Estimating Three-Dimensional Resistivity Distribution with Magnetotelluric Data and a Deep Learning Algorithm
In this study, we describe a deep learning (DL)-based workflow for the three-dimensional (3D) geophysical inversion of magnetotelluric (MT) data. We derived a mathematical connection between a 3D resistivity model and the surface-observed electric/magnetic field response by using a fully connected n...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 16; číslo 18; s. 3400 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.09.2024
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this study, we describe a deep learning (DL)-based workflow for the three-dimensional (3D) geophysical inversion of magnetotelluric (MT) data. We derived a mathematical connection between a 3D resistivity model and the surface-observed electric/magnetic field response by using a fully connected neural network framework (U-Net). Limited by computer hardware functionality, the resistivity models were generated by using a random walk technique to enlarge the generalization coverage of the neural network model, and 15,000 paired datasets were utilized to train and validate it. Grid search was used to select the optimal configuration parameters. With the optimal model framework from the parameter tuning phase, the metrics showed stable convergence during model training/validation. In the test period, the trained model was applied to predict the resistivity distribution by using both the simulated synthetic and the real MT data from the Mount Meager area, British Columbia. The reliability of the model prediction was verified with noised input data from the synthetic model. The calculated results can be used to reconstruct the position and shape trends of bodies with anomalous resistivity, which verifies the stability and performance of the DL-based 3D inversion algorithm and showcases its potential practical applications. |
|---|---|
| AbstractList | In this study, we describe a deep learning (DL)-based workflow for the three-dimensional (3D) geophysical inversion of magnetotelluric (MT) data. We derived a mathematical connection between a 3D resistivity model and the surface-observed electric/magnetic field response by using a fully connected neural network framework (U-Net). Limited by computer hardware functionality, the resistivity models were generated by using a random walk technique to enlarge the generalization coverage of the neural network model, and 15,000 paired datasets were utilized to train and validate it. Grid search was used to select the optimal configuration parameters. With the optimal model framework from the parameter tuning phase, the metrics showed stable convergence during model training/validation. In the test period, the trained model was applied to predict the resistivity distribution by using both the simulated synthetic and the real MT data from the Mount Meager area, British Columbia. The reliability of the model prediction was verified with noised input data from the synthetic model. The calculated results can be used to reconstruct the position and shape trends of bodies with anomalous resistivity, which verifies the stability and performance of the DL-based 3D inversion algorithm and showcases its potential practical applications. |
| Audience | Academic |
| Author | Craven, James A. Grasby, Stephen E. Tschirhart, Victoria Liu, Xiaojun |
| Author_xml | – sequence: 1 givenname: Xiaojun orcidid: 0000-0002-6324-5932 surname: Liu fullname: Liu, Xiaojun – sequence: 2 givenname: James A. surname: Craven fullname: Craven, James A. – sequence: 3 givenname: Victoria orcidid: 0000-0003-2400-0550 surname: Tschirhart fullname: Tschirhart, Victoria – sequence: 4 givenname: Stephen E. surname: Grasby fullname: Grasby, Stephen E. |
| BookMark | eNptUcFu1DAQjVCRKKUXvsASF4SUMraTbHxcdQtUWoSEyjlynHHqVWIvtlPUv2fCIkAV9sGjmffezPi9LM588FgUrzlcSangfUy84a2sAJ4V5wI2oqyEEmf_xC-Ky5QOQEdKrqA6L-ablN2ss_Mju7uPiOXOzeiTC15P7CsmR_UHlx_ZjqLo-iVTif1w-Z591qPHHDJO0xKdYTudNdN-YJrtEI9sjzr6VXg7jSESY35VPLd6Snj5-70ovn24ubv-VO6_fLy93u5LU0mZS73Bvh9UP9RCobBgBShrhOBcIShp202PYKEVvWlr5HUlpOFcqmaw1jSmlhfF7Ul3CPrQHSNtGB-7oF33KxHi2OmYnZmwk30vG2N5UxlTkRY1NBUfoAWhlRADab09aR1j-L5gyt3skqGdtcewpE7yWra1AgUEffMEeghLpI9cURyaVtXViro6oUZN_Z23IUdt6A44O0OWWkf5bcthQ0MoSYR3J4KJIaWI9s9GHLrV-e6v8wSGJ2Djsl5Noy5u-h_lJ9Tise8 |
| CitedBy_id | crossref_primary_10_3389_feart_2024_1510962 |
| Cites_doi | 10.1016/0031-9201(93)90137-X 10.1111/j.1365-246X.1993.tb05600.x 10.1111/j.1365-246X.2011.05347.x 10.1190/tle38070512.1 10.1093/gji/ggaa161 10.4095/326740 10.1016/j.cageo.2020.104450 10.1016/j.jappgeo.2008.02.002 10.3390/min13040461 10.1016/j.cageo.2014.07.013 10.1111/j.1365-246X.1986.tb04552.x 10.1016/j.pepi.2021.106653 10.1190/1.1442303 10.1007/978-3-319-46723-8_49 10.1142/S0218488598000094 10.1190/geo2018-0838.1 10.1190/geo2019-0409.1 10.1007/s11770-021-0909-z 10.1190/tle37120894.1 10.1109/CVPR.2015.7298965 10.1093/gji/ggz204 10.1139/cjes-2022-0136 10.1016/j.cageo.2014.01.010 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs16183400 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database (ProQuest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_3bb36cf164cc4e159e2c41d0802a922d A810780293 10_3390_rs16183400 |
| GeographicLocations | Canada British Columbia |
| GeographicLocations_xml | – name: Canada – name: British Columbia |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c433t-a7ebbd9bd529e2f0f209fc22119e093f87be0f082bc85e15423c11396dffc6c53 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001322958000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:37:10 EDT 2025 Thu Sep 04 19:26:54 EDT 2025 Fri Jul 25 11:53:45 EDT 2025 Tue Nov 04 18:15:01 EST 2025 Sat Nov 29 07:14:06 EST 2025 Tue Nov 18 22:44:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c433t-a7ebbd9bd529e2f0f209fc22119e093f87be0f082bc85e15423c11396dffc6c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2400-0550 0000-0002-6324-5932 |
| OpenAccessLink | https://www.proquest.com/docview/3110689540?pq-origsite=%requestingapplication% |
| PQID | 3110689540 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3bb36cf164cc4e159e2c41d0802a922d proquest_miscellaneous_3153859090 proquest_journals_3110689540 gale_infotracacademiconefile_A810780293 crossref_primary_10_3390_rs16183400 crossref_citationtrail_10_3390_rs16183400 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Russell (ref_6) 2019; 38 Chen (ref_16) 2020; 138 Puzyrev (ref_8) 2019; 218 Ronneberger (ref_15) 2015; Volume 9351 ref_14 ref_13 Zhou (ref_25) 2018; Volume 11045 Egbert (ref_21) 2012; 189 Hochreiter (ref_24) 1998; 6 Kelbert (ref_30) 2014; 66 Krieger (ref_26) 2014; 72 Moghadas (ref_9) 2020; 222 Hu (ref_11) 2021; 311 ref_23 Das (ref_7) 2019; 84 Ward (ref_17) 1987; 1 Constable (ref_22) 1987; 52 ref_1 Egbert (ref_18) 1986; 87 Guo (ref_10) 2020; 85 ref_3 Mackie (ref_19) 1993; 115 ref_2 Kim (ref_5) 2018; 37 Wang (ref_12) 2021; 18 ref_29 ref_28 ref_27 ref_4 Farquharson (ref_20) 2009; 68 Jones (ref_31) 1993; 81 |
| References_xml | – ident: ref_28 – volume: 81 start-page: 289 year: 1993 ident: ref_31 article-title: Electromagnetic images of a volcanic zone publication-title: Phys. Earth Planet. Inter. doi: 10.1016/0031-9201(93)90137-X – volume: 115 start-page: 215 year: 1993 ident: ref_19 article-title: Three-dimensional magnetotelluric inversion using conjugate gradients publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1993.tb05600.x – volume: 189 start-page: 251 year: 2012 ident: ref_21 article-title: Computational recipes for electromagnetic inverse problems publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2011.05347.x – volume: 38 start-page: 512 year: 2019 ident: ref_6 article-title: Machine learning and geophysical inversion; a numerical study publication-title: Lead. Edge doi: 10.1190/tle38070512.1 – volume: 222 start-page: 247 year: 2020 ident: ref_9 article-title: One-dimensional deep learning inversion of electromagnetic induction data using convolutional neural network publication-title: Geophys. J. Int. doi: 10.1093/gji/ggaa161 – ident: ref_2 doi: 10.4095/326740 – volume: 138 start-page: 104450 year: 2020 ident: ref_16 article-title: Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary Basin publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104450 – ident: ref_1 – volume: 68 start-page: 450 year: 2009 ident: ref_20 article-title: Three-dimensional inversion of magnetotelluric data for mineral exploration: An example from the McArthur River uranium deposit, Saskatchewan, Canada publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2008.02.002 – ident: ref_13 doi: 10.3390/min13040461 – volume: 72 start-page: 167 year: 2014 ident: ref_26 article-title: MTpy: A Python toolbox for magnetotellurics publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.07.013 – volume: Volume 9351 start-page: 234 year: 2015 ident: ref_15 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Medical image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015 – volume: 87 start-page: 173 year: 1986 ident: ref_18 article-title: Robust estimation of geomagnetic transfer functions publication-title: Geophys. J. R. Astron. Soc. doi: 10.1111/j.1365-246X.1986.tb04552.x – volume: 311 start-page: 106653 year: 2021 ident: ref_11 article-title: Inversion of magnetic data using deep neural networks publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2021.106653 – volume: 1 start-page: 201 year: 1987 ident: ref_17 article-title: Electromagnetic Theory for Geophysical Applications publication-title: Electromagn. Methods Appl. Geophys. – volume: 52 start-page: 289 year: 1987 ident: ref_22 article-title: Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data publication-title: Geophysics doi: 10.1190/1.1442303 – ident: ref_4 – ident: ref_29 – ident: ref_27 – ident: ref_23 doi: 10.1007/978-3-319-46723-8_49 – volume: 6 start-page: 107 year: 1998 ident: ref_24 article-title: The Vanishing Gradient Problem during Learning Recurrent Neural Nets and Problem Solutions publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst. doi: 10.1142/S0218488598000094 – volume: 84 start-page: R869 year: 2019 ident: ref_7 article-title: Convolutional neural network for seismic impedance inversion publication-title: Geophysics doi: 10.1190/geo2018-0838.1 – volume: Volume 11045 start-page: 3 year: 2018 ident: ref_25 article-title: Unet++: A nested u-net architecture for medical image segmentation publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018 – volume: 85 start-page: WA53 year: 2020 ident: ref_10 article-title: Application of supervised descent method for 2D magnetotelluric data inversion publication-title: Geophysics doi: 10.1190/geo2019-0409.1 – volume: 18 start-page: 451 year: 2021 ident: ref_12 article-title: Three-dimensional gravity inversion based on 3D U-Net publication-title: Appl. Geophys. doi: 10.1007/s11770-021-0909-z – volume: 37 start-page: 894 year: 2018 ident: ref_5 article-title: Geophysical inversion versus machine learning in inverse problems publication-title: Lead. Edge doi: 10.1190/tle37120894.1 – ident: ref_14 doi: 10.1109/CVPR.2015.7298965 – volume: 218 start-page: 817 year: 2019 ident: ref_8 article-title: Deep learning electromagnetic inversion with convolutional neural networks publication-title: Geophys. J. Int. doi: 10.1093/gji/ggz204 – ident: ref_3 doi: 10.1139/cjes-2022-0136 – volume: 66 start-page: 40 year: 2014 ident: ref_30 article-title: ModEM: A modular system for inversion of electromagnetic geophysical data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.01.010 |
| SSID | ssj0000331904 |
| Score | 2.3822253 |
| Snippet | In this study, we describe a deep learning (DL)-based workflow for the three-dimensional (3D) geophysical inversion of magnetotelluric (MT) data. We derived a... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3400 |
| SubjectTerms | Algorithms British Columbia computer hardware Computer peripherals Data analysis data collection Data mining Datasets Deep learning Electric fields Electric properties Electrical resistivity geophysics inversion problem Machine learning Magnetic fields magnetotelluric Mathematical models Methods Mount Meager mountains neural network Neural networks Optimization Parameters prediction Random walk Workflow |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1CKLSXkKYtdZIWlRZKDiay9bHWcdtN6KUhlBRyE5IsbQOJN-w6gf77ztjKdg8pveTgg-0xyKMZzRtb8wbgE8J6VUWjykZ6WcqmkqWTSZeKB6dVEolP_NBsYnJ21lxemvONVl-0J2ykBx4Vdyy8FzokRPUhyIjBN9ZBVi2ViDpT1y2tvniykUwNa7BA0-Jy5CMVmNcfL1dEDS8klbJtRKCBqP9fy_EQY053YSeDQzYdB_UStmK3B89zn_Jfv1_BzQl6JGHMbs4ucBZiOSN2_pFZg_2IK_JY6gbBZkSIm3tZMfrYyr67eRf7BVWNEJMQm7neMde1zLFZjLcsM63O2fR6vljiEzev4efpycXXb2VumFAGKURfukn0vjW-VTWqKfFUc5NCTSRukRuRmomPPGHQ96FRqEuEUqFCCKjblIIOSryB7W7RxbfAYuWcVFJ7T1TmrnGxxUPz1mldBy8LOHpQog2ZTZyaWlxbzCpI4favwgv4uJa9HTk0HpX6QnOxliDe6-ECWoPN1mD_Zw0FfKaZtOSdOJzgcpEBvhTxXNlpg-kuChtRwOHDZNvstisrEAzpxiCKLeDD-jY6HP1FcV1c3JEMxghluOH7TzHiA3hRI04at60dwna_vIvv4Fm4769Wy_eDVf8Bf8j9GQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Estimating Three-Dimensional Resistivity Distribution with Magnetotelluric Data and a Deep Learning Algorithm |
| URI | https://www.proquest.com/docview/3110689540 https://www.proquest.com/docview/3153859090 https://doaj.org/article/3bb36cf164cc4e159e2c41d0802a922d |
| Volume | 16 |
| WOSCitedRecordID | wos001322958000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database (ProQuest) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (ProQuest) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgi0QvvCsCZWUEEuIQ1YntbHxCW3YrOHQVlSIVLpHt2ClSm2w3KRIXfjszWe-WA3DhEB_iUWRnZuyZsecbQl6DWS8Tp2ScCyNikSci1sJnsWRWZ9JzzyZmKDYxWSzyszNVhIBbF65VbtbEYaGuWosx8gMO-1SWKzAw3i2vYqwahaeroYTGbbKDSGViRHYO54viZBtlYRxEjIk1LikH__5g1SFEPBeY0vbbTjQA9v9tWR72mqP7_zvKB-ResDLpdC0WD8kt1zwid0PB8_Mfj8nlHFQbjdWmpqfAThfPEOZ_DdFBT1yHqo9lJegMkXVDUSyKUVt6rOvG9S2mnyAkEZ3pXlPdVFTTmXNLGiBbazq9qGFs_fnlE_L5aH76_kMcKi_EVnDex3rijKmUqWSqXOqZT5nyNsV_7JjiPp8YxzxYD8bm0oEVlnKbgC2ZVd7bzEq-R0ZN27inhLpEayFFZgxioutcuwqejFU6y1JrRETebrhQ2gBLjtUxLkpwT5Bj5Q3HIvJqS7tcg3H8keoQmbmlQADt4UW7qsugjyU3hmfWg7NorYAZwDStSCrMPNYqTauIvEFRKFHNYThWh2wFmBQCZpXTHPxmIFY8IvsbUSiD_nfljRxE5OW2GzQXj2N049prpIHNRiqm2LN_f-I52U3BlFrfbNsno3517V6QO_Z7_61bjYPIj4dowhjvrn7C9ucc2kJ-hf7i43Hx5ReEVhJb |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwGP00dUjjwm9E2QAjQIhDNMd20uSAUKGbVm2tKlSkccpsx-6QtqRrM9D-Kf5Gvi9JOw7AbQcOvbRWVCcv73t28r0H8BplfRS6NAoSZVSgklAFWvk4iLjVceSl5z1Th030xuPk-DidbMDPVS8MvVa54sSaqPPS0h75rsQ6FScpCowP84uAUqPo6eoqQqOBxaG7-oFLtuX74QCv7xsh9vemnw6CNlUgsErKKtA9Z0yemjwSqROee8FTbwU5nTlc3vukZxz3WBmNTSKHCkNIG6JOinPvbWwpJQIpf1Mh2JMObE6Go8nX9a4OlwhprhofVClTvrtYkiW9VNRC91vlqwMC_lYG6tq2f_d_Oyv34E6rolm_gf192HDFA9hqA91Prx7C-R5SF4nxYsamCFcXDCjGoLEgYZ_dkqiNYjPYgJyD29AvRrvSbKRnhatKaq8hyyU20JVmusiZZgPn5qy1pJ2x_tkMz0V1ev4IvtzIbB9DpygL9wSYC7VWkYqNIc93nWiX4yfmuY5jYY3qwrvVVc9sa7tO6R9nGS6_CCHZNUK68Go9dt6Yjfxx1EcCz3oEGYTXX5SLWdbyTSaNkbH1uBi2VuEMcJpWhTl1VutUiLwLbwl6GdEY_h2r224MnBQZgmX9JETxyFEMdmFnBb2s5bdldo27Lrxc_4zMRI-bdOHKSxqDxTRKecqf_vsQL2DrYDo6yo6G48NtuC1QNjZv8e1Ap1pcumdwy36vvi0Xz9vbjcHJTWP5F0q8anQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwGLWmDgEXfiMKA4wAIQ5RHdtxkwNC3bKKaVBV05B2C7Zjd5O2tGsz0P41_jq-L3E6DsBtBw69tFZVpy_ve3b8vUfIG5D1SeyyJEqlkZFMYxlp6VWUMKtV4oVnQ9OETQwnk_ToKJtukJ9dLwweq-w4sSHqcm5xj3wgoE6pNAOBMfDhWMQ0H39cnEeYIIVPWrs4jRYi--7yByzfVh_2cviv33I-3j3c-RSFhIHISiHqSA-dMWVmyoRnjnvmOcu85eh65mCp79OhccxDlTQ2TRyoDS5sDJpJld5bZTExAuh_M1VDxntkc7qzPTpY7_AwAfBmsvVEFSJjg-UK7emFxHa636pgExbwt5LQ1Lnx3f_5Ct0jd4K6pqP2drhPNlz1gNwKQe_Hlw_J2S5QGor0akYPAcYuyjHeoLUmoQduhZSHcRo0R0fhEAZGcbeaftGzytVzbLtBKyaa61pTXZVU09y5BQ1WtTM6Op3BtaiPzx6Rr9cy28ekV80r94RQF2stE6mMQS94nWpXwkuxUivFrZF98r5DQGGDHTumgpwWsCxDtBRXaOmT1-uxi9aE5I-jthFI6xFoHN68MV_OisBDhTBGKOthkWythBnANK2MS-y41hnnZZ-8QxgWSG_wc6wOXRowKTQKK0ZpDKKSgUjsk60OhkXgvVVxhcE-ebX-GBgLH0Ppys0vcAwU2SRjGXv67694SW4CgIvPe5P9Z-Q2BzXZHu7bIr16eeGekxv2e32yWr4Idx4l364byr8Ayv1y5A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Three-Dimensional+Resistivity+Distribution+with+Magnetotelluric+Data+and+a+Deep+Learning+Algorithm&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Xiaojun&rft.au=Craven%2C+James+A&rft.au=Tschirhart%2C+Victoria&rft.au=Grasby%2C+Stephen+E&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=18&rft.spage=3400&rft_id=info:doi/10.3390%2Frs16183400&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |