
  start-page: 247
  year: 2020
  ident: ref_9
  article-title: One-dimensional deep learning inversion of electromagnetic induction data using convolutional neural network
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggaa161
– ident: ref_2
  doi: 10.4095/326740
– volume: 138
  start-page: 104450
  year: 2020
  ident: ref_16
  article-title: Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary Basin
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104450
– ident: ref_1
– volume: 68
  start-page: 450
  year: 2009
  ident: ref_20
  article-title: Three-dimensional inversion of magnetotelluric data for mineral exploration: An example from the McArthur River uranium deposit, Saskatchewan, Canada
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2008.02.002
– ident: ref_13
  doi: 10.3390/min13040461
– volume: 72
  start-page: 167
  year: 2014
  ident: ref_26
  article-title: MTpy: A Python toolbox for magnetotellurics
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.07.013
– volume: Volume 9351
  start-page: 234
  year: 2015
  ident: ref_15
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015
– volume: 87
  start-page: 173
  year: 1986
  ident: ref_18
  article-title: Robust estimation of geomagnetic transfer functions
  publication-title: Geophys. J. R. Astron. Soc.
  doi: 10.1111/j.1365-246X.1986.tb04552.x
– volume: 311
  start-page: 106653
  year: 2021
  ident: ref_11
  article-title: Inversion of magnetic data using deep neural networks
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2021.106653
– volume: 1
  start-page: 201
  year: 1987
  ident: ref_17
  article-title: Electromagnetic Theory for Geophysical Applications
  publication-title: Electromagn. Methods Appl. Geophys.
– volume: 52
  start-page: 289
  year: 1987
  ident: ref_22
  article-title: Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data
  publication-title: Geophysics
  doi: 10.1190/1.1442303
– ident: ref_4
– ident: ref_29
– ident: ref_27
– ident: ref_23
  doi: 10.1007/978-3-319-46723-8_49
– volume: 6
  start-page: 107
  year: 1998
  ident: ref_24
  article-title: The Vanishing Gradient Problem during Learning Recurrent Neural Nets and Problem Solutions
  publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst.
  doi: 10.1142/S0218488598000094
– volume: 84
  start-page: R869
  year: 2019
  ident: ref_7
  article-title: Convolutional neural network for seismic impedance inversion
  publication-title: Geophysics
  doi: 10.1190/geo2018-0838.1
– volume: Volume 11045
  start-page: 3
  year: 2018
  ident: ref_25
  article-title: Unet++: A nested u-net architecture for medical image segmentation
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018
– volume: 85
  start-page: WA53
  year: 2020
  ident: ref_10
  article-title: Application of supervised descent method for 2D magnetotelluric data inversion
  publication-title: Geophysics
  doi: 10.1190/geo2019-0409.1
– volume: 18
  start-page: 451
  year: 2021
  ident: ref_12
  article-title: Three-dimensional gravity inversion based on 3D U-Net
  publication-title: Appl. Geophys.
  doi: 10.1007/s11770-021-0909-z
– volume: 37
  start-page: 894
  year: 2018
  ident: ref_5
  article-title: Geophysical inversion versus machine learning in inverse problems
  publication-title: Lead. Edge
  doi: 10.1190/tle37120894.1
– ident: ref_14
  doi: 10.1109/CVPR.2015.7298965
– volume: 218
  start-page: 817
  year: 2019
  ident: ref_8
  article-title: Deep learning electromagnetic inversion with convolutional neural networks
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggz204
– ident: ref_3
  doi: 10.1139/cjes-2022-0136
– volume: 66
  start-page: 40
  year: 2014
  ident: ref_30
  article-title: ModEM: A modular system for inversion of electromagnetic geophysical data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.01.010
SSID ssj0000331904
Score 2.3822253
Snippet In this study, we describe a deep learning (DL)-based workflow for the three-dimensional (3D) geophysical inversion of magnetotelluric (MT) data. We derived a...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3400
SubjectTerms Algorithms
British Columbia
computer hardware
Computer peripherals
Data analysis
data collection
Data mining
Datasets
Deep learning
Electric fields
Electric properties
Electrical resistivity
geophysics
inversion problem
Machine learning
Magnetic fields
magnetotelluric
Mathematical models
Methods
Mount Meager
mountains
neural network
Neural networks
Optimization
Parameters
prediction
Random walk
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1CKLSXkKYtdZIWlRZKDiay9bHWcdtN6KUhlBRyE5IsbQOJN-w6gf77ztjKdg8pveTgg-0xyKMZzRtb8wbgE8J6VUWjykZ6WcqmkqWTSZeKB6dVEolP_NBsYnJ21lxemvONVl-0J2ykBx4Vdyy8FzokRPUhyIjBN9ZBVi2ViDpT1y2tvniykUwNa7BA0-Jy5CMVmNcfL1dEDS8klbJtRKCBqP9fy_EQY053YSeDQzYdB_UStmK3B89zn_Jfv1_BzQl6JGHMbs4ucBZiOSN2_pFZg_2IK_JY6gbBZkSIm3tZMfrYyr67eRf7BVWNEJMQm7neMde1zLFZjLcsM63O2fR6vljiEzev4efpycXXb2VumFAGKURfukn0vjW-VTWqKfFUc5NCTSRukRuRmomPPGHQ96FRqEuEUqFCCKjblIIOSryB7W7RxbfAYuWcVFJ7T1TmrnGxxUPz1mldBy8LOHpQog2ZTZyaWlxbzCpI4favwgv4uJa9HTk0HpX6QnOxliDe6-ECWoPN1mD_Zw0FfKaZtOSdOJzgcpEBvhTxXNlpg-kuChtRwOHDZNvstisrEAzpxiCKLeDD-jY6HP1FcV1c3JEMxghluOH7TzHiA3hRI04at60dwna_vIvv4Fm4769Wy_eDVf8Bf8j9GQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Estimating Three-Dimensional Resistivity Distribution with Magnetotelluric Data and a Deep Learning Algorithm
URI https://www.proquest.com/docview/3110689540
https://www.proquest.com/docview/3153859090
https://doaj.org/article/3bb36cf164cc4e159e2c41d0802a922d
Volume 16
WOSCitedRecordID wos001322958000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database (ProQuest)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (ProQuest)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgi0QvvCsCZWUEEuIQ1YntbHxCW3YrOHQVlSIVLpHt2ClSm2w3KRIXfjszWe-WA3DhEB_iUWRnZuyZsecbQl6DWS8Tp2ScCyNikSci1sJnsWRWZ9JzzyZmKDYxWSzyszNVhIBbF65VbtbEYaGuWosx8gMO-1SWKzAw3i2vYqwahaeroYTGbbKDSGViRHYO54viZBtlYRxEjIk1LikH__5g1SFEPBeY0vbbTjQA9v9tWR72mqP7_zvKB-ResDLpdC0WD8kt1zwid0PB8_Mfj8nlHFQbjdWmpqfAThfPEOZ_DdFBT1yHqo9lJegMkXVDUSyKUVt6rOvG9S2mnyAkEZ3pXlPdVFTTmXNLGiBbazq9qGFs_fnlE_L5aH76_kMcKi_EVnDex3rijKmUqWSqXOqZT5nyNsV_7JjiPp8YxzxYD8bm0oEVlnKbgC2ZVd7bzEq-R0ZN27inhLpEayFFZgxioutcuwqejFU6y1JrRETebrhQ2gBLjtUxLkpwT5Bj5Q3HIvJqS7tcg3H8keoQmbmlQADt4UW7qsugjyU3hmfWg7NorYAZwDStSCrMPNYqTauIvEFRKFHNYThWh2wFmBQCZpXTHPxmIFY8IvsbUSiD_nfljRxE5OW2GzQXj2N049prpIHNRiqm2LN_f-I52U3BlFrfbNsno3517V6QO_Z7_61bjYPIj4dowhjvrn7C9ucc2kJ-hf7i43Hx5ReEVhJb
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwGP00dUjjwm9E2QAjQIhDNMd20uSAUKGbVm2tKlSkccpsx-6QtqRrM9D-Kf5Gvi9JOw7AbQcOvbRWVCcv73t28r0H8BplfRS6NAoSZVSgklAFWvk4iLjVceSl5z1Th030xuPk-DidbMDPVS8MvVa54sSaqPPS0h75rsQ6FScpCowP84uAUqPo6eoqQqOBxaG7-oFLtuX74QCv7xsh9vemnw6CNlUgsErKKtA9Z0yemjwSqROee8FTbwU5nTlc3vukZxz3WBmNTSKHCkNIG6JOinPvbWwpJQIpf1Mh2JMObE6Go8nX9a4OlwhprhofVClTvrtYkiW9VNRC91vlqwMC_lYG6tq2f_d_Oyv34E6rolm_gf192HDFA9hqA91Prx7C-R5SF4nxYsamCFcXDCjGoLEgYZ_dkqiNYjPYgJyD29AvRrvSbKRnhatKaq8hyyU20JVmusiZZgPn5qy1pJ2x_tkMz0V1ev4IvtzIbB9DpygL9wSYC7VWkYqNIc93nWiX4yfmuY5jYY3qwrvVVc9sa7tO6R9nGS6_CCHZNUK68Go9dt6Yjfxx1EcCz3oEGYTXX5SLWdbyTSaNkbH1uBi2VuEMcJpWhTl1VutUiLwLbwl6GdEY_h2r224MnBQZgmX9JETxyFEMdmFnBb2s5bdldo27Lrxc_4zMRI-bdOHKSxqDxTRKecqf_vsQL2DrYDo6yo6G48NtuC1QNjZv8e1Ap1pcumdwy36vvi0Xz9vbjcHJTWP5F0q8anQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwGLWmDgEXfiMKA4wAIQ5RHdtxkwNC3bKKaVBV05B2C7Zjd5O2tGsz0P41_jq-L3E6DsBtBw69tFZVpy_ve3b8vUfIG5D1SeyyJEqlkZFMYxlp6VWUMKtV4oVnQ9OETQwnk_ToKJtukJ9dLwweq-w4sSHqcm5xj3wgoE6pNAOBMfDhWMQ0H39cnEeYIIVPWrs4jRYi--7yByzfVh_2cviv33I-3j3c-RSFhIHISiHqSA-dMWVmyoRnjnvmOcu85eh65mCp79OhccxDlTQ2TRyoDS5sDJpJld5bZTExAuh_M1VDxntkc7qzPTpY7_AwAfBmsvVEFSJjg-UK7emFxHa636pgExbwt5LQ1Lnx3f_5Ct0jd4K6pqP2drhPNlz1gNwKQe_Hlw_J2S5QGor0akYPAcYuyjHeoLUmoQduhZSHcRo0R0fhEAZGcbeaftGzytVzbLtBKyaa61pTXZVU09y5BQ1WtTM6Op3BtaiPzx6Rr9cy28ekV80r94RQF2stE6mMQS94nWpXwkuxUivFrZF98r5DQGGDHTumgpwWsCxDtBRXaOmT1-uxi9aE5I-jthFI6xFoHN68MV_OisBDhTBGKOthkWythBnANK2MS-y41hnnZZ-8QxgWSG_wc6wOXRowKTQKK0ZpDKKSgUjsk60OhkXgvVVxhcE-ebX-GBgLH0Ppys0vcAwU2SRjGXv67694SW4CgIvPe5P9Z-Q2BzXZHu7bIr16eeGekxv2e32yWr4Idx4l364byr8Ayv1y5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Three-Dimensional+Resistivity+Distribution+with+Magnetotelluric+Data+and+a+Deep+Learning+Algorithm&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Xiaojun&rft.au=Craven%2C+James+A&rft.au=Tschirhart%2C+Victoria&rft.au=Grasby%2C+Stephen+E&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=18&rft.spage=3400&rft_id=info:doi/10.3390%2Frs16183400&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon