A fuzzy clustering segmentation method based on neighborhood grayscale information for defining cucumber leaf spot disease images

•Improving the extraction of cucumber leaf spot disease under complex backgrounds.•Redefining the feature distance between pixel xj and clustering center vi.•Calculating the two-dimensional neighborhood mean gray value as a sample point.•Proposing a new weighting method for gray value and neighborho...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers and electronics in agriculture Ročník 136; s. 157 - 165
Hlavní autori: Bai, Xuebing, Li, Xinxing, Fu, Zetian, Lv, Xiongjie, Zhang, Lingxian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 15.04.2017
Elsevier BV
Predmet:
ISSN:0168-1699, 1872-7107
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Improving the extraction of cucumber leaf spot disease under complex backgrounds.•Redefining the feature distance between pixel xj and clustering center vi.•Calculating the two-dimensional neighborhood mean gray value as a sample point.•Proposing a new weighting method for gray value and neighborhood gray value. Research reported in this paper aims to improve the extraction of cucumber leaf spot disease under complex backgrounds. An improved fuzzy C-means (FCM) algorithm is proposed in this paper. First, three runs of the marked-watershed algorithm, based on HSI space, are applied to isolate the target leaf. Second, the distance between the pixel xj and the cluster center vi is defined as ‖xj2-vi2‖. Third, the pixel's neighborhood mean gray value, which constitutes a two-dimensional vector with grayscale information, is calculated as a sample point, rather than FCM grayscale. Finally, the neighborhood mean gray value and pixel gray value are weighted by matrix w. To evaluate the robustness and accuracy of the proposed segmentation method, tests were conducted for 129 cucumber disease images in vegetable disease database. Results show that average segmentation error was only 0.12%. The proposed method provides an effective and robust segmentation means for sorting and grading apples in cucumber disease diagnosis, and it can be easily adapted for other imaging-based agricultural applications.
AbstractList Research reported in this paper aims to improve the extraction of cucumber leaf spot disease under complex backgrounds. An improved fuzzy C-means (FCM) algorithm is proposed in this paper. First, three runs of the marked-watershed algorithm, based on HSI space, are applied to isolate the target leaf. Second, the distance between the pixel xj and the cluster center vi is defined as ‖xj2-vi2‖. Third, the pixel's neighborhood mean gray value, which constitutes a two-dimensional vector with grayscale information, is calculated as a sample point, rather than FCM grayscale. Finally, the neighborhood mean gray value and pixel gray value are weighted by matrix w. To evaluate the robustness and accuracy of the proposed segmentation method, tests were conducted for 129 cucumber disease images in vegetable disease database. Results show that average segmentation error was only 0.12%. The proposed method provides an effective and robust segmentation means for sorting and grading apples in cucumber disease diagnosis, and it can be easily adapted for other imaging-based agricultural applications.
Research reported in this paper aims to improve the extraction of cucumber leaf spot disease under complex backgrounds. An improved fuzzy C-means (FCM) algorithm is proposed in this paper. First, three runs of the marked-watershed algorithm, based on HSI space, are applied to isolate the target leaf. Second, the distance between the pixel xj and the cluster center vi is defined as ... Third, the pixel's neighborhood mean gray value, which constitutes a two-dimensional vector with grayscale information, is calculated as a sample point, rather than FCM grayscale. Finally, the neighborhood mean gray value and pixel gray value are weighted by matrix w. To evaluate the robustness and accuracy of the proposed segmentation method, tests were conducted for 129 cucumber disease images in vegetable disease database. Results show that average segmentation error was only 0.12%. The proposed method provides an effective and robust segmentation means for sorting and grading apples in cucumber disease diagnosis, and it can be easily adapted for other imaging-based agricultural applications.
•Improving the extraction of cucumber leaf spot disease under complex backgrounds.•Redefining the feature distance between pixel xj and clustering center vi.•Calculating the two-dimensional neighborhood mean gray value as a sample point.•Proposing a new weighting method for gray value and neighborhood gray value. Research reported in this paper aims to improve the extraction of cucumber leaf spot disease under complex backgrounds. An improved fuzzy C-means (FCM) algorithm is proposed in this paper. First, three runs of the marked-watershed algorithm, based on HSI space, are applied to isolate the target leaf. Second, the distance between the pixel xj and the cluster center vi is defined as ‖xj2-vi2‖. Third, the pixel's neighborhood mean gray value, which constitutes a two-dimensional vector with grayscale information, is calculated as a sample point, rather than FCM grayscale. Finally, the neighborhood mean gray value and pixel gray value are weighted by matrix w. To evaluate the robustness and accuracy of the proposed segmentation method, tests were conducted for 129 cucumber disease images in vegetable disease database. Results show that average segmentation error was only 0.12%. The proposed method provides an effective and robust segmentation means for sorting and grading apples in cucumber disease diagnosis, and it can be easily adapted for other imaging-based agricultural applications.
Author Fu, Zetian
Li, Xinxing
Zhang, Lingxian
Bai, Xuebing
Lv, Xiongjie
Author_xml – sequence: 1
  givenname: Xuebing
  surname: Bai
  fullname: Bai, Xuebing
  email: 464161695@qq.com
  organization: China Agricultural University, Beijing 100083, PR China
– sequence: 2
  givenname: Xinxing
  surname: Li
  fullname: Li, Xinxing
  organization: China Agricultural University, Beijing 100083, PR China
– sequence: 3
  givenname: Zetian
  surname: Fu
  fullname: Fu, Zetian
  organization: China Agricultural University, Beijing 100083, PR China
– sequence: 4
  givenname: Xiongjie
  surname: Lv
  fullname: Lv, Xiongjie
  organization: Information Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, PR China
– sequence: 5
  givenname: Lingxian
  surname: Zhang
  fullname: Zhang, Lingxian
  email: zhanglx@cau.edu.cn
  organization: China Agricultural University, Beijing 100083, PR China
BookMark eNqFkb2O1DAUhS20SMwOvAGFJRqaBDvOxAkF0mrFn7QSDdSW45xkPErswXaQZjveHI9CtQVU19c637n2ubfkxnkHQl5zVnLGm3en0vjlrKeyYlyWTJSM1c_IjreyKiRn8obssqwteNN1L8htjCeW-66VO_L7jo7r4-OFmnmNCcG6iUZMC1zSyXpHF6SjH2ivIwaaewc7HXsfjj7fTkFfotEzqHWjD8uG5BMdMFp3NTOrWZcegc7QI41nn-hgI7IdtYueEF-S56OeI179rXvy49PH7_dfiodvn7_e3z0UphYiFboWkFL0dTtUfSNrGBwgaghwNA3avq9F040Nr8ZKS8iWdblKdjgcesMxiD15u_meg_-5Iia12Ggwz9rBr1FVLKeWsTxkT948kZ78Glx-neKdqLhkrBVZVW8qE3yMAaM6h_ylcFGcqete1Elte1HXvSgmVJ6QsfdPMGO3rFPQdv4f_GGDkZP6ZRFUNBbOYLABJqnB238b_AGQH7AY
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3373001
crossref_primary_10_1016_j_compag_2020_105652
crossref_primary_10_1002_ps_8184
crossref_primary_10_1007_s11042_021_11375_0
crossref_primary_10_1007_s12083_020_01041_x
crossref_primary_10_1007_s41348_020_00368_0
crossref_primary_10_1016_j_procs_2020_03_285
crossref_primary_10_3390_agronomy13010196
crossref_primary_10_1088_1742_6596_1547_1_012015
crossref_primary_10_1186_s12859_024_05890_8
crossref_primary_10_1007_s11042_022_13013_9
crossref_primary_10_1016_j_compag_2019_02_002
crossref_primary_10_1111_exsy_13174
crossref_primary_10_1007_s11042_022_13925_6
crossref_primary_10_1007_s00607_018_0638_1
crossref_primary_10_1007_s11042_023_17098_8
crossref_primary_10_1007_s13198_020_00972_1
crossref_primary_10_3390_agriculture13091662
crossref_primary_10_3390_electronics8111308
crossref_primary_10_1016_j_compeleceng_2021_107104
crossref_primary_10_1080_07060661_2022_2053588
crossref_primary_10_1016_j_measurement_2025_117706
crossref_primary_10_4018_IJSIR_2020070101
crossref_primary_10_1016_j_ecoinf_2021_101247
crossref_primary_10_1088_1757_899X_1007_1_012082
crossref_primary_10_7831_ras_13_1_81
crossref_primary_10_1016_j_compag_2018_08_048
crossref_primary_10_1016_j_compag_2017_08_023
crossref_primary_10_1155_2022_5760595
crossref_primary_10_1177_15501477211007407
crossref_primary_10_1016_j_compag_2020_105527
crossref_primary_10_1016_j_eja_2023_126756
crossref_primary_10_3382_ps_pez564
crossref_primary_10_1016_j_procs_2017_11_323
crossref_primary_10_1111_exsy_12625
crossref_primary_10_1016_j_ijleo_2021_166566
crossref_primary_10_3390_agriculture12121997
crossref_primary_10_1007_s11831_019_09324_0
crossref_primary_10_1016_j_compag_2020_105753
crossref_primary_10_3233_JIFS_202401
crossref_primary_10_1002_rob_22074
crossref_primary_10_3390_agriculture12101543
crossref_primary_10_1016_j_compag_2022_107539
crossref_primary_10_1109_ACCESS_2017_2757528
crossref_primary_10_3390_s20030578
crossref_primary_10_1007_s11277_021_09054_2
crossref_primary_10_1049_iet_ipr_2018_6210
crossref_primary_10_3390_agriculture13020504
crossref_primary_10_1016_j_compag_2024_108739
crossref_primary_10_1016_j_cropro_2024_106762
crossref_primary_10_1007_s11042_023_15549_w
crossref_primary_10_1088_1742_6596_1808_1_012025
crossref_primary_10_1016_j_procs_2020_03_308
crossref_primary_10_1007_s41348_022_00578_8
crossref_primary_10_3390_rs13030396
crossref_primary_10_3233_JIFS_212451
crossref_primary_10_7717_peerj_cs_1167
crossref_primary_10_3389_fpls_2022_795410
crossref_primary_10_3390_agriculture15060583
crossref_primary_10_1016_j_compag_2019_104934
crossref_primary_10_1016_j_compag_2024_108812
Cites_doi 10.1016/j.compag.2012.02.014
10.1016/j.compag.2010.02.007
10.1109/42.996338
10.1080/01969727308546046
10.1016/j.compbiomed.2010.04.001
10.1016/j.fss.2014.12.007
10.3724/SP.J.1187.2010.00385
10.1016/j.ijleo.2015.09.006
10.1016/j.neucom.2015.10.011
10.4028/www.scientific.net/AMM.651-653.2424
10.1016/j.asoc.2015.06.021
10.1016/j.dsp.2013.07.005
10.1016/j.compag.2014.12.007
10.1016/j.ijleo.2015.08.037
10.1109/TIP.2010.2040763
10.1080/07352681003617285
10.1016/j.jag.2015.01.009
10.1016/j.compmedimag.2005.10.001
10.1016/j.apsusc.2015.05.033
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Apr 15, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 15, 2017
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2017.03.004
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
EndPage 165
ExternalDocumentID 10_1016_j_compag_2017_03_004
S0168169916302150
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
AXJTR
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UNMZH
Y6R
~G-
~KM
29F
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACIEU
ACLOT
ACMHX
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLV
HLZ
HVGLF
HZ~
R2-
SBC
SEW
UHS
WUQ
~HD
7SC
7SP
8FD
AGCQF
AGRNS
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c433t-a43e773b48d2b674ece5e34e3e1e66e8bb4369f612f2a7e78092a770555bc1ed3
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399851200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Sun Sep 28 13:19:56 EDT 2025
Fri Jul 25 08:29:11 EDT 2025
Tue Nov 18 21:58:30 EST 2025
Sat Nov 29 03:16:20 EST 2025
Fri Feb 23 02:29:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords FCM
Weighted method
Target leaf
Image processing
Neighborhood grayscale
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c433t-a43e773b48d2b674ece5e34e3e1e66e8bb4369f612f2a7e78092a770555bc1ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1932170083
PQPubID 2045491
PageCount 9
ParticipantIDs proquest_miscellaneous_2000478077
proquest_journals_1932170083
crossref_primary_10_1016_j_compag_2017_03_004
crossref_citationtrail_10_1016_j_compag_2017_03_004
elsevier_sciencedirect_doi_10_1016_j_compag_2017_03_004
PublicationCentury 2000
PublicationDate 2017-04-15
PublicationDateYYYYMMDD 2017-04-15
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Benaichouche, Oulhadj, Siarry (b0015) 2013; 23
Chuang, Tzeng, Chen, Wu, Chen (b0030) 2006; 30
Dunn (b0035) 1973; 3
Zhao, Jia (b0115) 2015; 126
Atzberger, Darvishzadeh, Immitzer, Schlerf, Skidmore, le Maire (b0010) 2015; 43
Tang, Liu, Zhao, Tao (b0105) 2010; 24
Bock, Poole, Parker, Gottwald (b0025) 2010; 29
Ji, Deng, He, Jia, Du, He (b0045) 2014; 651–653
Sankaran, Mishra, Ehsani, Davis (b0100) 2010; 72
Ahmed, Yamany, Mohamed, Farag, Moriarty (b0005) 2002; 21
Li, Huang, Gong (b0080) 2010
Bezdek (b0020) 1981
Kannan, Ramathilagam, Sathya, Pandiyarajan (b0060) 2010; 40
Prasad, Peddoju, Ghosh (b0095) 2014
Lavania, Matey (b0070) 2015
Yuan, Wu, Peng (b0110) 2015; 349
Ma, Li, Wen, Fu, Zhang (b0055) 2015; 111
Gao, Wu (b0040) 2015; 126
Leski (b0075) 2016; 286
Krinidis, Chatzis (b0065) 2010; 19
Zainuddin, Pauline (b9025) 2015; 35
Pertot, Kuflik, Gordon, Freeman, Elad (b0085) 2012; 84
Pimentel, de Souza (b0090) 2016; 174
Dunn (10.1016/j.compag.2017.03.004_b0035) 1973; 3
Yuan (10.1016/j.compag.2017.03.004_b0110) 2015; 349
Lavania (10.1016/j.compag.2017.03.004_b0070) 2015
Zainuddin (10.1016/j.compag.2017.03.004_b9025) 2015; 35
Benaichouche (10.1016/j.compag.2017.03.004_b0015) 2013; 23
Gao (10.1016/j.compag.2017.03.004_b0040) 2015; 126
Ji (10.1016/j.compag.2017.03.004_b0045) 2014; 651–653
Zhao (10.1016/j.compag.2017.03.004_b0115) 2015; 126
Krinidis (10.1016/j.compag.2017.03.004_b0065) 2010; 19
Sankaran (10.1016/j.compag.2017.03.004_b0100) 2010; 72
Chuang (10.1016/j.compag.2017.03.004_b0030) 2006; 30
Kannan (10.1016/j.compag.2017.03.004_b0060) 2010; 40
Leski (10.1016/j.compag.2017.03.004_b0075) 2016; 286
Pimentel (10.1016/j.compag.2017.03.004_b0090) 2016; 174
Bezdek (10.1016/j.compag.2017.03.004_b0020) 1981
Tang (10.1016/j.compag.2017.03.004_b0105) 2010; 24
Ma (10.1016/j.compag.2017.03.004_b0055) 2015; 111
Atzberger (10.1016/j.compag.2017.03.004_b0010) 2015; 43
Bock (10.1016/j.compag.2017.03.004_b0025) 2010; 29
Li (10.1016/j.compag.2017.03.004_b0080) 2010
Ahmed (10.1016/j.compag.2017.03.004_b0005) 2002; 21
Pertot (10.1016/j.compag.2017.03.004_b0085) 2012; 84
Prasad (10.1016/j.compag.2017.03.004_b0095) 2014
References_xml – volume: 126
  start-page: 4330
  year: 2015
  end-page: 4336
  ident: b0115
  article-title: Segmentation algorithm for small targets based on improved data field and fuzzy c-means clustering
  publication-title: Optik
– volume: 174
  start-page: 946
  year: 2016
  end-page: 965
  ident: b0090
  article-title: Multivariate fuzzy C-means algorithms with weighting
  publication-title: Neurocomputing
– volume: 24
  start-page: 3940
  year: 2010
  end-page: 3949
  ident: b0105
  article-title: Soybean leaves recognition of images with complicated background
  publication-title: J. Electron. Meas. Instrum.
– volume: 3
  start-page: 32
  year: 1973
  end-page: 57
  ident: b0035
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
– volume: 72
  start-page: 1
  year: 2010
  end-page: 13
  ident: b0100
  article-title: A review of advanced techniques for detecting plant diseases
  publication-title: Comput. Electron. Agric.
– volume: 651–653
  start-page: 2424
  year: 2014
  end-page: 2429
  ident: b0045
  article-title: Extraction of tobacco leaves color features based on HSI color space
  publication-title: Appl. Mech. Mater.
– volume: 286
  start-page: 114
  year: 2016
  end-page: 133
  ident: b0075
  article-title: Fuzzy c-ordered-means clustering
  publication-title: Fuzzy Sets Syst.
– volume: 126
  start-page: 5320
  year: 2015
  end-page: 5324
  ident: b0040
  article-title: Agricultural image target segmentation based on fuzzy set
  publication-title: Optik
– volume: 29
  start-page: 59
  year: 2010
  end-page: 107
  ident: b0025
  article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging
  publication-title: Crit. Rev. Plant Sci.
– year: 2010
  ident: b0080
  article-title: Watershed segmentation based on order morphological gradient reconstruction
– volume: 40
  start-page: 572
  year: 2010
  end-page: 579
  ident: b0060
  article-title: Effective fuzzy c-means based kernel function in segmenting medical images
  publication-title: Comput. Biol. Med.
– volume: 19
  start-page: 1328
  year: 2010
  end-page: 1337
  ident: b0065
  article-title: A robust fuzzy local information c-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
– volume: 84
  start-page: 144
  year: 2012
  end-page: 154
  ident: b0085
  article-title: Identificator: a web-based tool for visual plant disease identification, a proof of concept with a case study on strawberry
  publication-title: Comput. Electron. Agric.
– volume: 43
  start-page: 19
  year: 2015
  end-page: 31
  ident: b0010
  article-title: Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 1981
  ident: b0020
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– volume: 30
  start-page: 9
  year: 2006
  end-page: 15
  ident: b0030
  article-title: Fuzzy c-means clustering with spatial information for image segmentation
  publication-title: Comput. Med. Imaging Graph.
– year: 2015
  ident: b0070
  article-title: Novel method for weed classification in maize field using Otsu and PCA implementation
– year: 2014
  ident: b0095
  article-title: Energy efficient mobile vision system for plant leaf disease identification
  publication-title: IEEE Wireless Communications and Networking Conference
– volume: 35
  start-page: 433
  year: 2015
  end-page: 448
  ident: b9025
  article-title: An effective fuzzy C-means algorithm based on symmetry similarity approach
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 193
  year: 2002
  end-page: 199
  ident: b0005
  article-title: A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 23
  start-page: 1390
  year: 2013
  end-page: 1400
  ident: b0015
  article-title: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction
  publication-title: Digital Signal Process.
– volume: 111
  start-page: 92
  year: 2015
  end-page: 102
  ident: b0055
  article-title: A key frame extraction method for processing greenhouse vegetables production monitoring video
  publication-title: Comput. Electron. Agric.
– volume: 349
  start-page: 472
  year: 2015
  end-page: 484
  ident: b0110
  article-title: An improved Otsu method using the weighted object variance for defect detection
  publication-title: Appl. Surf. Sci.
– volume: 84
  start-page: 144
  year: 2012
  ident: 10.1016/j.compag.2017.03.004_b0085
  article-title: Identificator: a web-based tool for visual plant disease identification, a proof of concept with a case study on strawberry
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2012.02.014
– year: 2015
  ident: 10.1016/j.compag.2017.03.004_b0070
– year: 2014
  ident: 10.1016/j.compag.2017.03.004_b0095
  article-title: Energy efficient mobile vision system for plant leaf disease identification
– volume: 72
  start-page: 1
  year: 2010
  ident: 10.1016/j.compag.2017.03.004_b0100
  article-title: A review of advanced techniques for detecting plant diseases
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.02.007
– volume: 21
  start-page: 193
  year: 2002
  ident: 10.1016/j.compag.2017.03.004_b0005
  article-title: A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.996338
– volume: 3
  start-page: 32
  year: 1973
  ident: 10.1016/j.compag.2017.03.004_b0035
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybern.
  doi: 10.1080/01969727308546046
– volume: 40
  start-page: 572
  year: 2010
  ident: 10.1016/j.compag.2017.03.004_b0060
  article-title: Effective fuzzy c-means based kernel function in segmenting medical images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2010.04.001
– volume: 286
  start-page: 114
  year: 2016
  ident: 10.1016/j.compag.2017.03.004_b0075
  article-title: Fuzzy c-ordered-means clustering
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2014.12.007
– volume: 24
  start-page: 3940
  issue: 4
  year: 2010
  ident: 10.1016/j.compag.2017.03.004_b0105
  article-title: Soybean leaves recognition of images with complicated background
  publication-title: J. Electron. Meas. Instrum.
  doi: 10.3724/SP.J.1187.2010.00385
– year: 1981
  ident: 10.1016/j.compag.2017.03.004_b0020
– volume: 126
  start-page: 5320
  year: 2015
  ident: 10.1016/j.compag.2017.03.004_b0040
  article-title: Agricultural image target segmentation based on fuzzy set
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.09.006
– volume: 174
  start-page: 946
  year: 2016
  ident: 10.1016/j.compag.2017.03.004_b0090
  article-title: Multivariate fuzzy C-means algorithms with weighting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.011
– year: 2010
  ident: 10.1016/j.compag.2017.03.004_b0080
– volume: 651–653
  start-page: 2424
  year: 2014
  ident: 10.1016/j.compag.2017.03.004_b0045
  article-title: Extraction of tobacco leaves color features based on HSI color space
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.651-653.2424
– volume: 35
  start-page: 433
  year: 2015
  ident: 10.1016/j.compag.2017.03.004_b9025
  article-title: An effective fuzzy C-means algorithm based on symmetry similarity approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.021
– volume: 23
  start-page: 1390
  year: 2013
  ident: 10.1016/j.compag.2017.03.004_b0015
  article-title: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2013.07.005
– volume: 111
  start-page: 92
  year: 2015
  ident: 10.1016/j.compag.2017.03.004_b0055
  article-title: A key frame extraction method for processing greenhouse vegetables production monitoring video
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.12.007
– volume: 126
  start-page: 4330
  year: 2015
  ident: 10.1016/j.compag.2017.03.004_b0115
  article-title: Segmentation algorithm for small targets based on improved data field and fuzzy c-means clustering
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.08.037
– volume: 19
  start-page: 1328
  year: 2010
  ident: 10.1016/j.compag.2017.03.004_b0065
  article-title: A robust fuzzy local information c-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2040763
– volume: 29
  start-page: 59
  year: 2010
  ident: 10.1016/j.compag.2017.03.004_b0025
  article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352681003617285
– volume: 43
  start-page: 19
  year: 2015
  ident: 10.1016/j.compag.2017.03.004_b0010
  article-title: Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2015.01.009
– volume: 30
  start-page: 9
  year: 2006
  ident: 10.1016/j.compag.2017.03.004_b0030
  article-title: Fuzzy c-means clustering with spatial information for image segmentation
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2005.10.001
– volume: 349
  start-page: 472
  year: 2015
  ident: 10.1016/j.compag.2017.03.004_b0110
  article-title: An improved Otsu method using the weighted object variance for defect detection
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.05.033
SSID ssj0016987
Score 2.4318876
Snippet •Improving the extraction of cucumber leaf spot disease under complex backgrounds.•Redefining the feature distance between pixel xj and clustering center...
Research reported in this paper aims to improve the extraction of cucumber leaf spot disease under complex backgrounds. An improved fuzzy C-means (FCM)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 157
SubjectTerms Algorithms
apples
Clustering
Cucumbers
disease diagnosis
Evaluation
FCM
Grading
Image processing
Image segmentation
leaf spot
leaves
Neighborhood grayscale
Pixels
Plant diseases
Studies
Target leaf
Test procedures
Weighted method
Title A fuzzy clustering segmentation method based on neighborhood grayscale information for defining cucumber leaf spot disease images
URI https://dx.doi.org/10.1016/j.compag.2017.03.004
https://www.proquest.com/docview/1932170083
https://www.proquest.com/docview/2000478077
Volume 136
WOSCitedRecordID wos000399851200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1FKQc4ID5FoKBF4mYZxd61d32MUCtAqOJQpNwsezOOEqVOlcRR2hs_iv_H7JdttYLSAxfH3tiW43nZmd2ZfY-QD4LFM6iAhQLxEHJWFGHBVRpGXPGqEglkcWXEJsTZmZxOs--DwS-_Fma_EnUtD4fs8r-aGtvQ2Hrp7D3M3d4UG3AfjY5bNDtu_8nwk6Bqrq-vArVqNAmCmS-A-YVbY1Q7zehAu6-ZThXUenIUkWD4jeeb4mqLZtNUIu26RlOKiO_aaEkEqlFGRUQLTlQBjop3PssTLC6wd9r2410vGmGZoDvNHVOFW8w3jvmjS-1bdexpA6X3qbpayDYu6kOv8bQxiRXY9QD-bW9PXNfz5QL6MxroJTV1YtKf5ExxZJta4aS2l2b9fjayrNbOZUdWbuKWN7ATE8uPppx_ruv4hGW05Z338xn_G06xLVX0VXDL3N4l13fJxyw3LLRHsUgyOSRHky8n069t-irNpF2n736IX7NpCgtvP82fYqIb0YEJec6fkMdurEInFmNPyQDqZ-TRpLPac_JzQg3aaIc22kcbtWijBm0Uj_tooy3aaA9tFPeoRxv1aKMabVSjjTq0UYu2F-TH6cn5p8-hU_UIFWdsh10BAyFYyeUsLlPBQUECjAODCNIUZFlylmYVRt5VXAgQcpzhpyZ9SkoVwYy9JMN6XcMrQhPAeFeOoYhUySuWFExigM1mKpNFEhV8RJh_r7lylPdaeWWV_82qIxK2V11aypc7zhfeZLkLW204miMO77jy2Fs4dz3INtcjKk2aKdmIvG-_xk5fZ_KKGtbNVmvHalatsRCv7_mwb8jD7i93TIa7TQNvyQO13y22m3cOx78BCazZWw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuzzy+clustering+segmentation+method+based+on+neighborhood+grayscale+information+for+defining+cucumber+leaf+spot+disease+images&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Bai%2C+Xuebing&rft.au=Li%2C+Xinxing&rft.au=Fu%2C+Zetian&rft.au=Lv%2C+Xiongjie&rft.date=2017-04-15&rft.issn=0168-1699&rft.volume=136&rft.spage=157&rft.epage=165&rft_id=info:doi/10.1016%2Fj.compag.2017.03.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2017_03_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon