A fuzzy clustering segmentation method based on neighborhood grayscale information for defining cucumber leaf spot disease images
•Improving the extraction of cucumber leaf spot disease under complex backgrounds.•Redefining the feature distance between pixel xj and clustering center vi.•Calculating the two-dimensional neighborhood mean gray value as a sample point.•Proposing a new weighting method for gray value and neighborho...
Uložené v:
| Vydané v: | Computers and electronics in agriculture Ročník 136; s. 157 - 165 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
15.04.2017
Elsevier BV |
| Predmet: | |
| ISSN: | 0168-1699, 1872-7107 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Improving the extraction of cucumber leaf spot disease under complex backgrounds.•Redefining the feature distance between pixel xj and clustering center vi.•Calculating the two-dimensional neighborhood mean gray value as a sample point.•Proposing a new weighting method for gray value and neighborhood gray value.
Research reported in this paper aims to improve the extraction of cucumber leaf spot disease under complex backgrounds. An improved fuzzy C-means (FCM) algorithm is proposed in this paper. First, three runs of the marked-watershed algorithm, based on HSI space, are applied to isolate the target leaf. Second, the distance between the pixel xj and the cluster center vi is defined as ‖xj2-vi2‖. Third, the pixel's neighborhood mean gray value, which constitutes a two-dimensional vector with grayscale information, is calculated as a sample point, rather than FCM grayscale. Finally, the neighborhood mean gray value and pixel gray value are weighted by matrix w. To evaluate the robustness and accuracy of the proposed segmentation method, tests were conducted for 129 cucumber disease images in vegetable disease database. Results show that average segmentation error was only 0.12%. The proposed method provides an effective and robust segmentation means for sorting and grading apples in cucumber disease diagnosis, and it can be easily adapted for other imaging-based agricultural applications. |
|---|---|
| AbstractList | Research reported in this paper aims to improve the extraction of cucumber leaf spot disease under complex backgrounds. An improved fuzzy C-means (FCM) algorithm is proposed in this paper. First, three runs of the marked-watershed algorithm, based on HSI space, are applied to isolate the target leaf. Second, the distance between the pixel xj and the cluster center vi is defined as ‖xj2-vi2‖. Third, the pixel's neighborhood mean gray value, which constitutes a two-dimensional vector with grayscale information, is calculated as a sample point, rather than FCM grayscale. Finally, the neighborhood mean gray value and pixel gray value are weighted by matrix w. To evaluate the robustness and accuracy of the proposed segmentation method, tests were conducted for 129 cucumber disease images in vegetable disease database. Results show that average segmentation error was only 0.12%. The proposed method provides an effective and robust segmentation means for sorting and grading apples in cucumber disease diagnosis, and it can be easily adapted for other imaging-based agricultural applications. Research reported in this paper aims to improve the extraction of cucumber leaf spot disease under complex backgrounds. An improved fuzzy C-means (FCM) algorithm is proposed in this paper. First, three runs of the marked-watershed algorithm, based on HSI space, are applied to isolate the target leaf. Second, the distance between the pixel xj and the cluster center vi is defined as ... Third, the pixel's neighborhood mean gray value, which constitutes a two-dimensional vector with grayscale information, is calculated as a sample point, rather than FCM grayscale. Finally, the neighborhood mean gray value and pixel gray value are weighted by matrix w. To evaluate the robustness and accuracy of the proposed segmentation method, tests were conducted for 129 cucumber disease images in vegetable disease database. Results show that average segmentation error was only 0.12%. The proposed method provides an effective and robust segmentation means for sorting and grading apples in cucumber disease diagnosis, and it can be easily adapted for other imaging-based agricultural applications. •Improving the extraction of cucumber leaf spot disease under complex backgrounds.•Redefining the feature distance between pixel xj and clustering center vi.•Calculating the two-dimensional neighborhood mean gray value as a sample point.•Proposing a new weighting method for gray value and neighborhood gray value. Research reported in this paper aims to improve the extraction of cucumber leaf spot disease under complex backgrounds. An improved fuzzy C-means (FCM) algorithm is proposed in this paper. First, three runs of the marked-watershed algorithm, based on HSI space, are applied to isolate the target leaf. Second, the distance between the pixel xj and the cluster center vi is defined as ‖xj2-vi2‖. Third, the pixel's neighborhood mean gray value, which constitutes a two-dimensional vector with grayscale information, is calculated as a sample point, rather than FCM grayscale. Finally, the neighborhood mean gray value and pixel gray value are weighted by matrix w. To evaluate the robustness and accuracy of the proposed segmentation method, tests were conducted for 129 cucumber disease images in vegetable disease database. Results show that average segmentation error was only 0.12%. The proposed method provides an effective and robust segmentation means for sorting and grading apples in cucumber disease diagnosis, and it can be easily adapted for other imaging-based agricultural applications. |
| Author | Fu, Zetian Li, Xinxing Zhang, Lingxian Bai, Xuebing Lv, Xiongjie |
| Author_xml | – sequence: 1 givenname: Xuebing surname: Bai fullname: Bai, Xuebing email: 464161695@qq.com organization: China Agricultural University, Beijing 100083, PR China – sequence: 2 givenname: Xinxing surname: Li fullname: Li, Xinxing organization: China Agricultural University, Beijing 100083, PR China – sequence: 3 givenname: Zetian surname: Fu fullname: Fu, Zetian organization: China Agricultural University, Beijing 100083, PR China – sequence: 4 givenname: Xiongjie surname: Lv fullname: Lv, Xiongjie organization: Information Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, PR China – sequence: 5 givenname: Lingxian surname: Zhang fullname: Zhang, Lingxian email: zhanglx@cau.edu.cn organization: China Agricultural University, Beijing 100083, PR China |
| BookMark | eNqFkb2O1DAUhS20SMwOvAGFJRqaBDvOxAkF0mrFn7QSDdSW45xkPErswXaQZjveHI9CtQVU19c637n2ubfkxnkHQl5zVnLGm3en0vjlrKeyYlyWTJSM1c_IjreyKiRn8obssqwteNN1L8htjCeW-66VO_L7jo7r4-OFmnmNCcG6iUZMC1zSyXpHF6SjH2ivIwaaewc7HXsfjj7fTkFfotEzqHWjD8uG5BMdMFp3NTOrWZcegc7QI41nn-hgI7IdtYueEF-S56OeI179rXvy49PH7_dfiodvn7_e3z0UphYiFboWkFL0dTtUfSNrGBwgaghwNA3avq9F040Nr8ZKS8iWdblKdjgcesMxiD15u_meg_-5Iia12Ggwz9rBr1FVLKeWsTxkT948kZ78Glx-neKdqLhkrBVZVW8qE3yMAaM6h_ylcFGcqete1Elte1HXvSgmVJ6QsfdPMGO3rFPQdv4f_GGDkZP6ZRFUNBbOYLABJqnB238b_AGQH7AY |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3373001 crossref_primary_10_1016_j_compag_2020_105652 crossref_primary_10_1002_ps_8184 crossref_primary_10_1007_s11042_021_11375_0 crossref_primary_10_1007_s12083_020_01041_x crossref_primary_10_1007_s41348_020_00368_0 crossref_primary_10_1016_j_procs_2020_03_285 crossref_primary_10_3390_agronomy13010196 crossref_primary_10_1088_1742_6596_1547_1_012015 crossref_primary_10_1186_s12859_024_05890_8 crossref_primary_10_1007_s11042_022_13013_9 crossref_primary_10_1016_j_compag_2019_02_002 crossref_primary_10_1111_exsy_13174 crossref_primary_10_1007_s11042_022_13925_6 crossref_primary_10_1007_s00607_018_0638_1 crossref_primary_10_1007_s11042_023_17098_8 crossref_primary_10_1007_s13198_020_00972_1 crossref_primary_10_3390_agriculture13091662 crossref_primary_10_3390_electronics8111308 crossref_primary_10_1016_j_compeleceng_2021_107104 crossref_primary_10_1080_07060661_2022_2053588 crossref_primary_10_1016_j_measurement_2025_117706 crossref_primary_10_4018_IJSIR_2020070101 crossref_primary_10_1016_j_ecoinf_2021_101247 crossref_primary_10_1088_1757_899X_1007_1_012082 crossref_primary_10_7831_ras_13_1_81 crossref_primary_10_1016_j_compag_2018_08_048 crossref_primary_10_1016_j_compag_2017_08_023 crossref_primary_10_1155_2022_5760595 crossref_primary_10_1177_15501477211007407 crossref_primary_10_1016_j_compag_2020_105527 crossref_primary_10_1016_j_eja_2023_126756 crossref_primary_10_3382_ps_pez564 crossref_primary_10_1016_j_procs_2017_11_323 crossref_primary_10_1111_exsy_12625 crossref_primary_10_1016_j_ijleo_2021_166566 crossref_primary_10_3390_agriculture12121997 crossref_primary_10_1007_s11831_019_09324_0 crossref_primary_10_1016_j_compag_2020_105753 crossref_primary_10_3233_JIFS_202401 crossref_primary_10_1002_rob_22074 crossref_primary_10_3390_agriculture12101543 crossref_primary_10_1016_j_compag_2022_107539 crossref_primary_10_1109_ACCESS_2017_2757528 crossref_primary_10_3390_s20030578 crossref_primary_10_1007_s11277_021_09054_2 crossref_primary_10_1049_iet_ipr_2018_6210 crossref_primary_10_3390_agriculture13020504 crossref_primary_10_1016_j_compag_2024_108739 crossref_primary_10_1016_j_cropro_2024_106762 crossref_primary_10_1007_s11042_023_15549_w crossref_primary_10_1088_1742_6596_1808_1_012025 crossref_primary_10_1016_j_procs_2020_03_308 crossref_primary_10_1007_s41348_022_00578_8 crossref_primary_10_3390_rs13030396 crossref_primary_10_3233_JIFS_212451 crossref_primary_10_7717_peerj_cs_1167 crossref_primary_10_3389_fpls_2022_795410 crossref_primary_10_3390_agriculture15060583 crossref_primary_10_1016_j_compag_2019_104934 crossref_primary_10_1016_j_compag_2024_108812 |
| Cites_doi | 10.1016/j.compag.2012.02.014 10.1016/j.compag.2010.02.007 10.1109/42.996338 10.1080/01969727308546046 10.1016/j.compbiomed.2010.04.001 10.1016/j.fss.2014.12.007 10.3724/SP.J.1187.2010.00385 10.1016/j.ijleo.2015.09.006 10.1016/j.neucom.2015.10.011 10.4028/www.scientific.net/AMM.651-653.2424 10.1016/j.asoc.2015.06.021 10.1016/j.dsp.2013.07.005 10.1016/j.compag.2014.12.007 10.1016/j.ijleo.2015.08.037 10.1109/TIP.2010.2040763 10.1080/07352681003617285 10.1016/j.jag.2015.01.009 10.1016/j.compmedimag.2005.10.001 10.1016/j.apsusc.2015.05.033 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Copyright Elsevier BV Apr 15, 2017 |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV Apr 15, 2017 |
| DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| DOI | 10.1016/j.compag.2017.03.004 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1872-7107 |
| EndPage | 165 |
| ExternalDocumentID | 10_1016_j_compag_2017_03_004 S0168169916302150 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO AAYFN ABBOA ABBQC ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACRLP ACZNC ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD AXJTR BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP RIG ROL RPZ SAB SDF SDG SES SNL SPC SPCBC SSA SSH SSV SSZ T5K UNMZH Y6R ~G- ~KM 29F 9DU AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACIEU ACLOT ACMHX ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGQPQ AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLV HLZ HVGLF HZ~ R2- SBC SEW UHS WUQ ~HD 7SC 7SP 8FD AGCQF AGRNS FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| ID | FETCH-LOGICAL-c433t-a43e773b48d2b674ece5e34e3e1e66e8bb4369f612f2a7e78092a770555bc1ed3 |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399851200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-1699 |
| IngestDate | Sun Sep 28 13:19:56 EDT 2025 Fri Jul 25 08:29:11 EDT 2025 Tue Nov 18 21:58:30 EST 2025 Sat Nov 29 03:16:20 EST 2025 Fri Feb 23 02:29:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | FCM Weighted method Target leaf Image processing Neighborhood grayscale |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c433t-a43e773b48d2b674ece5e34e3e1e66e8bb4369f612f2a7e78092a770555bc1ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1932170083 |
| PQPubID | 2045491 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2000478077 proquest_journals_1932170083 crossref_primary_10_1016_j_compag_2017_03_004 crossref_citationtrail_10_1016_j_compag_2017_03_004 elsevier_sciencedirect_doi_10_1016_j_compag_2017_03_004 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-15 |
| PublicationDateYYYYMMDD | 2017-04-15 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers and electronics in agriculture |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Benaichouche, Oulhadj, Siarry (b0015) 2013; 23 Chuang, Tzeng, Chen, Wu, Chen (b0030) 2006; 30 Dunn (b0035) 1973; 3 Zhao, Jia (b0115) 2015; 126 Atzberger, Darvishzadeh, Immitzer, Schlerf, Skidmore, le Maire (b0010) 2015; 43 Tang, Liu, Zhao, Tao (b0105) 2010; 24 Bock, Poole, Parker, Gottwald (b0025) 2010; 29 Ji, Deng, He, Jia, Du, He (b0045) 2014; 651–653 Sankaran, Mishra, Ehsani, Davis (b0100) 2010; 72 Ahmed, Yamany, Mohamed, Farag, Moriarty (b0005) 2002; 21 Li, Huang, Gong (b0080) 2010 Bezdek (b0020) 1981 Kannan, Ramathilagam, Sathya, Pandiyarajan (b0060) 2010; 40 Prasad, Peddoju, Ghosh (b0095) 2014 Lavania, Matey (b0070) 2015 Yuan, Wu, Peng (b0110) 2015; 349 Ma, Li, Wen, Fu, Zhang (b0055) 2015; 111 Gao, Wu (b0040) 2015; 126 Leski (b0075) 2016; 286 Krinidis, Chatzis (b0065) 2010; 19 Zainuddin, Pauline (b9025) 2015; 35 Pertot, Kuflik, Gordon, Freeman, Elad (b0085) 2012; 84 Pimentel, de Souza (b0090) 2016; 174 Dunn (10.1016/j.compag.2017.03.004_b0035) 1973; 3 Yuan (10.1016/j.compag.2017.03.004_b0110) 2015; 349 Lavania (10.1016/j.compag.2017.03.004_b0070) 2015 Zainuddin (10.1016/j.compag.2017.03.004_b9025) 2015; 35 Benaichouche (10.1016/j.compag.2017.03.004_b0015) 2013; 23 Gao (10.1016/j.compag.2017.03.004_b0040) 2015; 126 Ji (10.1016/j.compag.2017.03.004_b0045) 2014; 651–653 Zhao (10.1016/j.compag.2017.03.004_b0115) 2015; 126 Krinidis (10.1016/j.compag.2017.03.004_b0065) 2010; 19 Sankaran (10.1016/j.compag.2017.03.004_b0100) 2010; 72 Chuang (10.1016/j.compag.2017.03.004_b0030) 2006; 30 Kannan (10.1016/j.compag.2017.03.004_b0060) 2010; 40 Leski (10.1016/j.compag.2017.03.004_b0075) 2016; 286 Pimentel (10.1016/j.compag.2017.03.004_b0090) 2016; 174 Bezdek (10.1016/j.compag.2017.03.004_b0020) 1981 Tang (10.1016/j.compag.2017.03.004_b0105) 2010; 24 Ma (10.1016/j.compag.2017.03.004_b0055) 2015; 111 Atzberger (10.1016/j.compag.2017.03.004_b0010) 2015; 43 Bock (10.1016/j.compag.2017.03.004_b0025) 2010; 29 Li (10.1016/j.compag.2017.03.004_b0080) 2010 Ahmed (10.1016/j.compag.2017.03.004_b0005) 2002; 21 Pertot (10.1016/j.compag.2017.03.004_b0085) 2012; 84 Prasad (10.1016/j.compag.2017.03.004_b0095) 2014 |
| References_xml | – volume: 126 start-page: 4330 year: 2015 end-page: 4336 ident: b0115 article-title: Segmentation algorithm for small targets based on improved data field and fuzzy c-means clustering publication-title: Optik – volume: 174 start-page: 946 year: 2016 end-page: 965 ident: b0090 article-title: Multivariate fuzzy C-means algorithms with weighting publication-title: Neurocomputing – volume: 24 start-page: 3940 year: 2010 end-page: 3949 ident: b0105 article-title: Soybean leaves recognition of images with complicated background publication-title: J. Electron. Meas. Instrum. – volume: 3 start-page: 32 year: 1973 end-page: 57 ident: b0035 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybern. – volume: 72 start-page: 1 year: 2010 end-page: 13 ident: b0100 article-title: A review of advanced techniques for detecting plant diseases publication-title: Comput. Electron. Agric. – volume: 651–653 start-page: 2424 year: 2014 end-page: 2429 ident: b0045 article-title: Extraction of tobacco leaves color features based on HSI color space publication-title: Appl. Mech. Mater. – volume: 286 start-page: 114 year: 2016 end-page: 133 ident: b0075 article-title: Fuzzy c-ordered-means clustering publication-title: Fuzzy Sets Syst. – volume: 126 start-page: 5320 year: 2015 end-page: 5324 ident: b0040 article-title: Agricultural image target segmentation based on fuzzy set publication-title: Optik – volume: 29 start-page: 59 year: 2010 end-page: 107 ident: b0025 article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging publication-title: Crit. Rev. Plant Sci. – year: 2010 ident: b0080 article-title: Watershed segmentation based on order morphological gradient reconstruction – volume: 40 start-page: 572 year: 2010 end-page: 579 ident: b0060 article-title: Effective fuzzy c-means based kernel function in segmenting medical images publication-title: Comput. Biol. Med. – volume: 19 start-page: 1328 year: 2010 end-page: 1337 ident: b0065 article-title: A robust fuzzy local information c-means clustering algorithm publication-title: IEEE Trans. Image Process. – volume: 84 start-page: 144 year: 2012 end-page: 154 ident: b0085 article-title: Identificator: a web-based tool for visual plant disease identification, a proof of concept with a case study on strawberry publication-title: Comput. Electron. Agric. – volume: 43 start-page: 19 year: 2015 end-page: 31 ident: b0010 article-title: Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 1981 ident: b0020 article-title: Pattern Recognition with Fuzzy Objective Function Algorithms – volume: 30 start-page: 9 year: 2006 end-page: 15 ident: b0030 article-title: Fuzzy c-means clustering with spatial information for image segmentation publication-title: Comput. Med. Imaging Graph. – year: 2015 ident: b0070 article-title: Novel method for weed classification in maize field using Otsu and PCA implementation – year: 2014 ident: b0095 article-title: Energy efficient mobile vision system for plant leaf disease identification publication-title: IEEE Wireless Communications and Networking Conference – volume: 35 start-page: 433 year: 2015 end-page: 448 ident: b9025 article-title: An effective fuzzy C-means algorithm based on symmetry similarity approach publication-title: Appl. Soft Comput. – volume: 21 start-page: 193 year: 2002 end-page: 199 ident: b0005 article-title: A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging – volume: 23 start-page: 1390 year: 2013 end-page: 1400 ident: b0015 article-title: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction publication-title: Digital Signal Process. – volume: 111 start-page: 92 year: 2015 end-page: 102 ident: b0055 article-title: A key frame extraction method for processing greenhouse vegetables production monitoring video publication-title: Comput. Electron. Agric. – volume: 349 start-page: 472 year: 2015 end-page: 484 ident: b0110 article-title: An improved Otsu method using the weighted object variance for defect detection publication-title: Appl. Surf. Sci. – volume: 84 start-page: 144 year: 2012 ident: 10.1016/j.compag.2017.03.004_b0085 article-title: Identificator: a web-based tool for visual plant disease identification, a proof of concept with a case study on strawberry publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2012.02.014 – year: 2015 ident: 10.1016/j.compag.2017.03.004_b0070 – year: 2014 ident: 10.1016/j.compag.2017.03.004_b0095 article-title: Energy efficient mobile vision system for plant leaf disease identification – volume: 72 start-page: 1 year: 2010 ident: 10.1016/j.compag.2017.03.004_b0100 article-title: A review of advanced techniques for detecting plant diseases publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2010.02.007 – volume: 21 start-page: 193 year: 2002 ident: 10.1016/j.compag.2017.03.004_b0005 article-title: A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.996338 – volume: 3 start-page: 32 year: 1973 ident: 10.1016/j.compag.2017.03.004_b0035 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybern. doi: 10.1080/01969727308546046 – volume: 40 start-page: 572 year: 2010 ident: 10.1016/j.compag.2017.03.004_b0060 article-title: Effective fuzzy c-means based kernel function in segmenting medical images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2010.04.001 – volume: 286 start-page: 114 year: 2016 ident: 10.1016/j.compag.2017.03.004_b0075 article-title: Fuzzy c-ordered-means clustering publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2014.12.007 – volume: 24 start-page: 3940 issue: 4 year: 2010 ident: 10.1016/j.compag.2017.03.004_b0105 article-title: Soybean leaves recognition of images with complicated background publication-title: J. Electron. Meas. Instrum. doi: 10.3724/SP.J.1187.2010.00385 – year: 1981 ident: 10.1016/j.compag.2017.03.004_b0020 – volume: 126 start-page: 5320 year: 2015 ident: 10.1016/j.compag.2017.03.004_b0040 article-title: Agricultural image target segmentation based on fuzzy set publication-title: Optik doi: 10.1016/j.ijleo.2015.09.006 – volume: 174 start-page: 946 year: 2016 ident: 10.1016/j.compag.2017.03.004_b0090 article-title: Multivariate fuzzy C-means algorithms with weighting publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.011 – year: 2010 ident: 10.1016/j.compag.2017.03.004_b0080 – volume: 651–653 start-page: 2424 year: 2014 ident: 10.1016/j.compag.2017.03.004_b0045 article-title: Extraction of tobacco leaves color features based on HSI color space publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.651-653.2424 – volume: 35 start-page: 433 year: 2015 ident: 10.1016/j.compag.2017.03.004_b9025 article-title: An effective fuzzy C-means algorithm based on symmetry similarity approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.021 – volume: 23 start-page: 1390 year: 2013 ident: 10.1016/j.compag.2017.03.004_b0015 article-title: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2013.07.005 – volume: 111 start-page: 92 year: 2015 ident: 10.1016/j.compag.2017.03.004_b0055 article-title: A key frame extraction method for processing greenhouse vegetables production monitoring video publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2014.12.007 – volume: 126 start-page: 4330 year: 2015 ident: 10.1016/j.compag.2017.03.004_b0115 article-title: Segmentation algorithm for small targets based on improved data field and fuzzy c-means clustering publication-title: Optik doi: 10.1016/j.ijleo.2015.08.037 – volume: 19 start-page: 1328 year: 2010 ident: 10.1016/j.compag.2017.03.004_b0065 article-title: A robust fuzzy local information c-means clustering algorithm publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2040763 – volume: 29 start-page: 59 year: 2010 ident: 10.1016/j.compag.2017.03.004_b0025 article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352681003617285 – volume: 43 start-page: 19 year: 2015 ident: 10.1016/j.compag.2017.03.004_b0010 article-title: Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2015.01.009 – volume: 30 start-page: 9 year: 2006 ident: 10.1016/j.compag.2017.03.004_b0030 article-title: Fuzzy c-means clustering with spatial information for image segmentation publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2005.10.001 – volume: 349 start-page: 472 year: 2015 ident: 10.1016/j.compag.2017.03.004_b0110 article-title: An improved Otsu method using the weighted object variance for defect detection publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.05.033 |
| SSID | ssj0016987 |
| Score | 2.4318876 |
| Snippet | •Improving the extraction of cucumber leaf spot disease under complex backgrounds.•Redefining the feature distance between pixel xj and clustering center... Research reported in this paper aims to improve the extraction of cucumber leaf spot disease under complex backgrounds. An improved fuzzy C-means (FCM)... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 157 |
| SubjectTerms | Algorithms apples Clustering Cucumbers disease diagnosis Evaluation FCM Grading Image processing Image segmentation leaf spot leaves Neighborhood grayscale Pixels Plant diseases Studies Target leaf Test procedures Weighted method |
| Title | A fuzzy clustering segmentation method based on neighborhood grayscale information for defining cucumber leaf spot disease images |
| URI | https://dx.doi.org/10.1016/j.compag.2017.03.004 https://www.proquest.com/docview/1932170083 https://www.proquest.com/docview/2000478077 |
| Volume | 136 |
| WOSCitedRecordID | wos000399851200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1FKQc4ID5FoKBF4mYZxd61d32MUCtAqOJQpNwsezOOEqVOlcRR2hs_iv_H7JdttYLSAxfH3tiW43nZmd2ZfY-QD4LFM6iAhQLxEHJWFGHBVRpGXPGqEglkcWXEJsTZmZxOs--DwS-_Fma_EnUtD4fs8r-aGtvQ2Hrp7D3M3d4UG3AfjY5bNDtu_8nwk6Bqrq-vArVqNAmCmS-A-YVbY1Q7zehAu6-ZThXUenIUkWD4jeeb4mqLZtNUIu26RlOKiO_aaEkEqlFGRUQLTlQBjop3PssTLC6wd9r2410vGmGZoDvNHVOFW8w3jvmjS-1bdexpA6X3qbpayDYu6kOv8bQxiRXY9QD-bW9PXNfz5QL6MxroJTV1YtKf5ExxZJta4aS2l2b9fjayrNbOZUdWbuKWN7ATE8uPppx_ruv4hGW05Z338xn_G06xLVX0VXDL3N4l13fJxyw3LLRHsUgyOSRHky8n069t-irNpF2n736IX7NpCgtvP82fYqIb0YEJec6fkMdurEInFmNPyQDqZ-TRpLPac_JzQg3aaIc22kcbtWijBm0Uj_tooy3aaA9tFPeoRxv1aKMabVSjjTq0UYu2F-TH6cn5p8-hU_UIFWdsh10BAyFYyeUsLlPBQUECjAODCNIUZFlylmYVRt5VXAgQcpzhpyZ9SkoVwYy9JMN6XcMrQhPAeFeOoYhUySuWFExigM1mKpNFEhV8RJh_r7lylPdaeWWV_82qIxK2V11aypc7zhfeZLkLW204miMO77jy2Fs4dz3INtcjKk2aKdmIvG-_xk5fZ_KKGtbNVmvHalatsRCv7_mwb8jD7i93TIa7TQNvyQO13y22m3cOx78BCazZWw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuzzy+clustering+segmentation+method+based+on+neighborhood+grayscale+information+for+defining+cucumber+leaf+spot+disease+images&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Bai%2C+Xuebing&rft.au=Li%2C+Xinxing&rft.au=Fu%2C+Zetian&rft.au=Lv%2C+Xiongjie&rft.date=2017-04-15&rft.issn=0168-1699&rft.volume=136&rft.spage=157&rft.epage=165&rft_id=info:doi/10.1016%2Fj.compag.2017.03.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2017_03_004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |