Critical review of condensable particulate matter

•A diagram of the formation of condensable particulate matter (CPM) is created.•Method for measuring CPM and its improvements are systematically introduced.•Three factors that cause inaccuracies of CPM measurement are summarized.•Characteristics of condensable particulate matter are analyzed compreh...

Full description

Saved in:
Bibliographic Details
Published in:Fuel (Guildford) Vol. 224; pp. 801 - 813
Main Authors: Feng, Yupeng, Li, Yuzhong, Cui, Lin
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 15.07.2018
Elsevier BV
Subjects:
ISSN:0016-2361, 1873-7153
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A diagram of the formation of condensable particulate matter (CPM) is created.•Method for measuring CPM and its improvements are systematically introduced.•Three factors that cause inaccuracies of CPM measurement are summarized.•Characteristics of condensable particulate matter are analyzed comprehensively.•This study proposes two recommended measures to control the emission of CPM. Particulate matter emitted by fuel combustion has become a major air pollutant. It comes in the form of filterable particulate matter (FPM) and condensable particulate matter (CPM). In the past, people focused on FPM due to its large emission amount. Such active research prompted the rapid development of FPM control technology. At present, FPM is effectively controlled, and its emission concentration is extremely low. By contrast, the emission concentration of CPM is higher than that of FPM and requires immediate attention. Therefore, people are paying close attention to CPM. Nevertheless, CPM is still poorly understood. On the basis of existing research, this study reviews CPM, including its concept, formation mechanism, and hazards. CPM test methods and the factors that affect the accuracy of CPM measurement are also discussed. Improvement methods focusing on CPM measurement are introduced. The results of previous research on CPM characteristics are summarized. Finally, possible CPM control techniques are discussed.
AbstractList Particulate matter emitted by fuel combustion has become a major air pollutant. It comes in the form of filterable particulate matter (FPM) and condensable particulate matter (CPM). In the past, people focused on FPM due to its large emission amount. Such active research prompted the rapid development of FPM control technology. At present, FPM is effectively controlled, and its emission concentration is extremely low. By contrast, the emission concentration of CPM is higher than that of FPM and requires immediate attention. Therefore, people are paying close attention to CPM. Nevertheless, CPM is still poorly understood. On the basis of existing research, this study reviews CPM, including its concept, formation mechanism, and hazards. CPM test methods and the factors that affect the accuracy of CPM measurement are also discussed. Improvement methods focusing on CPM measurement are introduced. The results of previous research on CPM characteristics are summarized. Finally, possible CPM control techniques are discussed.
•A diagram of the formation of condensable particulate matter (CPM) is created.•Method for measuring CPM and its improvements are systematically introduced.•Three factors that cause inaccuracies of CPM measurement are summarized.•Characteristics of condensable particulate matter are analyzed comprehensively.•This study proposes two recommended measures to control the emission of CPM. Particulate matter emitted by fuel combustion has become a major air pollutant. It comes in the form of filterable particulate matter (FPM) and condensable particulate matter (CPM). In the past, people focused on FPM due to its large emission amount. Such active research prompted the rapid development of FPM control technology. At present, FPM is effectively controlled, and its emission concentration is extremely low. By contrast, the emission concentration of CPM is higher than that of FPM and requires immediate attention. Therefore, people are paying close attention to CPM. Nevertheless, CPM is still poorly understood. On the basis of existing research, this study reviews CPM, including its concept, formation mechanism, and hazards. CPM test methods and the factors that affect the accuracy of CPM measurement are also discussed. Improvement methods focusing on CPM measurement are introduced. The results of previous research on CPM characteristics are summarized. Finally, possible CPM control techniques are discussed.
Author Feng, Yupeng
Cui, Lin
Li, Yuzhong
Author_xml – sequence: 1
  givenname: Yupeng
  surname: Feng
  fullname: Feng, Yupeng
– sequence: 2
  givenname: Yuzhong
  orcidid: 0000-0002-2554-0631
  surname: Li
  fullname: Li, Yuzhong
  email: lyz@sdu.edu.cn
– sequence: 3
  givenname: Lin
  orcidid: 0000-0002-9344-3980
  surname: Cui
  fullname: Cui, Lin
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnnfNJNkkBS9S_IKCFz2HNDuBlO2mZrOK_96UevLgaQ7zPu8wz4LMhjggIddAG6Agb3eNn7BvGAXdUN4A6DMyB614raDlMzKnJVUzLuGCLMZxRylVuhVzAusUcnC2rxJ-Bvyqoq9cHDocRrvtsTrYVNZTbzNWe5szpkty7m0_4tXvXJL3x4e39XO9eX16Wd9vaic4z7WWW25BIYBALlultW-VANZp3626zinROuHkVrMWlVixljrPJMqVQk6F8HxJbk69hxQ_Jhyz2cUpDeWkYVRzTYFLXVLslHIpjmNCbw4p7G36NkDNUY3ZmaMac1RjKDdFTYH0H8iFbHOIQ0429P-jdycUy-tFWDKjCzg47EJCl00Xw3_4D29gf_Q
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_139971
crossref_primary_10_1016_j_scitotenv_2021_146245
crossref_primary_10_1016_j_scitotenv_2023_168434
crossref_primary_10_3390_su13084470
crossref_primary_10_1016_j_jes_2020_01_020
crossref_primary_10_1016_j_joei_2021_04_011
crossref_primary_10_1016_j_jece_2022_107667
crossref_primary_10_1016_j_seppur_2024_130222
crossref_primary_10_1016_j_fuel_2023_129807
crossref_primary_10_1016_j_jhazmat_2023_130748
crossref_primary_10_1016_j_apr_2024_102076
crossref_primary_10_1016_j_fuproc_2021_106892
crossref_primary_10_3390_su11071881
crossref_primary_10_1016_j_pecs_2025_101231
crossref_primary_10_3390_su11082319
crossref_primary_10_1016_j_fuel_2022_125052
crossref_primary_10_1016_j_fuel_2025_136608
crossref_primary_10_1016_j_uclim_2021_100964
crossref_primary_10_1016_j_fuel_2022_126786
crossref_primary_10_1016_j_joei_2020_12_003
crossref_primary_10_5572_KOSAE_2023_39_4_546
crossref_primary_10_1016_j_scitotenv_2023_163533
crossref_primary_10_1016_j_jhazmat_2024_134537
crossref_primary_10_1016_j_fuel_2022_126949
crossref_primary_10_1016_j_fuel_2022_124807
crossref_primary_10_1007_s11356_024_32923_9
crossref_primary_10_1038_s12276_020_0405_1
crossref_primary_10_1016_j_jclepro_2022_135392
crossref_primary_10_1088_1742_6596_1436_1_012141
crossref_primary_10_1016_j_fuel_2020_118206
crossref_primary_10_1016_j_scitotenv_2021_147472
crossref_primary_10_1016_j_oneear_2025_101320
crossref_primary_10_1016_j_scitotenv_2021_147597
crossref_primary_10_3390_separations11110330
crossref_primary_10_1016_j_fuel_2022_126594
crossref_primary_10_1016_j_cej_2024_158200
crossref_primary_10_3390_atmos16020175
crossref_primary_10_1016_j_apr_2022_101544
crossref_primary_10_1016_j_envpol_2022_120944
crossref_primary_10_1016_j_seppur_2024_131374
crossref_primary_10_1029_2025GL117794
crossref_primary_10_15446_rsap_v20n6_72744
crossref_primary_10_1016_j_jhazmat_2020_122223
crossref_primary_10_1016_j_chemosphere_2019_01_079
crossref_primary_10_1016_j_chemosphere_2019_125346
crossref_primary_10_1016_j_fuel_2021_121220
crossref_primary_10_1016_j_apr_2022_101376
crossref_primary_10_1016_j_envpol_2024_124716
crossref_primary_10_1016_j_joei_2023_101428
crossref_primary_10_1016_j_atmosenv_2022_119319
crossref_primary_10_1016_j_scitotenv_2022_159877
crossref_primary_10_1016_j_jhazmat_2022_130317
crossref_primary_10_1016_j_envpol_2020_116267
crossref_primary_10_1016_j_jes_2021_06_001
crossref_primary_10_1016_j_fuel_2021_120626
crossref_primary_10_1088_1742_6596_2247_1_012018
crossref_primary_10_1016_j_fuel_2025_136139
crossref_primary_10_1007_s40095_020_00357_x
crossref_primary_10_1016_j_apr_2020_01_008
crossref_primary_10_1016_j_fuel_2021_120866
crossref_primary_10_1016_j_fuel_2018_12_024
crossref_primary_10_1016_j_jhazmat_2024_135716
crossref_primary_10_1016_j_joei_2023_101398
crossref_primary_10_1016_j_psep_2020_12_018
crossref_primary_10_3390_atmos12010061
crossref_primary_10_1007_s11270_022_05919_9
crossref_primary_10_3390_su13105504
crossref_primary_10_5572_ajae_2021_15_4_129
crossref_primary_10_1016_j_apr_2025_102414
crossref_primary_10_1080_10962247_2021_1994483
crossref_primary_10_3390_min15090930
crossref_primary_10_1016_j_fuel_2022_126869
crossref_primary_10_3390_atmos13101601
crossref_primary_10_1016_j_jhazmat_2022_128221
crossref_primary_10_1016_j_envres_2023_116945
crossref_primary_10_1016_j_fuel_2024_131255
crossref_primary_10_1007_s10311_023_01644_9
crossref_primary_10_1016_j_mseb_2023_116635
crossref_primary_10_1016_j_envres_2022_113487
crossref_primary_10_5572_KOSAE_2021_37_5_803
crossref_primary_10_1016_j_jclepro_2021_127203
crossref_primary_10_1016_j_seppur_2025_132673
crossref_primary_10_1016_j_scitotenv_2021_146985
crossref_primary_10_1016_j_scitotenv_2023_161817
crossref_primary_10_1016_j_elstat_2021_103628
crossref_primary_10_1016_j_fuel_2021_122461
crossref_primary_10_5572_KOSAE_2018_34_5_651
crossref_primary_10_1007_s11270_023_06379_5
crossref_primary_10_1016_j_scitotenv_2023_166034
crossref_primary_10_5194_acp_22_11845_2022
crossref_primary_10_1016_j_chemosphere_2024_141638
crossref_primary_10_1016_j_fuel_2024_134099
crossref_primary_10_1007_s11869_023_01340_1
crossref_primary_10_1002_aesr_202100005
crossref_primary_10_3390_su17146342
crossref_primary_10_1016_j_chemosphere_2022_134759
crossref_primary_10_1016_j_scitotenv_2022_155002
crossref_primary_10_1007_s13762_020_02745_6
crossref_primary_10_5572_KOSAE_2023_39_3_372
crossref_primary_10_1016_j_chemosphere_2023_137934
crossref_primary_10_1016_j_seppur_2018_12_011
crossref_primary_10_1016_j_scitotenv_2025_178396
crossref_primary_10_1016_j_atmosenv_2020_117372
crossref_primary_10_1016_j_jhazmat_2025_137527
crossref_primary_10_1016_j_cep_2021_108519
crossref_primary_10_1007_s11356_023_27246_0
crossref_primary_10_1029_2020GL092071
crossref_primary_10_1016_j_fuel_2020_118198
crossref_primary_10_3390_app12073623
crossref_primary_10_3390_en14144328
Cites_doi 10.1016/j.fuproc.2016.01.033
10.1080/09593332608618598
10.1016/j.apsusc.2014.11.090
10.1080/00102207708946804
10.1016/j.powtec.2012.02.060
10.1016/j.powtec.2007.03.024
10.1021/acs.energyfuels.7b01480
10.1016/j.energy.2013.08.050
10.1021/ie900900r
10.1016/j.fuel.2014.09.114
10.1080/02786828208958582
10.1021/es051533g
10.1016/S0016-2361(97)00010-0
10.1021/ef060276d
10.1063/1.4962283
10.1126/science.1092805
10.1177/096032706072520
10.1016/j.cej.2015.01.051
10.1021/es8035225
10.1016/j.fuel.2007.10.009
10.1021/acs.energyfuels.7b01991
10.1016/j.jhazmat.2017.05.013
10.1021/es9005459
10.1016/S1352-2310(99)00460-4
10.1016/j.fuel.2014.12.065
10.1021/es00057a020
10.1016/S0008-6223(98)00333-9
10.1016/j.jhazmat.2010.02.087
10.1016/j.energy.2009.03.013
10.1016/0016-2361(77)90071-0
10.1111/j.1600-0889.1989.tb00132.x
10.1016/j.fuel.2005.07.008
10.1252/jcej.05SI115
10.1080/10473289.2000.10464002
10.1016/j.enconman.2004.10.011
10.1016/j.energy.2012.08.006
10.4209/aaqr.2014.08.0178
10.1021/acs.energyfuels.5b02200
10.1080/10473289.2000.10464197
10.1016/j.apenergy.2016.03.017
10.1021/acs.energyfuels.6b02919
10.1016/j.fuel.2007.11.001
10.1016/j.envpol.2014.02.024
10.1016/j.fuel.2005.11.022
10.1016/j.applthermaleng.2011.01.020
10.1021/ef060435t
10.1016/j.atmosenv.2005.12.039
10.1016/j.atmosenv.2015.09.011
10.1038/nature13774
10.1016/j.elstat.2006.07.012
10.4209/aaqr.2015.06.0398
10.1016/S0378-3820(03)00059-6
10.1021/acs.energyfuels.7b00692
10.1016/0360-1285(93)90014-6
10.1016/0378-3820(94)90179-1
10.1016/j.fuel.2006.01.009
10.1016/0360-5442(95)00087-9
10.1016/j.energy.2012.01.045
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jul 15, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 15, 2018
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2018.03.118
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
EndPage 813
ExternalDocumentID 10_1016_j_fuel_2018_03_118
S001623611830526X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
~HD
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c433t-86b3a17e114e365788f57412d8fd9ddc745c4c6b825e749250cf26e697e3044f3
ISICitedReferencesCount 123
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432920900077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-2361
IngestDate Wed Aug 13 06:37:44 EDT 2025
Tue Nov 18 22:08:51 EST 2025
Sat Nov 29 07:01:16 EST 2025
Fri Feb 23 02:50:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Total particulate matter (TPM)
Condensable particulate matter (CPM)
Particulate matter (PM)
Review
Filterable particulate matter (FPM)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c433t-86b3a17e114e365788f57412d8fd9ddc745c4c6b825e749250cf26e697e3044f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9344-3980
0000-0002-2554-0631
PQID 2083801368
PQPubID 2045474
PageCount 13
ParticipantIDs proquest_journals_2083801368
crossref_primary_10_1016_j_fuel_2018_03_118
crossref_citationtrail_10_1016_j_fuel_2018_03_118
elsevier_sciencedirect_doi_10_1016_j_fuel_2018_03_118
PublicationCentury 2000
PublicationDate 2018-07-15
PublicationDateYYYYMMDD 2018-07-15
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yi, Hao, Duan, Tang, Ning, Li (b0290) 2008; 87
Figueiredo, Pereira, Freitas, Órfão (b0395) 1999; 37
Limbeck, Kulmala, Puxbaum (b0080) 2003; 30
Li, Zhang (b0005) 2014; 189
EU (b0045) 2001
Bao, Yang, Yan, Shen (b0325) 2013; 108
Sarofim, Howard, Padia (b0115) 1977; 16
Pei (b0035) 2015; 36
Valverde, Duran, Pontiga, Moreno (b0420) 2012; 224
Lighty, Slama, Veranth, Sarofim (b0150) 2000; 50
(b0065) 1983
Russell, Brunekreef (b0160) 2009; 43
Linak, Wendt (b0140) 1993; 19
Bibby (b0280) 1977; 56
Website of the U.S. Environmental Protection Agency, the United States of America. Method 202-Determination of condensable particulate emissions from stationary sources. Available from
Schwarze, Ovrevik, Låg, Refsnes, Nafstad, Hetland (b0165) 2006; 25
Best, Kemenade, Brunner, Obernberger (b0315) 2008; 22
Website of the National Development and Reform commission, People’s Republic of China. Action plan for upgrading and reforming coal-fired power for energy saving and emission reduction. Reported on September 12, 2014. Available from
Heintzenberg (b0155) 1989; 41B
Damle, Ensor, Ranade (b0120) 1982; 1
Claeys, Graham, Vas, Wang, Vermeylen, Pashynska (b0085) 2004; 303
Jaworek, Krupa, Czech (b0175) 2007; 65
Goodarzi (b0015) 2006; 85
Cano, Vega, Navarrete, Plumed, Camino (b0245) 2017; 31
Lee, Herage, Dureau, Young (b0300) 2013; 108
Okkes (b0105) 1987; 66
Li, Duan, Wang, Zhao, Chen, Liu (b0370) 2017; 31
[accessed 11 February 2018].
Dewees, Steinsberger (b0230) 1990
Zhang, Gao, Creamer, Cao, Li (b0365) 2017; 338
Linak, Wendt (b0145) 1994; 39
And, Stenger, Fan (b0345) 2007; 21
Zhu, Wang, Zhang, Ma (b0390) 2005; 46
Shen, Sun, Zhang, Zhang, Zhang, Che (b0170) 2015; 120
Goodarzi (b0275) 2006; 85
Tsuji, Shiraishi (b0385) 1997; 76
Yang, Lee, Hsieh, Luo, Li (b0260) 2014; 14
Wu, Zhu (b0415) 2015; 49
McDannel (b0235) 1998
Mondal, Balsora, Varshney (b0410) 2012; 46
Chang, Gao, Yun, Wu, Xu, Wu (b0125) 2015; 140
Córdoba (b0100) 2015; 144
Lu, Wu, Pan (b0255) 2010
Yao, Li, Xu, Zhou, Song (b0020) 2009; 34
Zhang, Ninomiya, Yamashita (b0295) 2006; 85
Website of the U.S. Environmental Protection Agency, the United States of America. Method201A-Determination of PM10 and PM2.5 emissions from stationary sources (Constant Sampling Rate Procedure). Available from
Wyslouzil, Wölk (b0130) 2016; 145
Filadelfia, EJ, Mc Daniel, M.D. Evaluation of False Positive Interference’s Associated with the Use of EPA Method 202. Paper 96-RA-109.04 Presented at the 89th Annual Meeting and Exhibition of the Air & Waste Management Association, June 23–28; 1996.
Yang, Lee, Hsieh, Luo, Huang (b0265) 2015; 15
Huang, He, Hu, Zhang (b0285) 2006; 40
Bahadori (b0110) 2011; 31
Morcos (b0180) 1996; 21
Richards, J., Holder, T., Goshaw, D. Optimized Method 202 Sampling Train to Minimize the Biases Associated with Method 202 Measurement of Condensable Particulate Matter Emissions. Air & Waste Management Association, Hazardous Waste Combustion Specialty Conference, November 2–3, 2005.
Willenberg, Richards (b0220) 2008
Wang, He, Sun, Wu, Yan, Yan (b0340) 2012; 48
Huang, Zhang, Bozzetti, Ho, Cao, Han (b0075) 2014; 514
Wu, Yang, Yan, Hong, Yang (b0330) 2016; 145
Pei (b0250) 2010; 26
Website of the U.S. Environmental Protection Agency, the United States of America.OTM-28 Determination of condensable particulate emissions from stationary sources. Available from
Yang, Yu, Pan, Lv, Zhang (b0405) 2015; 268
Li, Li, Zhou, Li, Lu, Yan (b0305) 2017; 31
Website of the U.S. Environmental Protection Agency, the United States of America. Method 5-Determination of particulate matter emissions from stationary sources. Available from
Zhang, Gong, Tian, Pan, Li, Zhao (b0310) 2015; 40
Li, Yan, Zhang, Chen, Cui, Song (b0335) 2016; 172
Zhu, Jiang, Xiao, Li (b0400) 2010; 179
Website of the Ministry of Environmental Protection, People’s Republic of China. Emission standard of air pollutants for thermal power plants. Reported on September 21, 2011. Available from
Website of the U.S. Environmental Protection Agency, the United States of America. Method 17-Determination of particulate matter emissions from stationary sources. Available from
Gröhn, Suonmaa, Auvinen, Lehtinen, Jokiniemi (b0320) 2009; 43
Fournel, Mocho, Fanlo, Le (b0360) 2005; 26
Sun, Zhuang, Tang, Wang, An (b0010) 2006; 40
Ma, Li, Zhao, Zhang, Song, Zeng (b0380) 2015; 329
Tsukada, Nishikawa, Horikawa, Wada, Liu, Kamiya (b0025) 2008; 180
Website of the Administrative Center for China’s Agenda 21. Research on the cause and control of air pollution. Reported on April 25, 2016. Available from
Holder, Goshaw, Richards (b0200) 2001
Website of the U.S. Environmental Protection Agency, the United States of America. CTM-039 Measurement of PM2.5 and PM10 by dilution sampling (constant sampling rate procedures). Available from
Rashidi, Yusup, Hameed (b0375) 2013; 61
Krishnan, Gullett, Jozewicz (b0350) 1994; 28
Corio, Sherwell (b0030) 2000; 50
US EPA (b0040) 2006
Atkinson (b0090) 2000; 34
Li, Qi, Li, Wu, Zhou, Lu (b0095) 2017; 31
Xu, Zhang, Yu, Meng, Zhong (b0135) 2016; 30
Bhanarkar, Gavane, Tajne, Tamhane, Nema (b0270) 2008; 87
Tsukada, Horikawa, Sugimoto, Abe, Wada, Liu (b0225) 2007; 40
Pavlish, Sondreal, Mann, Olson, Galbreath, Laudal (b0355) 2003; 82
Lighty (10.1016/j.fuel.2018.03.118_b0150) 2000; 50
10.1016/j.fuel.2018.03.118_b0240
Holder (10.1016/j.fuel.2018.03.118_b0200) 2001
Bibby (10.1016/j.fuel.2018.03.118_b0280) 1977; 56
Tsuji (10.1016/j.fuel.2018.03.118_b0385) 1997; 76
Morcos (10.1016/j.fuel.2018.03.118_b0180) 1996; 21
Wu (10.1016/j.fuel.2018.03.118_b0330) 2016; 145
Yao (10.1016/j.fuel.2018.03.118_b0020) 2009; 34
Atkinson (10.1016/j.fuel.2018.03.118_b0090) 2000; 34
Pei (10.1016/j.fuel.2018.03.118_b0035) 2015; 36
Claeys (10.1016/j.fuel.2018.03.118_b0085) 2004; 303
Huang (10.1016/j.fuel.2018.03.118_b0075) 2014; 514
Li (10.1016/j.fuel.2018.03.118_b0005) 2014; 189
Zhang (10.1016/j.fuel.2018.03.118_b0365) 2017; 338
Linak (10.1016/j.fuel.2018.03.118_b0140) 1993; 19
Li (10.1016/j.fuel.2018.03.118_b0335) 2016; 172
Rashidi (10.1016/j.fuel.2018.03.118_b0375) 2013; 61
Sarofim (10.1016/j.fuel.2018.03.118_b0115) 1977; 16
Jaworek (10.1016/j.fuel.2018.03.118_b0175) 2007; 65
Li (10.1016/j.fuel.2018.03.118_b0095) 2017; 31
10.1016/j.fuel.2018.03.118_b0050
Yang (10.1016/j.fuel.2018.03.118_b0265) 2015; 15
Shen (10.1016/j.fuel.2018.03.118_b0170) 2015; 120
Gröhn (10.1016/j.fuel.2018.03.118_b0320) 2009; 43
EU (10.1016/j.fuel.2018.03.118_b0045) 2001
Pei (10.1016/j.fuel.2018.03.118_b0250) 2010; 26
Linak (10.1016/j.fuel.2018.03.118_b0145) 1994; 39
Tsukada (10.1016/j.fuel.2018.03.118_b0225) 2007; 40
Limbeck (10.1016/j.fuel.2018.03.118_b0080) 2003; 30
McDannel (10.1016/j.fuel.2018.03.118_b0235) 1998
Wang (10.1016/j.fuel.2018.03.118_b0340) 2012; 48
Tsukada (10.1016/j.fuel.2018.03.118_b0025) 2008; 180
Zhang (10.1016/j.fuel.2018.03.118_b0310) 2015; 40
10.1016/j.fuel.2018.03.118_b0205
Best (10.1016/j.fuel.2018.03.118_b0315) 2008; 22
Pavlish (10.1016/j.fuel.2018.03.118_b0355) 2003; 82
Okkes (10.1016/j.fuel.2018.03.118_b0105) 1987; 66
Zhu (10.1016/j.fuel.2018.03.118_b0400) 2010; 179
And (10.1016/j.fuel.2018.03.118_b0345) 2007; 21
Russell (10.1016/j.fuel.2018.03.118_b0160) 2009; 43
Ma (10.1016/j.fuel.2018.03.118_b0380) 2015; 329
Krishnan (10.1016/j.fuel.2018.03.118_b0350) 1994; 28
Wu (10.1016/j.fuel.2018.03.118_b0415) 2015; 49
Willenberg (10.1016/j.fuel.2018.03.118_b0220) 2008
10.1016/j.fuel.2018.03.118_b0185
Yang (10.1016/j.fuel.2018.03.118_b0405) 2015; 268
10.1016/j.fuel.2018.03.118_b0060
Li (10.1016/j.fuel.2018.03.118_b0305) 2017; 31
Fournel (10.1016/j.fuel.2018.03.118_b0360) 2005; 26
Yi (10.1016/j.fuel.2018.03.118_b0290) 2008; 87
Xu (10.1016/j.fuel.2018.03.118_b0135) 2016; 30
Goodarzi (10.1016/j.fuel.2018.03.118_b0015) 2006; 85
Zhang (10.1016/j.fuel.2018.03.118_b0295) 2006; 85
Li (10.1016/j.fuel.2018.03.118_b0370) 2017; 31
Heintzenberg (10.1016/j.fuel.2018.03.118_b0155) 1989; 41B
Bao (10.1016/j.fuel.2018.03.118_b0325) 2013; 108
10.1016/j.fuel.2018.03.118_b0215
US EPA (10.1016/j.fuel.2018.03.118_b0040) 2006
10.1016/j.fuel.2018.03.118_b0055
10.1016/j.fuel.2018.03.118_b0210
10.1016/j.fuel.2018.03.118_b0195
Lu (10.1016/j.fuel.2018.03.118_b0255) 2010
(10.1016/j.fuel.2018.03.118_b0065) 1983
Chang (10.1016/j.fuel.2018.03.118_b0125) 2015; 140
10.1016/j.fuel.2018.03.118_b0190
Zhu (10.1016/j.fuel.2018.03.118_b0390) 2005; 46
10.1016/j.fuel.2018.03.118_b0070
Mondal (10.1016/j.fuel.2018.03.118_b0410) 2012; 46
Córdoba (10.1016/j.fuel.2018.03.118_b0100) 2015; 144
Damle (10.1016/j.fuel.2018.03.118_b0120) 1982; 1
Sun (10.1016/j.fuel.2018.03.118_b0010) 2006; 40
Cano (10.1016/j.fuel.2018.03.118_b0245) 2017; 31
Wyslouzil (10.1016/j.fuel.2018.03.118_b0130) 2016; 145
Yang (10.1016/j.fuel.2018.03.118_b0260) 2014; 14
Lee (10.1016/j.fuel.2018.03.118_b0300) 2013; 108
Dewees (10.1016/j.fuel.2018.03.118_b0230) 1990
Bahadori (10.1016/j.fuel.2018.03.118_b0110) 2011; 31
Goodarzi (10.1016/j.fuel.2018.03.118_b0275) 2006; 85
Figueiredo (10.1016/j.fuel.2018.03.118_b0395) 1999; 37
Huang (10.1016/j.fuel.2018.03.118_b0285) 2006; 40
Corio (10.1016/j.fuel.2018.03.118_b0030) 2000; 50
Valverde (10.1016/j.fuel.2018.03.118_b0420) 2012; 224
Bhanarkar (10.1016/j.fuel.2018.03.118_b0270) 2008; 87
Schwarze (10.1016/j.fuel.2018.03.118_b0165) 2006; 25
References_xml – volume: 37
  start-page: 1379
  year: 1999
  end-page: 1389
  ident: b0395
  article-title: Modification of the surface chemistry of activated carbons
  publication-title: Carbon
– volume: 46
  start-page: 431
  year: 2012
  end-page: 441
  ident: b0410
  article-title: Progress and trends in CO2 capture/separation technologies: a review
  publication-title: Energy
– volume: 28
  start-page: 1506
  year: 1994
  end-page: 1512
  ident: b0350
  article-title: Sorption of elemental mercury by activated carbons
  publication-title: Environ Sci Technol
– reference: Website of the U.S. Environmental Protection Agency, the United States of America. Method 5-Determination of particulate matter emissions from stationary sources. Available from:
– reference: Richards, J., Holder, T., Goshaw, D. Optimized Method 202 Sampling Train to Minimize the Biases Associated with Method 202 Measurement of Condensable Particulate Matter Emissions. Air & Waste Management Association, Hazardous Waste Combustion Specialty Conference, November 2–3, 2005.
– year: 2001
  ident: b0200
  article-title: Artifact formation in method 202 sampling trains used to measure condensable particulate matter emissions from portland cement kilns. Paper 451
  publication-title: Proceedings of the 94th Annual Conference & Exhibition, Orlando, FL
– reference: . [accessed 11 February 2018].
– volume: 43
  start-page: 6269
  year: 2009
  end-page: 6274
  ident: b0320
  article-title: Reduction of fine particle emissions from wood combustion with optimized condensing heat exchangers
  publication-title: Environ Sci Technol
– volume: 85
  start-page: 1418
  year: 2006
  end-page: 1427
  ident: b0275
  article-title: Characteristics and composition of fly ash from Canadian coal-fired power plants
  publication-title: Fuel
– volume: 50
  start-page: 1565
  year: 2000
  end-page: 1618
  ident: b0150
  article-title: Combustion aerosols: factors governing their size and composition and implications to human health
  publication-title: J Air Waste Manag Assoc
– volume: 39
  start-page: 173
  year: 1994
  end-page: 198
  ident: b0145
  article-title: Trace metal transformation mechanisms during coal combustion
  publication-title: Fuel Process Technol
– volume: 31
  start-page: 9745
  year: 2017
  end-page: 9751
  ident: b0370
  article-title: Effects of acidic gases on mercury adsorption by activated carbon in simulated oxy-fuel combustion flue gas
  publication-title: Energy Fuels
– volume: 329
  start-page: 292
  year: 2015
  end-page: 300
  ident: b0380
  article-title: Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid
  publication-title: Appl Surf Sci
– reference: Website of the Administrative Center for China’s Agenda 21. Research on the cause and control of air pollution. Reported on April 25, 2016. Available from:
– volume: 66
  year: 1987
  ident: b0105
  article-title: Get acid dew point of flue gas
  publication-title: Hydrocarbon Process
– volume: 303
  start-page: 1173
  year: 2004
  end-page: 1176
  ident: b0085
  article-title: Formation of secondary organic aerosols through photooxidation of isoprene
  publication-title: Science
– volume: 34
  start-page: 2063
  year: 2000
  end-page: 2101
  ident: b0090
  article-title: Atmospheric chemistry of VOCs and NOx
  publication-title: Atmos Environ
– volume: 179
  start-page: 251
  year: 2010
  end-page: 257
  ident: b0400
  article-title: A novel magnetically separable gamma-Fe2O3/crosslinked chitosan adsorbent: preparation, characterization and adsorption application for removal of hazardous azo dye
  publication-title: J Hazard Mater
– year: 1990
  ident: b0230
  article-title: Method development and evaluation of draft protocol for measurement of condensible particulate emissions. Test report. EPA 450/4-90-012
– volume: 21
  start-page: 852
  year: 2007
  end-page: 857
  ident: b0345
  article-title: Gas-phase mercury adsorption rate studies
  publication-title: Energy Fuels
– volume: 338
  start-page: 102
  year: 2017
  end-page: 123
  ident: b0365
  article-title: Adsorption of VOCs onto engineered carbon materials: a review
  publication-title: J Hazard Mater
– volume: 30
  start-page: 1822
  year: 2016
  end-page: 1828
  ident: b0135
  article-title: Characteristics of vapor condensation on coal-fired fine particles
  publication-title: Energy Fuels
– year: 2001
  ident: b0045
  article-title: On the limitations of certain pollutants into the air from large combustion plants, directive 2001/80/EC of the European Parliament and of Council
– volume: 31
  start-page: 1457
  year: 2011
  end-page: 1462
  ident: b0110
  article-title: Estimation of combustion flue gas acid dew point during heat recovery and efficiency gain
  publication-title: Appl Therm Eng
– reference: Website of the U.S. Environmental Protection Agency, the United States of America. Method201A-Determination of PM10 and PM2.5 emissions from stationary sources (Constant Sampling Rate Procedure). Available from:
– volume: 50
  start-page: 207
  year: 2000
  end-page: 218
  ident: b0030
  article-title: In-stack condensible particulate matter measurements and issues
  publication-title: J Air Waste Manag Assoc
– volume: 26
  start-page: 9
  year: 2010
  end-page: 12
  ident: b0250
  article-title: Discussion on the emission issues and testing of condensable particulate matter from exhaust gas of stationary source
  publication-title: Environ Monit China
– volume: 87
  start-page: 2095
  year: 2008
  end-page: 2101
  ident: b0270
  article-title: Composition and size distribution of particules emissions from a coal-fired power plant in India
  publication-title: Fuel
– volume: 87
  start-page: 2050
  year: 2008
  end-page: 2057
  ident: b0290
  article-title: Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China
  publication-title: Fuel
– volume: 31
  start-page: 7831
  year: 2017
  end-page: 7838
  ident: b0245
  article-title: Characterization of emissions of condensable particulate matter in clinker kilns using a dilution sampling system
  publication-title: Energy Fuels
– volume: 49
  start-page: 2701
  year: 2015
  end-page: 2706
  ident: b0415
  article-title: Behavior of CaTiO3/Nano-CaO as a CO2 reactive adsorbent
  publication-title: Ind Eng Chem Res
– volume: 40
  start-page: 3148
  year: 2006
  end-page: 3155
  ident: b0010
  article-title: Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing
  publication-title: Environ Sci Technol
– reference: Website of the Ministry of Environmental Protection, People’s Republic of China. Emission standard of air pollutants for thermal power plants. Reported on September 21, 2011. Available from:
– volume: 36
  start-page: 1544
  year: 2015
  end-page: 1549
  ident: b0035
  article-title: Determination and emission of condensable particulate matter from coal-fired power plants
  publication-title: Environ Sci
– volume: 140
  start-page: 526
  year: 2015
  end-page: 530
  ident: b0125
  article-title: Emission of inorganic PM 10, from included mineral matter during the combustion of pulverized coals of various ranks
  publication-title: Fuel
– start-page: 1
  year: 2010
  end-page: 4
  ident: b0255
  article-title: Particulate matter emissions from a coal-fired power plant
  publication-title: International Conference on Bioinformatics and Biomedical Engineering
– volume: 40
  start-page: 2449
  year: 2006
  end-page: 2458
  ident: b0285
  article-title: Annual variation of particulate organic compounds in PM 2.5, in the urban atmosphere of Beijing
  publication-title: Atmos Environ
– volume: 85
  start-page: 425
  year: 2006
  end-page: 433
  ident: b0015
  article-title: The rates of emissions of fine particles from some Canadian coal-fired power plants
  publication-title: Fuel
– volume: 120
  start-page: 307
  year: 2015
  end-page: 316
  ident: b0170
  article-title: Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta, China
  publication-title: Atmos Environ
– year: 2006
  ident: b0040
  article-title: Standards of performance for electric utility steam generating unit
– volume: 56
  start-page: 427
  year: 1977
  end-page: 431
  ident: b0280
  article-title: Composition and variation of pulverized fuel ash obtained from the combustion of sub-bituminous coals, New Zealand
  publication-title: Fuel
– volume: 19
  start-page: 145
  year: 1993
  end-page: 185
  ident: b0140
  article-title: Toxic metal emissions from incineration: mechanisms and control
  publication-title: Prog Energy Combust Sci
– volume: 65
  start-page: 133
  year: 2007
  end-page: 155
  ident: b0175
  article-title: Modern electrostatic devices and methods for exhaust gas cleaning: a brief review
  publication-title: J Electrostat
– volume: 26
  start-page: 1277
  year: 2005
  end-page: 1288
  ident: b0360
  article-title: External capillary condensation and adsorption of VOCs onto activated carbon fiber cloth and felt
  publication-title: Environ Technol
– volume: 48
  start-page: 196
  year: 2012
  end-page: 202
  ident: b0340
  article-title: Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600MW power plant
  publication-title: Energy
– volume: 172
  start-page: 107
  year: 2016
  end-page: 117
  ident: b0335
  article-title: Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery
  publication-title: Appl Energy
– volume: 82
  start-page: 89
  year: 2003
  end-page: 165
  ident: b0355
  article-title: Status review of mercury control options for coal-fired power plants
  publication-title: Fuel Process Technol
– volume: 145
  start-page: 116
  year: 2016
  end-page: 122
  ident: b0330
  article-title: Improving the removal of fine particles by heterogeneous condensation during WFGD processes
  publication-title: Fuel Process Technol
– volume: 46
  start-page: 2173
  year: 2005
  end-page: 2184
  ident: b0390
  article-title: Experimental investigation of adsorption of NO and SO 2, on modified activated carbon sorbent from flue gases
  publication-title: Energy Convers Manage
– volume: 22
  start-page: 587
  year: 2008
  end-page: 597
  ident: b0315
  article-title: Particulate emission reduction in small-scale biomass combustion plants by a condensing heat exchanger
  publication-title: Energy Fuels
– volume: 61
  start-page: 440
  year: 2013
  end-page: 446
  ident: b0375
  article-title: Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon
  publication-title: Energy
– volume: 31
  start-page: 13233
  year: 2017
  end-page: 13238
  ident: b0305
  article-title: Study on the influencing factors of the distribution characteristics of polycyclic aromatic hydrocarbons in condensable particulate matter
  publication-title: Energy Fuels
– volume: 30
  start-page: 379
  year: 2003
  end-page: 394
  ident: b0080
  article-title: Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles
  publication-title: Geophys Res Lett
– volume: 41B
  start-page: 149
  year: 1989
  end-page: 160
  ident: b0155
  article-title: Fine particles in the global troposphere. A review
  publication-title: Tellus
– volume: 43
  start-page: 4620
  year: 2009
  end-page: 4625
  ident: b0160
  article-title: A focus on particulate matter and health
  publication-title: Environ Sci Technol
– volume: 31
  start-page: 1778
  year: 2017
  end-page: 1785
  ident: b0095
  article-title: Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant
  publication-title: Energy Fuels
– volume: 514
  start-page: 218
  year: 2014
  end-page: 222
  ident: b0075
  article-title: High secondary aerosol contribution to particulate pollution during haze events in China
  publication-title: Nature
– year: 1983
  ident: b0065
  article-title: Estimation of the Importance of Condensed Particulate Matter to Ambient Particulate Levels; PB84-102565
– volume: 40
  start-page: 2696
  year: 2015
  end-page: 2701
  ident: b0310
  article-title: Formation mechanisms of fine particles generated from coal combustion
  publication-title: J China Coal Soc
– volume: 14
  start-page: 2010
  year: 2014
  end-page: 2016
  ident: b0260
  article-title: Filterable and condensable fine particulate emissions from stationary sources
  publication-title: Aerosol Air Qual Res
– volume: 1
  start-page: 119
  year: 1982
  end-page: 133
  ident: b0120
  article-title: Coal combustion aerosol formation mechanisms: a review
  publication-title: Aerosol Sci Technol
– volume: 40
  start-page: 869
  year: 2007
  end-page: 873
  ident: b0225
  article-title: Emission behavior of condensable suspended particulate matter from a laboratory scale RDF fluidized bed combustor
  publication-title: J Chem Eng Jpn
– volume: 76
  start-page: 549
  year: 1997
  end-page: 553
  ident: b0385
  article-title: Combined desulfurization, denitrification and reduction of air toxics using activated coke: 1. Activity of activated coke
  publication-title: Fuel
– volume: 34
  start-page: 1296
  year: 2009
  end-page: 1309
  ident: b0020
  article-title: Studies on formation and control of combustion particulate matter in China: a review
  publication-title: Energy
– reference: Website of the National Development and Reform commission, People’s Republic of China. Action plan for upgrading and reforming coal-fired power for energy saving and emission reduction. Reported on September 12, 2014. Available from:
– reference: Website of the U.S. Environmental Protection Agency, the United States of America. Method 202-Determination of condensable particulate emissions from stationary sources. Available from:
– year: 1998
  ident: b0235
  article-title: Measurement of condensible particulate matter: a review of alternatives to EPA Method 202. Final report. EPRI Report TR-111327
– volume: 85
  start-page: 1446
  year: 2006
  end-page: 1457
  ident: b0295
  article-title: Formation of submicron particulate matter (PM 1) during coal combustion and influence of reaction temperature
  publication-title: Fuel
– volume: 180
  start-page: 140
  year: 2008
  end-page: 144
  ident: b0025
  article-title: Emission potential of condensable suspended particulate matter from flue gas of solid waste combustion
  publication-title: Powder Technol
– volume: 224
  start-page: 247
  year: 2012
  end-page: 252
  ident: b0420
  article-title: CO2, capture enhancement in a fluidized bed of a modified Geldart C powder
  publication-title: Powder Technol
– volume: 16
  start-page: 187
  year: 1977
  end-page: 204
  ident: b0115
  article-title: The physical transformation of the mineral matter in pulverized coal under simulated combustion conditions
  publication-title: Combust Sci Technol
– volume: 15
  start-page: 1672
  year: 2015
  end-page: 1680
  ident: b0265
  article-title: Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants
  publication-title: Aerosol Air Qual Res
– volume: 144
  start-page: 274
  year: 2015
  end-page: 286
  ident: b0100
  article-title: Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs
  publication-title: Fuel
– year: 2008
  ident: b0220
  article-title: Condensable particulate matter-measuring and permitting it
  publication-title: Presented at the Pacific Northwest International Section Annual Conference
– volume: 145
  start-page: 1753
  year: 2016
  end-page: 1759
  ident: b0130
  article-title: Overview: homogeneous nucleation from the vapor phase—the experimental science
  publication-title: J Chem Phys
– volume: 21
  start-page: 9
  year: 1996
  end-page: 14
  ident: b0180
  article-title: Performance analysis of industrial bag filters to control particulate emissions
  publication-title: Energy
– reference: Website of the U.S. Environmental Protection Agency, the United States of America. CTM-039 Measurement of PM2.5 and PM10 by dilution sampling (constant sampling rate procedures). Available from:
– reference: Website of the U.S. Environmental Protection Agency, the United States of America.OTM-28 Determination of condensable particulate emissions from stationary sources. Available from:
– volume: 108
  start-page: 60
  year: 2013
  end-page: 66
  ident: b0300
  article-title: Measurement of PM 2.5, and ultra-fine particulate emissions from coal-fired utility boilers
  publication-title: Fuel
– volume: 189
  start-page: 85
  year: 2014
  end-page: 86
  ident: b0005
  article-title: Haze in China: current and future challenges
  publication-title: Environ Pollut
– volume: 108
  start-page: 73
  year: 2013
  end-page: 79
  ident: b0325
  article-title: Experimental study of fine particles removal in the desulfurated scrubbed flue gas
  publication-title: Fuel
– volume: 25
  start-page: 559
  year: 2006
  end-page: 579
  ident: b0165
  article-title: Particulate matter properties and health effects: consistency of epidemiological and toxicological studies
  publication-title: Hum Exp Toxicol
– reference: Website of the U.S. Environmental Protection Agency, the United States of America. Method 17-Determination of particulate matter emissions from stationary sources. Available from:
– reference: Filadelfia, EJ, Mc Daniel, M.D. Evaluation of False Positive Interference’s Associated with the Use of EPA Method 202. Paper 96-RA-109.04 Presented at the 89th Annual Meeting and Exhibition of the Air & Waste Management Association, June 23–28; 1996.
– volume: 268
  start-page: 399
  year: 2015
  end-page: 407
  ident: b0405
  article-title: Simultaneous organic/inorganic removal from water using a new nanocomposite adsorbent: a case study of p -nitrophenol and phosphate
  publication-title: Chem Eng J
– volume: 145
  start-page: 116
  year: 2016
  ident: 10.1016/j.fuel.2018.03.118_b0330
  article-title: Improving the removal of fine particles by heterogeneous condensation during WFGD processes
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2016.01.033
– volume: 26
  start-page: 1277
  issue: 11
  year: 2005
  ident: 10.1016/j.fuel.2018.03.118_b0360
  article-title: External capillary condensation and adsorption of VOCs onto activated carbon fiber cloth and felt
  publication-title: Environ Technol
  doi: 10.1080/09593332608618598
– volume: 329
  start-page: 292
  year: 2015
  ident: 10.1016/j.fuel.2018.03.118_b0380
  article-title: Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2014.11.090
– volume: 16
  start-page: 187
  issue: 3–6
  year: 1977
  ident: 10.1016/j.fuel.2018.03.118_b0115
  article-title: The physical transformation of the mineral matter in pulverized coal under simulated combustion conditions
  publication-title: Combust Sci Technol
  doi: 10.1080/00102207708946804
– volume: 40
  start-page: 2696
  issue: 11
  year: 2015
  ident: 10.1016/j.fuel.2018.03.118_b0310
  article-title: Formation mechanisms of fine particles generated from coal combustion
  publication-title: J China Coal Soc
– ident: 10.1016/j.fuel.2018.03.118_b0190
– volume: 224
  start-page: 247
  year: 2012
  ident: 10.1016/j.fuel.2018.03.118_b0420
  article-title: CO2, capture enhancement in a fluidized bed of a modified Geldart C powder
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2012.02.060
– volume: 180
  start-page: 140
  issue: 1–2
  year: 2008
  ident: 10.1016/j.fuel.2018.03.118_b0025
  article-title: Emission potential of condensable suspended particulate matter from flue gas of solid waste combustion
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2007.03.024
– volume: 31
  start-page: 9745
  issue: 9
  year: 2017
  ident: 10.1016/j.fuel.2018.03.118_b0370
  article-title: Effects of acidic gases on mercury adsorption by activated carbon in simulated oxy-fuel combustion flue gas
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b01480
– volume: 61
  start-page: 440
  issue: 4
  year: 2013
  ident: 10.1016/j.fuel.2018.03.118_b0375
  article-title: Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon
  publication-title: Energy
  doi: 10.1016/j.energy.2013.08.050
– volume: 108
  start-page: 73
  issue: 11
  year: 2013
  ident: 10.1016/j.fuel.2018.03.118_b0325
  article-title: Experimental study of fine particles removal in the desulfurated scrubbed flue gas
  publication-title: Fuel
– volume: 49
  start-page: 2701
  issue: 6
  year: 2015
  ident: 10.1016/j.fuel.2018.03.118_b0415
  article-title: Behavior of CaTiO3/Nano-CaO as a CO2 reactive adsorbent
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie900900r
– volume: 140
  start-page: 526
  year: 2015
  ident: 10.1016/j.fuel.2018.03.118_b0125
  article-title: Emission of inorganic PM 10, from included mineral matter during the combustion of pulverized coals of various ranks
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.09.114
– volume: 1
  start-page: 119
  issue: 1
  year: 1982
  ident: 10.1016/j.fuel.2018.03.118_b0120
  article-title: Coal combustion aerosol formation mechanisms: a review
  publication-title: Aerosol Sci Technol
  doi: 10.1080/02786828208958582
– volume: 108
  start-page: 60
  issue: 11
  year: 2013
  ident: 10.1016/j.fuel.2018.03.118_b0300
  article-title: Measurement of PM 2.5, and ultra-fine particulate emissions from coal-fired utility boilers
  publication-title: Fuel
– volume: 40
  start-page: 3148
  issue: 10
  year: 2006
  ident: 10.1016/j.fuel.2018.03.118_b0010
  article-title: Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing
  publication-title: Environ Sci Technol
  doi: 10.1021/es051533g
– volume: 76
  start-page: 549
  issue: 6
  year: 1997
  ident: 10.1016/j.fuel.2018.03.118_b0385
  article-title: Combined desulfurization, denitrification and reduction of air toxics using activated coke: 1. Activity of activated coke
  publication-title: Fuel
  doi: 10.1016/S0016-2361(97)00010-0
– volume: 21
  start-page: 852
  issue: 2
  year: 2007
  ident: 10.1016/j.fuel.2018.03.118_b0345
  article-title: Gas-phase mercury adsorption rate studies
  publication-title: Energy Fuels
  doi: 10.1021/ef060276d
– year: 2006
  ident: 10.1016/j.fuel.2018.03.118_b0040
– volume: 145
  start-page: 1753
  issue: 21
  year: 2016
  ident: 10.1016/j.fuel.2018.03.118_b0130
  article-title: Overview: homogeneous nucleation from the vapor phase—the experimental science
  publication-title: J Chem Phys
  doi: 10.1063/1.4962283
– volume: 303
  start-page: 1173
  issue: 5661
  year: 2004
  ident: 10.1016/j.fuel.2018.03.118_b0085
  article-title: Formation of secondary organic aerosols through photooxidation of isoprene
  publication-title: Science
  doi: 10.1126/science.1092805
– volume: 25
  start-page: 559
  issue: 10
  year: 2006
  ident: 10.1016/j.fuel.2018.03.118_b0165
  article-title: Particulate matter properties and health effects: consistency of epidemiological and toxicological studies
  publication-title: Hum Exp Toxicol
  doi: 10.1177/096032706072520
– ident: 10.1016/j.fuel.2018.03.118_b0240
– volume: 268
  start-page: 399
  year: 2015
  ident: 10.1016/j.fuel.2018.03.118_b0405
  article-title: Simultaneous organic/inorganic removal from water using a new nanocomposite adsorbent: a case study of p -nitrophenol and phosphate
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2015.01.051
– volume: 43
  start-page: 6269
  issue: 16
  year: 2009
  ident: 10.1016/j.fuel.2018.03.118_b0320
  article-title: Reduction of fine particle emissions from wood combustion with optimized condensing heat exchangers
  publication-title: Environ Sci Technol
  doi: 10.1021/es8035225
– volume: 87
  start-page: 2050
  issue: 10–11
  year: 2008
  ident: 10.1016/j.fuel.2018.03.118_b0290
  article-title: Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China
  publication-title: Fuel
  doi: 10.1016/j.fuel.2007.10.009
– year: 2008
  ident: 10.1016/j.fuel.2018.03.118_b0220
  article-title: Condensable particulate matter-measuring and permitting it
– volume: 31
  start-page: 13233
  issue: 12
  year: 2017
  ident: 10.1016/j.fuel.2018.03.118_b0305
  article-title: Study on the influencing factors of the distribution characteristics of polycyclic aromatic hydrocarbons in condensable particulate matter
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b01991
– volume: 338
  start-page: 102
  year: 2017
  ident: 10.1016/j.fuel.2018.03.118_b0365
  article-title: Adsorption of VOCs onto engineered carbon materials: a review
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2017.05.013
– volume: 43
  start-page: 4620
  issue: 13
  year: 2009
  ident: 10.1016/j.fuel.2018.03.118_b0160
  article-title: A focus on particulate matter and health
  publication-title: Environ Sci Technol
  doi: 10.1021/es9005459
– start-page: 1
  year: 2010
  ident: 10.1016/j.fuel.2018.03.118_b0255
  article-title: Particulate matter emissions from a coal-fired power plant
– volume: 34
  start-page: 2063
  issue: 12–14
  year: 2000
  ident: 10.1016/j.fuel.2018.03.118_b0090
  article-title: Atmospheric chemistry of VOCs and NOx
  publication-title: Atmos Environ
  doi: 10.1016/S1352-2310(99)00460-4
– year: 1998
  ident: 10.1016/j.fuel.2018.03.118_b0235
– ident: 10.1016/j.fuel.2018.03.118_b0070
– volume: 144
  start-page: 274
  year: 2015
  ident: 10.1016/j.fuel.2018.03.118_b0100
  article-title: Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.12.065
– volume: 28
  start-page: 1506
  issue: 8
  year: 1994
  ident: 10.1016/j.fuel.2018.03.118_b0350
  article-title: Sorption of elemental mercury by activated carbons
  publication-title: Environ Sci Technol
  doi: 10.1021/es00057a020
– volume: 37
  start-page: 1379
  issue: 9
  year: 1999
  ident: 10.1016/j.fuel.2018.03.118_b0395
  article-title: Modification of the surface chemistry of activated carbons
  publication-title: Carbon
  doi: 10.1016/S0008-6223(98)00333-9
– volume: 36
  start-page: 1544
  issue: 5
  year: 2015
  ident: 10.1016/j.fuel.2018.03.118_b0035
  article-title: Determination and emission of condensable particulate matter from coal-fired power plants
  publication-title: Environ Sci
– volume: 179
  start-page: 251
  issue: 1–3
  year: 2010
  ident: 10.1016/j.fuel.2018.03.118_b0400
  article-title: A novel magnetically separable gamma-Fe2O3/crosslinked chitosan adsorbent: preparation, characterization and adsorption application for removal of hazardous azo dye
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2010.02.087
– volume: 34
  start-page: 1296
  issue: 9
  year: 2009
  ident: 10.1016/j.fuel.2018.03.118_b0020
  article-title: Studies on formation and control of combustion particulate matter in China: a review
  publication-title: Energy
  doi: 10.1016/j.energy.2009.03.013
– volume: 56
  start-page: 427
  issue: 4
  year: 1977
  ident: 10.1016/j.fuel.2018.03.118_b0280
  article-title: Composition and variation of pulverized fuel ash obtained from the combustion of sub-bituminous coals, New Zealand
  publication-title: Fuel
  doi: 10.1016/0016-2361(77)90071-0
– volume: 41B
  start-page: 149
  issue: 2
  year: 1989
  ident: 10.1016/j.fuel.2018.03.118_b0155
  article-title: Fine particles in the global troposphere. A review
  publication-title: Tellus
  doi: 10.1111/j.1600-0889.1989.tb00132.x
– volume: 85
  start-page: 425
  issue: 4
  year: 2006
  ident: 10.1016/j.fuel.2018.03.118_b0015
  article-title: The rates of emissions of fine particles from some Canadian coal-fired power plants
  publication-title: Fuel
  doi: 10.1016/j.fuel.2005.07.008
– volume: 40
  start-page: 869
  issue: 10
  year: 2007
  ident: 10.1016/j.fuel.2018.03.118_b0225
  article-title: Emission behavior of condensable suspended particulate matter from a laboratory scale RDF fluidized bed combustor
  publication-title: J Chem Eng Jpn
  doi: 10.1252/jcej.05SI115
– volume: 50
  start-page: 207
  issue: 2
  year: 2000
  ident: 10.1016/j.fuel.2018.03.118_b0030
  article-title: In-stack condensible particulate matter measurements and issues
  publication-title: J Air Waste Manag Assoc
  doi: 10.1080/10473289.2000.10464002
– volume: 46
  start-page: 2173
  issue: 13–14
  year: 2005
  ident: 10.1016/j.fuel.2018.03.118_b0390
  article-title: Experimental investigation of adsorption of NO and SO 2, on modified activated carbon sorbent from flue gases
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2004.10.011
– volume: 46
  start-page: 431
  issue: 1
  year: 2012
  ident: 10.1016/j.fuel.2018.03.118_b0410
  article-title: Progress and trends in CO2 capture/separation technologies: a review
  publication-title: Energy
  doi: 10.1016/j.energy.2012.08.006
– ident: 10.1016/j.fuel.2018.03.118_b0060
– volume: 66
  issue: 7
  year: 1987
  ident: 10.1016/j.fuel.2018.03.118_b0105
  article-title: Get acid dew point of flue gas
  publication-title: Hydrocarbon Process
– volume: 14
  start-page: 2010
  issue: 7
  year: 2014
  ident: 10.1016/j.fuel.2018.03.118_b0260
  article-title: Filterable and condensable fine particulate emissions from stationary sources
  publication-title: Aerosol Air Qual Res
  doi: 10.4209/aaqr.2014.08.0178
– volume: 30
  start-page: 1822
  issue: 3
  year: 2016
  ident: 10.1016/j.fuel.2018.03.118_b0135
  article-title: Characteristics of vapor condensation on coal-fired fine particles
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b02200
– volume: 50
  start-page: 1565
  year: 2000
  ident: 10.1016/j.fuel.2018.03.118_b0150
  article-title: Combustion aerosols: factors governing their size and composition and implications to human health
  publication-title: J Air Waste Manag Assoc
  doi: 10.1080/10473289.2000.10464197
– ident: 10.1016/j.fuel.2018.03.118_b0205
– year: 2001
  ident: 10.1016/j.fuel.2018.03.118_b0045
– ident: 10.1016/j.fuel.2018.03.118_b0215
– volume: 26
  start-page: 9
  issue: 6
  year: 2010
  ident: 10.1016/j.fuel.2018.03.118_b0250
  article-title: Discussion on the emission issues and testing of condensable particulate matter from exhaust gas of stationary source
  publication-title: Environ Monit China
– volume: 172
  start-page: 107
  year: 2016
  ident: 10.1016/j.fuel.2018.03.118_b0335
  article-title: Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.017
– ident: 10.1016/j.fuel.2018.03.118_b0050
– volume: 31
  start-page: 1778
  issue: 2
  year: 2017
  ident: 10.1016/j.fuel.2018.03.118_b0095
  article-title: Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b02919
– volume: 87
  start-page: 2095
  issue: 10–11
  year: 2008
  ident: 10.1016/j.fuel.2018.03.118_b0270
  article-title: Composition and size distribution of particules emissions from a coal-fired power plant in India
  publication-title: Fuel
  doi: 10.1016/j.fuel.2007.11.001
– volume: 30
  start-page: 379
  issue: 30
  year: 2003
  ident: 10.1016/j.fuel.2018.03.118_b0080
  article-title: Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles
  publication-title: Geophys Res Lett
– volume: 189
  start-page: 85
  issue: 12
  year: 2014
  ident: 10.1016/j.fuel.2018.03.118_b0005
  article-title: Haze in China: current and future challenges
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2014.02.024
– ident: 10.1016/j.fuel.2018.03.118_b0055
– ident: 10.1016/j.fuel.2018.03.118_b0185
– volume: 85
  start-page: 1418
  issue: 10
  year: 2006
  ident: 10.1016/j.fuel.2018.03.118_b0275
  article-title: Characteristics and composition of fly ash from Canadian coal-fired power plants
  publication-title: Fuel
  doi: 10.1016/j.fuel.2005.11.022
– volume: 31
  start-page: 1457
  issue: 8–9
  year: 2011
  ident: 10.1016/j.fuel.2018.03.118_b0110
  article-title: Estimation of combustion flue gas acid dew point during heat recovery and efficiency gain
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.01.020
– year: 1983
  ident: 10.1016/j.fuel.2018.03.118_b0065
– volume: 22
  start-page: 587
  issue: 1
  year: 2008
  ident: 10.1016/j.fuel.2018.03.118_b0315
  article-title: Particulate emission reduction in small-scale biomass combustion plants by a condensing heat exchanger
  publication-title: Energy Fuels
  doi: 10.1021/ef060435t
– volume: 40
  start-page: 2449
  issue: 14
  year: 2006
  ident: 10.1016/j.fuel.2018.03.118_b0285
  article-title: Annual variation of particulate organic compounds in PM 2.5, in the urban atmosphere of Beijing
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2005.12.039
– volume: 120
  start-page: 307
  year: 2015
  ident: 10.1016/j.fuel.2018.03.118_b0170
  article-title: Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta, China
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2015.09.011
– volume: 514
  start-page: 218
  issue: 7521
  year: 2014
  ident: 10.1016/j.fuel.2018.03.118_b0075
  article-title: High secondary aerosol contribution to particulate pollution during haze events in China
  publication-title: Nature
  doi: 10.1038/nature13774
– volume: 65
  start-page: 133
  issue: 3
  year: 2007
  ident: 10.1016/j.fuel.2018.03.118_b0175
  article-title: Modern electrostatic devices and methods for exhaust gas cleaning: a brief review
  publication-title: J Electrostat
  doi: 10.1016/j.elstat.2006.07.012
– volume: 15
  start-page: 1672
  issue: 4
  year: 2015
  ident: 10.1016/j.fuel.2018.03.118_b0265
  article-title: Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants
  publication-title: Aerosol Air Qual Res
  doi: 10.4209/aaqr.2015.06.0398
– volume: 82
  start-page: 89
  issue: 2
  year: 2003
  ident: 10.1016/j.fuel.2018.03.118_b0355
  article-title: Status review of mercury control options for coal-fired power plants
  publication-title: Fuel Process Technol
  doi: 10.1016/S0378-3820(03)00059-6
– ident: 10.1016/j.fuel.2018.03.118_b0195
– year: 1990
  ident: 10.1016/j.fuel.2018.03.118_b0230
– ident: 10.1016/j.fuel.2018.03.118_b0210
– volume: 31
  start-page: 7831
  issue: 8
  year: 2017
  ident: 10.1016/j.fuel.2018.03.118_b0245
  article-title: Characterization of emissions of condensable particulate matter in clinker kilns using a dilution sampling system
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b00692
– volume: 19
  start-page: 145
  issue: 2
  year: 1993
  ident: 10.1016/j.fuel.2018.03.118_b0140
  article-title: Toxic metal emissions from incineration: mechanisms and control
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/0360-1285(93)90014-6
– volume: 39
  start-page: 173
  issue: 1–3
  year: 1994
  ident: 10.1016/j.fuel.2018.03.118_b0145
  article-title: Trace metal transformation mechanisms during coal combustion
  publication-title: Fuel Process Technol
  doi: 10.1016/0378-3820(94)90179-1
– volume: 85
  start-page: 1446
  issue: 10–11
  year: 2006
  ident: 10.1016/j.fuel.2018.03.118_b0295
  article-title: Formation of submicron particulate matter (PM 1) during coal combustion and influence of reaction temperature
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.01.009
– volume: 21
  start-page: 9
  issue: 1
  year: 1996
  ident: 10.1016/j.fuel.2018.03.118_b0180
  article-title: Performance analysis of industrial bag filters to control particulate emissions
  publication-title: Energy
  doi: 10.1016/0360-5442(95)00087-9
– year: 2001
  ident: 10.1016/j.fuel.2018.03.118_b0200
  article-title: Artifact formation in method 202 sampling trains used to measure condensable particulate matter emissions from portland cement kilns. Paper 451
– volume: 48
  start-page: 196
  issue: 1
  year: 2012
  ident: 10.1016/j.fuel.2018.03.118_b0340
  article-title: Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600MW power plant
  publication-title: Energy
  doi: 10.1016/j.energy.2012.01.045
SSID ssj0007854
Score 2.6059191
SecondaryResourceType review_article
Snippet •A diagram of the formation of condensable particulate matter (CPM) is created.•Method for measuring CPM and its improvements are systematically...
Particulate matter emitted by fuel combustion has become a major air pollutant. It comes in the form of filterable particulate matter (FPM) and condensable...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 801
SubjectTerms Air pollution
Airborne particulates
Condensable particulate matter (CPM)
Emissions
Emissions control
Filterability
Filterable particulate matter (FPM)
Fossil fuels
Fuel combustion
Hazardous air pollutants
Hazards
Measurement methods
Particulate emissions
Particulate matter
Particulate matter (PM)
R&D
Research & development
Review
Test procedures
Total particulate matter (TPM)
Title Critical review of condensable particulate matter
URI https://dx.doi.org/10.1016/j.fuel.2018.03.118
https://www.proquest.com/docview/2083801368
Volume 224
WOSCitedRecordID wos000432920900077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA86PehB_MRvevAmlaVJk9ejjImKiAeVeSptmuJEuuE2Ef96X5q0qxNFD15KyZaQ9pe-L37vPUKOJHrJNMkzX1Hd9nnKhQ-UCV-CFmGSiSAp-6fcX8nra-j1ohvXqXBUthOQRQFvb9HwX6HGMQTbpM7-Ae56URzAewQdrwg7Xn8FfN28YJqVgj4vipdRmSU1LKeYpl2Gujqu2LlVp86Jfi4jB6ZbtuW915ECfMpSLjxMhtrpO8Pk6dux98fBdLAz6TuHvxlVoGDClTavspKUVPimMEtTUgYBb8g6cFEIpzZtSukXiWyDA08nOe7fMOnA1JSlTuZ-Kn89o5ZqsmDFQ3uKzRqxWSNuM3RdYJ4sBDKMoEUWTi-6vctaBUsIbflt9xAuW8oS-2Z38p1FMqObS4PjdpWsOE_BO7UIr5E5XayT5Ub9yA1CK6w9i7U3yL0G1l4Da89ivUnuzrq3nXPf9cDwFWds7INIWUKlRrdVM4HiFfIQjcAggzyLskxJHiquRIqOvpam0GRb5YHQIpKatTnP2RZpFYNCbxOPU2VmAKRCcwkq5TxMeZIaVhRPtdwhtHoPsXIF4k2fkuf4ewR2yHE9Z2jLo_z477B6vbEz8KzhFuNp-XHefoVF7L60Ef4ODEzFQdj90yb2yNL0wO-T1vhlog_Ionod90cvh-4kfQCSbHed
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+review+of+condensable+particulate+matter&rft.jtitle=Fuel+%28Guildford%29&rft.au=Feng%2C+Yupeng&rft.au=Li%2C+Yuzhong&rft.au=Cui%2C+Lin&rft.date=2018-07-15&rft.issn=0016-2361&rft.volume=224&rft.spage=801&rft.epage=813&rft_id=info:doi/10.1016%2Fj.fuel.2018.03.118&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2018_03_118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon