Critical review of condensable particulate matter
•A diagram of the formation of condensable particulate matter (CPM) is created.•Method for measuring CPM and its improvements are systematically introduced.•Three factors that cause inaccuracies of CPM measurement are summarized.•Characteristics of condensable particulate matter are analyzed compreh...
Saved in:
| Published in: | Fuel (Guildford) Vol. 224; pp. 801 - 813 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
15.07.2018
Elsevier BV |
| Subjects: | |
| ISSN: | 0016-2361, 1873-7153 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A diagram of the formation of condensable particulate matter (CPM) is created.•Method for measuring CPM and its improvements are systematically introduced.•Three factors that cause inaccuracies of CPM measurement are summarized.•Characteristics of condensable particulate matter are analyzed comprehensively.•This study proposes two recommended measures to control the emission of CPM.
Particulate matter emitted by fuel combustion has become a major air pollutant. It comes in the form of filterable particulate matter (FPM) and condensable particulate matter (CPM). In the past, people focused on FPM due to its large emission amount. Such active research prompted the rapid development of FPM control technology. At present, FPM is effectively controlled, and its emission concentration is extremely low. By contrast, the emission concentration of CPM is higher than that of FPM and requires immediate attention. Therefore, people are paying close attention to CPM. Nevertheless, CPM is still poorly understood. On the basis of existing research, this study reviews CPM, including its concept, formation mechanism, and hazards. CPM test methods and the factors that affect the accuracy of CPM measurement are also discussed. Improvement methods focusing on CPM measurement are introduced. The results of previous research on CPM characteristics are summarized. Finally, possible CPM control techniques are discussed. |
|---|---|
| AbstractList | Particulate matter emitted by fuel combustion has become a major air pollutant. It comes in the form of filterable particulate matter (FPM) and condensable particulate matter (CPM). In the past, people focused on FPM due to its large emission amount. Such active research prompted the rapid development of FPM control technology. At present, FPM is effectively controlled, and its emission concentration is extremely low. By contrast, the emission concentration of CPM is higher than that of FPM and requires immediate attention. Therefore, people are paying close attention to CPM. Nevertheless, CPM is still poorly understood. On the basis of existing research, this study reviews CPM, including its concept, formation mechanism, and hazards. CPM test methods and the factors that affect the accuracy of CPM measurement are also discussed. Improvement methods focusing on CPM measurement are introduced. The results of previous research on CPM characteristics are summarized. Finally, possible CPM control techniques are discussed. •A diagram of the formation of condensable particulate matter (CPM) is created.•Method for measuring CPM and its improvements are systematically introduced.•Three factors that cause inaccuracies of CPM measurement are summarized.•Characteristics of condensable particulate matter are analyzed comprehensively.•This study proposes two recommended measures to control the emission of CPM. Particulate matter emitted by fuel combustion has become a major air pollutant. It comes in the form of filterable particulate matter (FPM) and condensable particulate matter (CPM). In the past, people focused on FPM due to its large emission amount. Such active research prompted the rapid development of FPM control technology. At present, FPM is effectively controlled, and its emission concentration is extremely low. By contrast, the emission concentration of CPM is higher than that of FPM and requires immediate attention. Therefore, people are paying close attention to CPM. Nevertheless, CPM is still poorly understood. On the basis of existing research, this study reviews CPM, including its concept, formation mechanism, and hazards. CPM test methods and the factors that affect the accuracy of CPM measurement are also discussed. Improvement methods focusing on CPM measurement are introduced. The results of previous research on CPM characteristics are summarized. Finally, possible CPM control techniques are discussed. |
| Author | Feng, Yupeng Cui, Lin Li, Yuzhong |
| Author_xml | – sequence: 1 givenname: Yupeng surname: Feng fullname: Feng, Yupeng – sequence: 2 givenname: Yuzhong orcidid: 0000-0002-2554-0631 surname: Li fullname: Li, Yuzhong email: lyz@sdu.edu.cn – sequence: 3 givenname: Lin orcidid: 0000-0002-9344-3980 surname: Cui fullname: Cui, Lin |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnnfNJNkkBS9S_IKCFz2HNDuBlO2mZrOK_96UevLgaQ7zPu8wz4LMhjggIddAG6Agb3eNn7BvGAXdUN4A6DMyB614raDlMzKnJVUzLuGCLMZxRylVuhVzAusUcnC2rxJ-Bvyqoq9cHDocRrvtsTrYVNZTbzNWe5szpkty7m0_4tXvXJL3x4e39XO9eX16Wd9vaic4z7WWW25BIYBALlultW-VANZp3626zinROuHkVrMWlVixljrPJMqVQk6F8HxJbk69hxQ_Jhyz2cUpDeWkYVRzTYFLXVLslHIpjmNCbw4p7G36NkDNUY3ZmaMac1RjKDdFTYH0H8iFbHOIQ0429P-jdycUy-tFWDKjCzg47EJCl00Xw3_4D29gf_Q |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_139971 crossref_primary_10_1016_j_scitotenv_2021_146245 crossref_primary_10_1016_j_scitotenv_2023_168434 crossref_primary_10_3390_su13084470 crossref_primary_10_1016_j_jes_2020_01_020 crossref_primary_10_1016_j_joei_2021_04_011 crossref_primary_10_1016_j_jece_2022_107667 crossref_primary_10_1016_j_seppur_2024_130222 crossref_primary_10_1016_j_fuel_2023_129807 crossref_primary_10_1016_j_jhazmat_2023_130748 crossref_primary_10_1016_j_apr_2024_102076 crossref_primary_10_1016_j_fuproc_2021_106892 crossref_primary_10_3390_su11071881 crossref_primary_10_1016_j_pecs_2025_101231 crossref_primary_10_3390_su11082319 crossref_primary_10_1016_j_fuel_2022_125052 crossref_primary_10_1016_j_fuel_2025_136608 crossref_primary_10_1016_j_uclim_2021_100964 crossref_primary_10_1016_j_fuel_2022_126786 crossref_primary_10_1016_j_joei_2020_12_003 crossref_primary_10_5572_KOSAE_2023_39_4_546 crossref_primary_10_1016_j_scitotenv_2023_163533 crossref_primary_10_1016_j_jhazmat_2024_134537 crossref_primary_10_1016_j_fuel_2022_126949 crossref_primary_10_1016_j_fuel_2022_124807 crossref_primary_10_1007_s11356_024_32923_9 crossref_primary_10_1038_s12276_020_0405_1 crossref_primary_10_1016_j_jclepro_2022_135392 crossref_primary_10_1088_1742_6596_1436_1_012141 crossref_primary_10_1016_j_fuel_2020_118206 crossref_primary_10_1016_j_scitotenv_2021_147472 crossref_primary_10_1016_j_oneear_2025_101320 crossref_primary_10_1016_j_scitotenv_2021_147597 crossref_primary_10_3390_separations11110330 crossref_primary_10_1016_j_fuel_2022_126594 crossref_primary_10_1016_j_cej_2024_158200 crossref_primary_10_3390_atmos16020175 crossref_primary_10_1016_j_apr_2022_101544 crossref_primary_10_1016_j_envpol_2022_120944 crossref_primary_10_1016_j_seppur_2024_131374 crossref_primary_10_1029_2025GL117794 crossref_primary_10_15446_rsap_v20n6_72744 crossref_primary_10_1016_j_jhazmat_2020_122223 crossref_primary_10_1016_j_chemosphere_2019_01_079 crossref_primary_10_1016_j_chemosphere_2019_125346 crossref_primary_10_1016_j_fuel_2021_121220 crossref_primary_10_1016_j_apr_2022_101376 crossref_primary_10_1016_j_envpol_2024_124716 crossref_primary_10_1016_j_joei_2023_101428 crossref_primary_10_1016_j_atmosenv_2022_119319 crossref_primary_10_1016_j_scitotenv_2022_159877 crossref_primary_10_1016_j_jhazmat_2022_130317 crossref_primary_10_1016_j_envpol_2020_116267 crossref_primary_10_1016_j_jes_2021_06_001 crossref_primary_10_1016_j_fuel_2021_120626 crossref_primary_10_1088_1742_6596_2247_1_012018 crossref_primary_10_1016_j_fuel_2025_136139 crossref_primary_10_1007_s40095_020_00357_x crossref_primary_10_1016_j_apr_2020_01_008 crossref_primary_10_1016_j_fuel_2021_120866 crossref_primary_10_1016_j_fuel_2018_12_024 crossref_primary_10_1016_j_jhazmat_2024_135716 crossref_primary_10_1016_j_joei_2023_101398 crossref_primary_10_1016_j_psep_2020_12_018 crossref_primary_10_3390_atmos12010061 crossref_primary_10_1007_s11270_022_05919_9 crossref_primary_10_3390_su13105504 crossref_primary_10_5572_ajae_2021_15_4_129 crossref_primary_10_1016_j_apr_2025_102414 crossref_primary_10_1080_10962247_2021_1994483 crossref_primary_10_3390_min15090930 crossref_primary_10_1016_j_fuel_2022_126869 crossref_primary_10_3390_atmos13101601 crossref_primary_10_1016_j_jhazmat_2022_128221 crossref_primary_10_1016_j_envres_2023_116945 crossref_primary_10_1016_j_fuel_2024_131255 crossref_primary_10_1007_s10311_023_01644_9 crossref_primary_10_1016_j_mseb_2023_116635 crossref_primary_10_1016_j_envres_2022_113487 crossref_primary_10_5572_KOSAE_2021_37_5_803 crossref_primary_10_1016_j_jclepro_2021_127203 crossref_primary_10_1016_j_seppur_2025_132673 crossref_primary_10_1016_j_scitotenv_2021_146985 crossref_primary_10_1016_j_scitotenv_2023_161817 crossref_primary_10_1016_j_elstat_2021_103628 crossref_primary_10_1016_j_fuel_2021_122461 crossref_primary_10_5572_KOSAE_2018_34_5_651 crossref_primary_10_1007_s11270_023_06379_5 crossref_primary_10_1016_j_scitotenv_2023_166034 crossref_primary_10_5194_acp_22_11845_2022 crossref_primary_10_1016_j_chemosphere_2024_141638 crossref_primary_10_1016_j_fuel_2024_134099 crossref_primary_10_1007_s11869_023_01340_1 crossref_primary_10_1002_aesr_202100005 crossref_primary_10_3390_su17146342 crossref_primary_10_1016_j_chemosphere_2022_134759 crossref_primary_10_1016_j_scitotenv_2022_155002 crossref_primary_10_1007_s13762_020_02745_6 crossref_primary_10_5572_KOSAE_2023_39_3_372 crossref_primary_10_1016_j_chemosphere_2023_137934 crossref_primary_10_1016_j_seppur_2018_12_011 crossref_primary_10_1016_j_scitotenv_2025_178396 crossref_primary_10_1016_j_atmosenv_2020_117372 crossref_primary_10_1016_j_jhazmat_2025_137527 crossref_primary_10_1016_j_cep_2021_108519 crossref_primary_10_1007_s11356_023_27246_0 crossref_primary_10_1029_2020GL092071 crossref_primary_10_1016_j_fuel_2020_118198 crossref_primary_10_3390_app12073623 crossref_primary_10_3390_en14144328 |
| Cites_doi | 10.1016/j.fuproc.2016.01.033 10.1080/09593332608618598 10.1016/j.apsusc.2014.11.090 10.1080/00102207708946804 10.1016/j.powtec.2012.02.060 10.1016/j.powtec.2007.03.024 10.1021/acs.energyfuels.7b01480 10.1016/j.energy.2013.08.050 10.1021/ie900900r 10.1016/j.fuel.2014.09.114 10.1080/02786828208958582 10.1021/es051533g 10.1016/S0016-2361(97)00010-0 10.1021/ef060276d 10.1063/1.4962283 10.1126/science.1092805 10.1177/096032706072520 10.1016/j.cej.2015.01.051 10.1021/es8035225 10.1016/j.fuel.2007.10.009 10.1021/acs.energyfuels.7b01991 10.1016/j.jhazmat.2017.05.013 10.1021/es9005459 10.1016/S1352-2310(99)00460-4 10.1016/j.fuel.2014.12.065 10.1021/es00057a020 10.1016/S0008-6223(98)00333-9 10.1016/j.jhazmat.2010.02.087 10.1016/j.energy.2009.03.013 10.1016/0016-2361(77)90071-0 10.1111/j.1600-0889.1989.tb00132.x 10.1016/j.fuel.2005.07.008 10.1252/jcej.05SI115 10.1080/10473289.2000.10464002 10.1016/j.enconman.2004.10.011 10.1016/j.energy.2012.08.006 10.4209/aaqr.2014.08.0178 10.1021/acs.energyfuels.5b02200 10.1080/10473289.2000.10464197 10.1016/j.apenergy.2016.03.017 10.1021/acs.energyfuels.6b02919 10.1016/j.fuel.2007.11.001 10.1016/j.envpol.2014.02.024 10.1016/j.fuel.2005.11.022 10.1016/j.applthermaleng.2011.01.020 10.1021/ef060435t 10.1016/j.atmosenv.2005.12.039 10.1016/j.atmosenv.2015.09.011 10.1038/nature13774 10.1016/j.elstat.2006.07.012 10.4209/aaqr.2015.06.0398 10.1016/S0378-3820(03)00059-6 10.1021/acs.energyfuels.7b00692 10.1016/0360-1285(93)90014-6 10.1016/0378-3820(94)90179-1 10.1016/j.fuel.2006.01.009 10.1016/0360-5442(95)00087-9 10.1016/j.energy.2012.01.045 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Jul 15, 2018 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Jul 15, 2018 |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| DOI | 10.1016/j.fuel.2018.03.118 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7153 |
| EndPage | 813 |
| ExternalDocumentID | 10_1016_j_fuel_2018_03_118 S001623611830526X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW VH1 WUQ XPP ZY4 ~HD 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| ID | FETCH-LOGICAL-c433t-86b3a17e114e365788f57412d8fd9ddc745c4c6b825e749250cf26e697e3044f3 |
| ISICitedReferencesCount | 123 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432920900077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-2361 |
| IngestDate | Wed Aug 13 06:37:44 EDT 2025 Tue Nov 18 22:08:51 EST 2025 Sat Nov 29 07:01:16 EST 2025 Fri Feb 23 02:50:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Total particulate matter (TPM) Condensable particulate matter (CPM) Particulate matter (PM) Review Filterable particulate matter (FPM) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c433t-86b3a17e114e365788f57412d8fd9ddc745c4c6b825e749250cf26e697e3044f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9344-3980 0000-0002-2554-0631 |
| PQID | 2083801368 |
| PQPubID | 2045474 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2083801368 crossref_primary_10_1016_j_fuel_2018_03_118 crossref_citationtrail_10_1016_j_fuel_2018_03_118 elsevier_sciencedirect_doi_10_1016_j_fuel_2018_03_118 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-15 |
| PublicationDateYYYYMMDD | 2018-07-15 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Fuel (Guildford) |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Yi, Hao, Duan, Tang, Ning, Li (b0290) 2008; 87 Figueiredo, Pereira, Freitas, Órfão (b0395) 1999; 37 Limbeck, Kulmala, Puxbaum (b0080) 2003; 30 Li, Zhang (b0005) 2014; 189 EU (b0045) 2001 Bao, Yang, Yan, Shen (b0325) 2013; 108 Sarofim, Howard, Padia (b0115) 1977; 16 Pei (b0035) 2015; 36 Valverde, Duran, Pontiga, Moreno (b0420) 2012; 224 Lighty, Slama, Veranth, Sarofim (b0150) 2000; 50 (b0065) 1983 Russell, Brunekreef (b0160) 2009; 43 Linak, Wendt (b0140) 1993; 19 Bibby (b0280) 1977; 56 Website of the U.S. Environmental Protection Agency, the United States of America. Method 202-Determination of condensable particulate emissions from stationary sources. Available from Schwarze, Ovrevik, Låg, Refsnes, Nafstad, Hetland (b0165) 2006; 25 Best, Kemenade, Brunner, Obernberger (b0315) 2008; 22 Website of the National Development and Reform commission, People’s Republic of China. Action plan for upgrading and reforming coal-fired power for energy saving and emission reduction. Reported on September 12, 2014. Available from Heintzenberg (b0155) 1989; 41B Damle, Ensor, Ranade (b0120) 1982; 1 Claeys, Graham, Vas, Wang, Vermeylen, Pashynska (b0085) 2004; 303 Jaworek, Krupa, Czech (b0175) 2007; 65 Goodarzi (b0015) 2006; 85 Cano, Vega, Navarrete, Plumed, Camino (b0245) 2017; 31 Lee, Herage, Dureau, Young (b0300) 2013; 108 Okkes (b0105) 1987; 66 Li, Duan, Wang, Zhao, Chen, Liu (b0370) 2017; 31 [accessed 11 February 2018]. Dewees, Steinsberger (b0230) 1990 Zhang, Gao, Creamer, Cao, Li (b0365) 2017; 338 Linak, Wendt (b0145) 1994; 39 And, Stenger, Fan (b0345) 2007; 21 Zhu, Wang, Zhang, Ma (b0390) 2005; 46 Shen, Sun, Zhang, Zhang, Zhang, Che (b0170) 2015; 120 Goodarzi (b0275) 2006; 85 Tsuji, Shiraishi (b0385) 1997; 76 Yang, Lee, Hsieh, Luo, Li (b0260) 2014; 14 Wu, Zhu (b0415) 2015; 49 McDannel (b0235) 1998 Mondal, Balsora, Varshney (b0410) 2012; 46 Chang, Gao, Yun, Wu, Xu, Wu (b0125) 2015; 140 Córdoba (b0100) 2015; 144 Lu, Wu, Pan (b0255) 2010 Yao, Li, Xu, Zhou, Song (b0020) 2009; 34 Zhang, Ninomiya, Yamashita (b0295) 2006; 85 Website of the U.S. Environmental Protection Agency, the United States of America. Method201A-Determination of PM10 and PM2.5 emissions from stationary sources (Constant Sampling Rate Procedure). Available from Wyslouzil, Wölk (b0130) 2016; 145 Filadelfia, EJ, Mc Daniel, M.D. Evaluation of False Positive Interference’s Associated with the Use of EPA Method 202. Paper 96-RA-109.04 Presented at the 89th Annual Meeting and Exhibition of the Air & Waste Management Association, June 23–28; 1996. Yang, Lee, Hsieh, Luo, Huang (b0265) 2015; 15 Huang, He, Hu, Zhang (b0285) 2006; 40 Bahadori (b0110) 2011; 31 Morcos (b0180) 1996; 21 Richards, J., Holder, T., Goshaw, D. Optimized Method 202 Sampling Train to Minimize the Biases Associated with Method 202 Measurement of Condensable Particulate Matter Emissions. Air & Waste Management Association, Hazardous Waste Combustion Specialty Conference, November 2–3, 2005. Willenberg, Richards (b0220) 2008 Wang, He, Sun, Wu, Yan, Yan (b0340) 2012; 48 Huang, Zhang, Bozzetti, Ho, Cao, Han (b0075) 2014; 514 Wu, Yang, Yan, Hong, Yang (b0330) 2016; 145 Pei (b0250) 2010; 26 Website of the U.S. Environmental Protection Agency, the United States of America.OTM-28 Determination of condensable particulate emissions from stationary sources. Available from Yang, Yu, Pan, Lv, Zhang (b0405) 2015; 268 Li, Li, Zhou, Li, Lu, Yan (b0305) 2017; 31 Website of the U.S. Environmental Protection Agency, the United States of America. Method 5-Determination of particulate matter emissions from stationary sources. Available from Zhang, Gong, Tian, Pan, Li, Zhao (b0310) 2015; 40 Li, Yan, Zhang, Chen, Cui, Song (b0335) 2016; 172 Zhu, Jiang, Xiao, Li (b0400) 2010; 179 Website of the Ministry of Environmental Protection, People’s Republic of China. Emission standard of air pollutants for thermal power plants. Reported on September 21, 2011. Available from Website of the U.S. Environmental Protection Agency, the United States of America. Method 17-Determination of particulate matter emissions from stationary sources. Available from Gröhn, Suonmaa, Auvinen, Lehtinen, Jokiniemi (b0320) 2009; 43 Fournel, Mocho, Fanlo, Le (b0360) 2005; 26 Sun, Zhuang, Tang, Wang, An (b0010) 2006; 40 Ma, Li, Zhao, Zhang, Song, Zeng (b0380) 2015; 329 Tsukada, Nishikawa, Horikawa, Wada, Liu, Kamiya (b0025) 2008; 180 Website of the Administrative Center for China’s Agenda 21. Research on the cause and control of air pollution. Reported on April 25, 2016. Available from Holder, Goshaw, Richards (b0200) 2001 Website of the U.S. Environmental Protection Agency, the United States of America. CTM-039 Measurement of PM2.5 and PM10 by dilution sampling (constant sampling rate procedures). Available from Rashidi, Yusup, Hameed (b0375) 2013; 61 Krishnan, Gullett, Jozewicz (b0350) 1994; 28 Corio, Sherwell (b0030) 2000; 50 US EPA (b0040) 2006 Atkinson (b0090) 2000; 34 Li, Qi, Li, Wu, Zhou, Lu (b0095) 2017; 31 Xu, Zhang, Yu, Meng, Zhong (b0135) 2016; 30 Bhanarkar, Gavane, Tajne, Tamhane, Nema (b0270) 2008; 87 Tsukada, Horikawa, Sugimoto, Abe, Wada, Liu (b0225) 2007; 40 Pavlish, Sondreal, Mann, Olson, Galbreath, Laudal (b0355) 2003; 82 Lighty (10.1016/j.fuel.2018.03.118_b0150) 2000; 50 10.1016/j.fuel.2018.03.118_b0240 Holder (10.1016/j.fuel.2018.03.118_b0200) 2001 Bibby (10.1016/j.fuel.2018.03.118_b0280) 1977; 56 Tsuji (10.1016/j.fuel.2018.03.118_b0385) 1997; 76 Morcos (10.1016/j.fuel.2018.03.118_b0180) 1996; 21 Wu (10.1016/j.fuel.2018.03.118_b0330) 2016; 145 Yao (10.1016/j.fuel.2018.03.118_b0020) 2009; 34 Atkinson (10.1016/j.fuel.2018.03.118_b0090) 2000; 34 Pei (10.1016/j.fuel.2018.03.118_b0035) 2015; 36 Claeys (10.1016/j.fuel.2018.03.118_b0085) 2004; 303 Huang (10.1016/j.fuel.2018.03.118_b0075) 2014; 514 Li (10.1016/j.fuel.2018.03.118_b0005) 2014; 189 Zhang (10.1016/j.fuel.2018.03.118_b0365) 2017; 338 Linak (10.1016/j.fuel.2018.03.118_b0140) 1993; 19 Li (10.1016/j.fuel.2018.03.118_b0335) 2016; 172 Rashidi (10.1016/j.fuel.2018.03.118_b0375) 2013; 61 Sarofim (10.1016/j.fuel.2018.03.118_b0115) 1977; 16 Jaworek (10.1016/j.fuel.2018.03.118_b0175) 2007; 65 Li (10.1016/j.fuel.2018.03.118_b0095) 2017; 31 10.1016/j.fuel.2018.03.118_b0050 Yang (10.1016/j.fuel.2018.03.118_b0265) 2015; 15 Shen (10.1016/j.fuel.2018.03.118_b0170) 2015; 120 Gröhn (10.1016/j.fuel.2018.03.118_b0320) 2009; 43 EU (10.1016/j.fuel.2018.03.118_b0045) 2001 Pei (10.1016/j.fuel.2018.03.118_b0250) 2010; 26 Linak (10.1016/j.fuel.2018.03.118_b0145) 1994; 39 Tsukada (10.1016/j.fuel.2018.03.118_b0225) 2007; 40 Limbeck (10.1016/j.fuel.2018.03.118_b0080) 2003; 30 McDannel (10.1016/j.fuel.2018.03.118_b0235) 1998 Wang (10.1016/j.fuel.2018.03.118_b0340) 2012; 48 Tsukada (10.1016/j.fuel.2018.03.118_b0025) 2008; 180 Zhang (10.1016/j.fuel.2018.03.118_b0310) 2015; 40 10.1016/j.fuel.2018.03.118_b0205 Best (10.1016/j.fuel.2018.03.118_b0315) 2008; 22 Pavlish (10.1016/j.fuel.2018.03.118_b0355) 2003; 82 Okkes (10.1016/j.fuel.2018.03.118_b0105) 1987; 66 Zhu (10.1016/j.fuel.2018.03.118_b0400) 2010; 179 And (10.1016/j.fuel.2018.03.118_b0345) 2007; 21 Russell (10.1016/j.fuel.2018.03.118_b0160) 2009; 43 Ma (10.1016/j.fuel.2018.03.118_b0380) 2015; 329 Krishnan (10.1016/j.fuel.2018.03.118_b0350) 1994; 28 Wu (10.1016/j.fuel.2018.03.118_b0415) 2015; 49 Willenberg (10.1016/j.fuel.2018.03.118_b0220) 2008 10.1016/j.fuel.2018.03.118_b0185 Yang (10.1016/j.fuel.2018.03.118_b0405) 2015; 268 10.1016/j.fuel.2018.03.118_b0060 Li (10.1016/j.fuel.2018.03.118_b0305) 2017; 31 Fournel (10.1016/j.fuel.2018.03.118_b0360) 2005; 26 Yi (10.1016/j.fuel.2018.03.118_b0290) 2008; 87 Xu (10.1016/j.fuel.2018.03.118_b0135) 2016; 30 Goodarzi (10.1016/j.fuel.2018.03.118_b0015) 2006; 85 Zhang (10.1016/j.fuel.2018.03.118_b0295) 2006; 85 Li (10.1016/j.fuel.2018.03.118_b0370) 2017; 31 Heintzenberg (10.1016/j.fuel.2018.03.118_b0155) 1989; 41B Bao (10.1016/j.fuel.2018.03.118_b0325) 2013; 108 10.1016/j.fuel.2018.03.118_b0215 US EPA (10.1016/j.fuel.2018.03.118_b0040) 2006 10.1016/j.fuel.2018.03.118_b0055 10.1016/j.fuel.2018.03.118_b0210 10.1016/j.fuel.2018.03.118_b0195 Lu (10.1016/j.fuel.2018.03.118_b0255) 2010 (10.1016/j.fuel.2018.03.118_b0065) 1983 Chang (10.1016/j.fuel.2018.03.118_b0125) 2015; 140 10.1016/j.fuel.2018.03.118_b0190 Zhu (10.1016/j.fuel.2018.03.118_b0390) 2005; 46 10.1016/j.fuel.2018.03.118_b0070 Mondal (10.1016/j.fuel.2018.03.118_b0410) 2012; 46 Córdoba (10.1016/j.fuel.2018.03.118_b0100) 2015; 144 Damle (10.1016/j.fuel.2018.03.118_b0120) 1982; 1 Sun (10.1016/j.fuel.2018.03.118_b0010) 2006; 40 Cano (10.1016/j.fuel.2018.03.118_b0245) 2017; 31 Wyslouzil (10.1016/j.fuel.2018.03.118_b0130) 2016; 145 Yang (10.1016/j.fuel.2018.03.118_b0260) 2014; 14 Lee (10.1016/j.fuel.2018.03.118_b0300) 2013; 108 Dewees (10.1016/j.fuel.2018.03.118_b0230) 1990 Bahadori (10.1016/j.fuel.2018.03.118_b0110) 2011; 31 Goodarzi (10.1016/j.fuel.2018.03.118_b0275) 2006; 85 Figueiredo (10.1016/j.fuel.2018.03.118_b0395) 1999; 37 Huang (10.1016/j.fuel.2018.03.118_b0285) 2006; 40 Corio (10.1016/j.fuel.2018.03.118_b0030) 2000; 50 Valverde (10.1016/j.fuel.2018.03.118_b0420) 2012; 224 Bhanarkar (10.1016/j.fuel.2018.03.118_b0270) 2008; 87 Schwarze (10.1016/j.fuel.2018.03.118_b0165) 2006; 25 |
| References_xml | – volume: 37 start-page: 1379 year: 1999 end-page: 1389 ident: b0395 article-title: Modification of the surface chemistry of activated carbons publication-title: Carbon – volume: 46 start-page: 431 year: 2012 end-page: 441 ident: b0410 article-title: Progress and trends in CO2 capture/separation technologies: a review publication-title: Energy – volume: 28 start-page: 1506 year: 1994 end-page: 1512 ident: b0350 article-title: Sorption of elemental mercury by activated carbons publication-title: Environ Sci Technol – reference: Website of the U.S. Environmental Protection Agency, the United States of America. Method 5-Determination of particulate matter emissions from stationary sources. Available from: – reference: Richards, J., Holder, T., Goshaw, D. Optimized Method 202 Sampling Train to Minimize the Biases Associated with Method 202 Measurement of Condensable Particulate Matter Emissions. Air & Waste Management Association, Hazardous Waste Combustion Specialty Conference, November 2–3, 2005. – year: 2001 ident: b0200 article-title: Artifact formation in method 202 sampling trains used to measure condensable particulate matter emissions from portland cement kilns. Paper 451 publication-title: Proceedings of the 94th Annual Conference & Exhibition, Orlando, FL – reference: . [accessed 11 February 2018]. – volume: 43 start-page: 6269 year: 2009 end-page: 6274 ident: b0320 article-title: Reduction of fine particle emissions from wood combustion with optimized condensing heat exchangers publication-title: Environ Sci Technol – volume: 85 start-page: 1418 year: 2006 end-page: 1427 ident: b0275 article-title: Characteristics and composition of fly ash from Canadian coal-fired power plants publication-title: Fuel – volume: 50 start-page: 1565 year: 2000 end-page: 1618 ident: b0150 article-title: Combustion aerosols: factors governing their size and composition and implications to human health publication-title: J Air Waste Manag Assoc – volume: 39 start-page: 173 year: 1994 end-page: 198 ident: b0145 article-title: Trace metal transformation mechanisms during coal combustion publication-title: Fuel Process Technol – volume: 31 start-page: 9745 year: 2017 end-page: 9751 ident: b0370 article-title: Effects of acidic gases on mercury adsorption by activated carbon in simulated oxy-fuel combustion flue gas publication-title: Energy Fuels – volume: 329 start-page: 292 year: 2015 end-page: 300 ident: b0380 article-title: Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid publication-title: Appl Surf Sci – reference: Website of the Administrative Center for China’s Agenda 21. Research on the cause and control of air pollution. Reported on April 25, 2016. Available from: – volume: 66 year: 1987 ident: b0105 article-title: Get acid dew point of flue gas publication-title: Hydrocarbon Process – volume: 303 start-page: 1173 year: 2004 end-page: 1176 ident: b0085 article-title: Formation of secondary organic aerosols through photooxidation of isoprene publication-title: Science – volume: 34 start-page: 2063 year: 2000 end-page: 2101 ident: b0090 article-title: Atmospheric chemistry of VOCs and NOx publication-title: Atmos Environ – volume: 179 start-page: 251 year: 2010 end-page: 257 ident: b0400 article-title: A novel magnetically separable gamma-Fe2O3/crosslinked chitosan adsorbent: preparation, characterization and adsorption application for removal of hazardous azo dye publication-title: J Hazard Mater – year: 1990 ident: b0230 article-title: Method development and evaluation of draft protocol for measurement of condensible particulate emissions. Test report. EPA 450/4-90-012 – volume: 21 start-page: 852 year: 2007 end-page: 857 ident: b0345 article-title: Gas-phase mercury adsorption rate studies publication-title: Energy Fuels – volume: 338 start-page: 102 year: 2017 end-page: 123 ident: b0365 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J Hazard Mater – volume: 30 start-page: 1822 year: 2016 end-page: 1828 ident: b0135 article-title: Characteristics of vapor condensation on coal-fired fine particles publication-title: Energy Fuels – year: 2001 ident: b0045 article-title: On the limitations of certain pollutants into the air from large combustion plants, directive 2001/80/EC of the European Parliament and of Council – volume: 31 start-page: 1457 year: 2011 end-page: 1462 ident: b0110 article-title: Estimation of combustion flue gas acid dew point during heat recovery and efficiency gain publication-title: Appl Therm Eng – reference: Website of the U.S. Environmental Protection Agency, the United States of America. Method201A-Determination of PM10 and PM2.5 emissions from stationary sources (Constant Sampling Rate Procedure). Available from: – volume: 50 start-page: 207 year: 2000 end-page: 218 ident: b0030 article-title: In-stack condensible particulate matter measurements and issues publication-title: J Air Waste Manag Assoc – volume: 26 start-page: 9 year: 2010 end-page: 12 ident: b0250 article-title: Discussion on the emission issues and testing of condensable particulate matter from exhaust gas of stationary source publication-title: Environ Monit China – volume: 87 start-page: 2095 year: 2008 end-page: 2101 ident: b0270 article-title: Composition and size distribution of particules emissions from a coal-fired power plant in India publication-title: Fuel – volume: 87 start-page: 2050 year: 2008 end-page: 2057 ident: b0290 article-title: Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China publication-title: Fuel – volume: 31 start-page: 7831 year: 2017 end-page: 7838 ident: b0245 article-title: Characterization of emissions of condensable particulate matter in clinker kilns using a dilution sampling system publication-title: Energy Fuels – volume: 49 start-page: 2701 year: 2015 end-page: 2706 ident: b0415 article-title: Behavior of CaTiO3/Nano-CaO as a CO2 reactive adsorbent publication-title: Ind Eng Chem Res – volume: 40 start-page: 3148 year: 2006 end-page: 3155 ident: b0010 article-title: Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing publication-title: Environ Sci Technol – reference: Website of the Ministry of Environmental Protection, People’s Republic of China. Emission standard of air pollutants for thermal power plants. Reported on September 21, 2011. Available from: – volume: 36 start-page: 1544 year: 2015 end-page: 1549 ident: b0035 article-title: Determination and emission of condensable particulate matter from coal-fired power plants publication-title: Environ Sci – volume: 140 start-page: 526 year: 2015 end-page: 530 ident: b0125 article-title: Emission of inorganic PM 10, from included mineral matter during the combustion of pulverized coals of various ranks publication-title: Fuel – start-page: 1 year: 2010 end-page: 4 ident: b0255 article-title: Particulate matter emissions from a coal-fired power plant publication-title: International Conference on Bioinformatics and Biomedical Engineering – volume: 40 start-page: 2449 year: 2006 end-page: 2458 ident: b0285 article-title: Annual variation of particulate organic compounds in PM 2.5, in the urban atmosphere of Beijing publication-title: Atmos Environ – volume: 85 start-page: 425 year: 2006 end-page: 433 ident: b0015 article-title: The rates of emissions of fine particles from some Canadian coal-fired power plants publication-title: Fuel – volume: 120 start-page: 307 year: 2015 end-page: 316 ident: b0170 article-title: Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta, China publication-title: Atmos Environ – year: 2006 ident: b0040 article-title: Standards of performance for electric utility steam generating unit – volume: 56 start-page: 427 year: 1977 end-page: 431 ident: b0280 article-title: Composition and variation of pulverized fuel ash obtained from the combustion of sub-bituminous coals, New Zealand publication-title: Fuel – volume: 19 start-page: 145 year: 1993 end-page: 185 ident: b0140 article-title: Toxic metal emissions from incineration: mechanisms and control publication-title: Prog Energy Combust Sci – volume: 65 start-page: 133 year: 2007 end-page: 155 ident: b0175 article-title: Modern electrostatic devices and methods for exhaust gas cleaning: a brief review publication-title: J Electrostat – volume: 26 start-page: 1277 year: 2005 end-page: 1288 ident: b0360 article-title: External capillary condensation and adsorption of VOCs onto activated carbon fiber cloth and felt publication-title: Environ Technol – volume: 48 start-page: 196 year: 2012 end-page: 202 ident: b0340 article-title: Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600MW power plant publication-title: Energy – volume: 172 start-page: 107 year: 2016 end-page: 117 ident: b0335 article-title: Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery publication-title: Appl Energy – volume: 82 start-page: 89 year: 2003 end-page: 165 ident: b0355 article-title: Status review of mercury control options for coal-fired power plants publication-title: Fuel Process Technol – volume: 145 start-page: 116 year: 2016 end-page: 122 ident: b0330 article-title: Improving the removal of fine particles by heterogeneous condensation during WFGD processes publication-title: Fuel Process Technol – volume: 46 start-page: 2173 year: 2005 end-page: 2184 ident: b0390 article-title: Experimental investigation of adsorption of NO and SO 2, on modified activated carbon sorbent from flue gases publication-title: Energy Convers Manage – volume: 22 start-page: 587 year: 2008 end-page: 597 ident: b0315 article-title: Particulate emission reduction in small-scale biomass combustion plants by a condensing heat exchanger publication-title: Energy Fuels – volume: 61 start-page: 440 year: 2013 end-page: 446 ident: b0375 article-title: Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon publication-title: Energy – volume: 31 start-page: 13233 year: 2017 end-page: 13238 ident: b0305 article-title: Study on the influencing factors of the distribution characteristics of polycyclic aromatic hydrocarbons in condensable particulate matter publication-title: Energy Fuels – volume: 30 start-page: 379 year: 2003 end-page: 394 ident: b0080 article-title: Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles publication-title: Geophys Res Lett – volume: 41B start-page: 149 year: 1989 end-page: 160 ident: b0155 article-title: Fine particles in the global troposphere. A review publication-title: Tellus – volume: 43 start-page: 4620 year: 2009 end-page: 4625 ident: b0160 article-title: A focus on particulate matter and health publication-title: Environ Sci Technol – volume: 31 start-page: 1778 year: 2017 end-page: 1785 ident: b0095 article-title: Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant publication-title: Energy Fuels – volume: 514 start-page: 218 year: 2014 end-page: 222 ident: b0075 article-title: High secondary aerosol contribution to particulate pollution during haze events in China publication-title: Nature – year: 1983 ident: b0065 article-title: Estimation of the Importance of Condensed Particulate Matter to Ambient Particulate Levels; PB84-102565 – volume: 40 start-page: 2696 year: 2015 end-page: 2701 ident: b0310 article-title: Formation mechanisms of fine particles generated from coal combustion publication-title: J China Coal Soc – volume: 14 start-page: 2010 year: 2014 end-page: 2016 ident: b0260 article-title: Filterable and condensable fine particulate emissions from stationary sources publication-title: Aerosol Air Qual Res – volume: 1 start-page: 119 year: 1982 end-page: 133 ident: b0120 article-title: Coal combustion aerosol formation mechanisms: a review publication-title: Aerosol Sci Technol – volume: 40 start-page: 869 year: 2007 end-page: 873 ident: b0225 article-title: Emission behavior of condensable suspended particulate matter from a laboratory scale RDF fluidized bed combustor publication-title: J Chem Eng Jpn – volume: 76 start-page: 549 year: 1997 end-page: 553 ident: b0385 article-title: Combined desulfurization, denitrification and reduction of air toxics using activated coke: 1. Activity of activated coke publication-title: Fuel – volume: 34 start-page: 1296 year: 2009 end-page: 1309 ident: b0020 article-title: Studies on formation and control of combustion particulate matter in China: a review publication-title: Energy – reference: Website of the National Development and Reform commission, People’s Republic of China. Action plan for upgrading and reforming coal-fired power for energy saving and emission reduction. Reported on September 12, 2014. Available from: – reference: Website of the U.S. Environmental Protection Agency, the United States of America. Method 202-Determination of condensable particulate emissions from stationary sources. Available from: – year: 1998 ident: b0235 article-title: Measurement of condensible particulate matter: a review of alternatives to EPA Method 202. Final report. EPRI Report TR-111327 – volume: 85 start-page: 1446 year: 2006 end-page: 1457 ident: b0295 article-title: Formation of submicron particulate matter (PM 1) during coal combustion and influence of reaction temperature publication-title: Fuel – volume: 180 start-page: 140 year: 2008 end-page: 144 ident: b0025 article-title: Emission potential of condensable suspended particulate matter from flue gas of solid waste combustion publication-title: Powder Technol – volume: 224 start-page: 247 year: 2012 end-page: 252 ident: b0420 article-title: CO2, capture enhancement in a fluidized bed of a modified Geldart C powder publication-title: Powder Technol – volume: 16 start-page: 187 year: 1977 end-page: 204 ident: b0115 article-title: The physical transformation of the mineral matter in pulverized coal under simulated combustion conditions publication-title: Combust Sci Technol – volume: 15 start-page: 1672 year: 2015 end-page: 1680 ident: b0265 article-title: Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants publication-title: Aerosol Air Qual Res – volume: 144 start-page: 274 year: 2015 end-page: 286 ident: b0100 article-title: Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs publication-title: Fuel – year: 2008 ident: b0220 article-title: Condensable particulate matter-measuring and permitting it publication-title: Presented at the Pacific Northwest International Section Annual Conference – volume: 145 start-page: 1753 year: 2016 end-page: 1759 ident: b0130 article-title: Overview: homogeneous nucleation from the vapor phase—the experimental science publication-title: J Chem Phys – volume: 21 start-page: 9 year: 1996 end-page: 14 ident: b0180 article-title: Performance analysis of industrial bag filters to control particulate emissions publication-title: Energy – reference: Website of the U.S. Environmental Protection Agency, the United States of America. CTM-039 Measurement of PM2.5 and PM10 by dilution sampling (constant sampling rate procedures). Available from: – reference: Website of the U.S. Environmental Protection Agency, the United States of America.OTM-28 Determination of condensable particulate emissions from stationary sources. Available from: – volume: 108 start-page: 60 year: 2013 end-page: 66 ident: b0300 article-title: Measurement of PM 2.5, and ultra-fine particulate emissions from coal-fired utility boilers publication-title: Fuel – volume: 189 start-page: 85 year: 2014 end-page: 86 ident: b0005 article-title: Haze in China: current and future challenges publication-title: Environ Pollut – volume: 108 start-page: 73 year: 2013 end-page: 79 ident: b0325 article-title: Experimental study of fine particles removal in the desulfurated scrubbed flue gas publication-title: Fuel – volume: 25 start-page: 559 year: 2006 end-page: 579 ident: b0165 article-title: Particulate matter properties and health effects: consistency of epidemiological and toxicological studies publication-title: Hum Exp Toxicol – reference: Website of the U.S. Environmental Protection Agency, the United States of America. Method 17-Determination of particulate matter emissions from stationary sources. Available from: – reference: Filadelfia, EJ, Mc Daniel, M.D. Evaluation of False Positive Interference’s Associated with the Use of EPA Method 202. Paper 96-RA-109.04 Presented at the 89th Annual Meeting and Exhibition of the Air & Waste Management Association, June 23–28; 1996. – volume: 268 start-page: 399 year: 2015 end-page: 407 ident: b0405 article-title: Simultaneous organic/inorganic removal from water using a new nanocomposite adsorbent: a case study of p -nitrophenol and phosphate publication-title: Chem Eng J – volume: 145 start-page: 116 year: 2016 ident: 10.1016/j.fuel.2018.03.118_b0330 article-title: Improving the removal of fine particles by heterogeneous condensation during WFGD processes publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2016.01.033 – volume: 26 start-page: 1277 issue: 11 year: 2005 ident: 10.1016/j.fuel.2018.03.118_b0360 article-title: External capillary condensation and adsorption of VOCs onto activated carbon fiber cloth and felt publication-title: Environ Technol doi: 10.1080/09593332608618598 – volume: 329 start-page: 292 year: 2015 ident: 10.1016/j.fuel.2018.03.118_b0380 article-title: Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2014.11.090 – volume: 16 start-page: 187 issue: 3–6 year: 1977 ident: 10.1016/j.fuel.2018.03.118_b0115 article-title: The physical transformation of the mineral matter in pulverized coal under simulated combustion conditions publication-title: Combust Sci Technol doi: 10.1080/00102207708946804 – volume: 40 start-page: 2696 issue: 11 year: 2015 ident: 10.1016/j.fuel.2018.03.118_b0310 article-title: Formation mechanisms of fine particles generated from coal combustion publication-title: J China Coal Soc – ident: 10.1016/j.fuel.2018.03.118_b0190 – volume: 224 start-page: 247 year: 2012 ident: 10.1016/j.fuel.2018.03.118_b0420 article-title: CO2, capture enhancement in a fluidized bed of a modified Geldart C powder publication-title: Powder Technol doi: 10.1016/j.powtec.2012.02.060 – volume: 180 start-page: 140 issue: 1–2 year: 2008 ident: 10.1016/j.fuel.2018.03.118_b0025 article-title: Emission potential of condensable suspended particulate matter from flue gas of solid waste combustion publication-title: Powder Technol doi: 10.1016/j.powtec.2007.03.024 – volume: 31 start-page: 9745 issue: 9 year: 2017 ident: 10.1016/j.fuel.2018.03.118_b0370 article-title: Effects of acidic gases on mercury adsorption by activated carbon in simulated oxy-fuel combustion flue gas publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b01480 – volume: 61 start-page: 440 issue: 4 year: 2013 ident: 10.1016/j.fuel.2018.03.118_b0375 article-title: Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon publication-title: Energy doi: 10.1016/j.energy.2013.08.050 – volume: 108 start-page: 73 issue: 11 year: 2013 ident: 10.1016/j.fuel.2018.03.118_b0325 article-title: Experimental study of fine particles removal in the desulfurated scrubbed flue gas publication-title: Fuel – volume: 49 start-page: 2701 issue: 6 year: 2015 ident: 10.1016/j.fuel.2018.03.118_b0415 article-title: Behavior of CaTiO3/Nano-CaO as a CO2 reactive adsorbent publication-title: Ind Eng Chem Res doi: 10.1021/ie900900r – volume: 140 start-page: 526 year: 2015 ident: 10.1016/j.fuel.2018.03.118_b0125 article-title: Emission of inorganic PM 10, from included mineral matter during the combustion of pulverized coals of various ranks publication-title: Fuel doi: 10.1016/j.fuel.2014.09.114 – volume: 1 start-page: 119 issue: 1 year: 1982 ident: 10.1016/j.fuel.2018.03.118_b0120 article-title: Coal combustion aerosol formation mechanisms: a review publication-title: Aerosol Sci Technol doi: 10.1080/02786828208958582 – volume: 108 start-page: 60 issue: 11 year: 2013 ident: 10.1016/j.fuel.2018.03.118_b0300 article-title: Measurement of PM 2.5, and ultra-fine particulate emissions from coal-fired utility boilers publication-title: Fuel – volume: 40 start-page: 3148 issue: 10 year: 2006 ident: 10.1016/j.fuel.2018.03.118_b0010 article-title: Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing publication-title: Environ Sci Technol doi: 10.1021/es051533g – volume: 76 start-page: 549 issue: 6 year: 1997 ident: 10.1016/j.fuel.2018.03.118_b0385 article-title: Combined desulfurization, denitrification and reduction of air toxics using activated coke: 1. Activity of activated coke publication-title: Fuel doi: 10.1016/S0016-2361(97)00010-0 – volume: 21 start-page: 852 issue: 2 year: 2007 ident: 10.1016/j.fuel.2018.03.118_b0345 article-title: Gas-phase mercury adsorption rate studies publication-title: Energy Fuels doi: 10.1021/ef060276d – year: 2006 ident: 10.1016/j.fuel.2018.03.118_b0040 – volume: 145 start-page: 1753 issue: 21 year: 2016 ident: 10.1016/j.fuel.2018.03.118_b0130 article-title: Overview: homogeneous nucleation from the vapor phase—the experimental science publication-title: J Chem Phys doi: 10.1063/1.4962283 – volume: 303 start-page: 1173 issue: 5661 year: 2004 ident: 10.1016/j.fuel.2018.03.118_b0085 article-title: Formation of secondary organic aerosols through photooxidation of isoprene publication-title: Science doi: 10.1126/science.1092805 – volume: 25 start-page: 559 issue: 10 year: 2006 ident: 10.1016/j.fuel.2018.03.118_b0165 article-title: Particulate matter properties and health effects: consistency of epidemiological and toxicological studies publication-title: Hum Exp Toxicol doi: 10.1177/096032706072520 – ident: 10.1016/j.fuel.2018.03.118_b0240 – volume: 268 start-page: 399 year: 2015 ident: 10.1016/j.fuel.2018.03.118_b0405 article-title: Simultaneous organic/inorganic removal from water using a new nanocomposite adsorbent: a case study of p -nitrophenol and phosphate publication-title: Chem Eng J doi: 10.1016/j.cej.2015.01.051 – volume: 43 start-page: 6269 issue: 16 year: 2009 ident: 10.1016/j.fuel.2018.03.118_b0320 article-title: Reduction of fine particle emissions from wood combustion with optimized condensing heat exchangers publication-title: Environ Sci Technol doi: 10.1021/es8035225 – volume: 87 start-page: 2050 issue: 10–11 year: 2008 ident: 10.1016/j.fuel.2018.03.118_b0290 article-title: Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China publication-title: Fuel doi: 10.1016/j.fuel.2007.10.009 – year: 2008 ident: 10.1016/j.fuel.2018.03.118_b0220 article-title: Condensable particulate matter-measuring and permitting it – volume: 31 start-page: 13233 issue: 12 year: 2017 ident: 10.1016/j.fuel.2018.03.118_b0305 article-title: Study on the influencing factors of the distribution characteristics of polycyclic aromatic hydrocarbons in condensable particulate matter publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b01991 – volume: 338 start-page: 102 year: 2017 ident: 10.1016/j.fuel.2018.03.118_b0365 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2017.05.013 – volume: 43 start-page: 4620 issue: 13 year: 2009 ident: 10.1016/j.fuel.2018.03.118_b0160 article-title: A focus on particulate matter and health publication-title: Environ Sci Technol doi: 10.1021/es9005459 – start-page: 1 year: 2010 ident: 10.1016/j.fuel.2018.03.118_b0255 article-title: Particulate matter emissions from a coal-fired power plant – volume: 34 start-page: 2063 issue: 12–14 year: 2000 ident: 10.1016/j.fuel.2018.03.118_b0090 article-title: Atmospheric chemistry of VOCs and NOx publication-title: Atmos Environ doi: 10.1016/S1352-2310(99)00460-4 – year: 1998 ident: 10.1016/j.fuel.2018.03.118_b0235 – ident: 10.1016/j.fuel.2018.03.118_b0070 – volume: 144 start-page: 274 year: 2015 ident: 10.1016/j.fuel.2018.03.118_b0100 article-title: Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs publication-title: Fuel doi: 10.1016/j.fuel.2014.12.065 – volume: 28 start-page: 1506 issue: 8 year: 1994 ident: 10.1016/j.fuel.2018.03.118_b0350 article-title: Sorption of elemental mercury by activated carbons publication-title: Environ Sci Technol doi: 10.1021/es00057a020 – volume: 37 start-page: 1379 issue: 9 year: 1999 ident: 10.1016/j.fuel.2018.03.118_b0395 article-title: Modification of the surface chemistry of activated carbons publication-title: Carbon doi: 10.1016/S0008-6223(98)00333-9 – volume: 36 start-page: 1544 issue: 5 year: 2015 ident: 10.1016/j.fuel.2018.03.118_b0035 article-title: Determination and emission of condensable particulate matter from coal-fired power plants publication-title: Environ Sci – volume: 179 start-page: 251 issue: 1–3 year: 2010 ident: 10.1016/j.fuel.2018.03.118_b0400 article-title: A novel magnetically separable gamma-Fe2O3/crosslinked chitosan adsorbent: preparation, characterization and adsorption application for removal of hazardous azo dye publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2010.02.087 – volume: 34 start-page: 1296 issue: 9 year: 2009 ident: 10.1016/j.fuel.2018.03.118_b0020 article-title: Studies on formation and control of combustion particulate matter in China: a review publication-title: Energy doi: 10.1016/j.energy.2009.03.013 – volume: 56 start-page: 427 issue: 4 year: 1977 ident: 10.1016/j.fuel.2018.03.118_b0280 article-title: Composition and variation of pulverized fuel ash obtained from the combustion of sub-bituminous coals, New Zealand publication-title: Fuel doi: 10.1016/0016-2361(77)90071-0 – volume: 41B start-page: 149 issue: 2 year: 1989 ident: 10.1016/j.fuel.2018.03.118_b0155 article-title: Fine particles in the global troposphere. A review publication-title: Tellus doi: 10.1111/j.1600-0889.1989.tb00132.x – volume: 85 start-page: 425 issue: 4 year: 2006 ident: 10.1016/j.fuel.2018.03.118_b0015 article-title: The rates of emissions of fine particles from some Canadian coal-fired power plants publication-title: Fuel doi: 10.1016/j.fuel.2005.07.008 – volume: 40 start-page: 869 issue: 10 year: 2007 ident: 10.1016/j.fuel.2018.03.118_b0225 article-title: Emission behavior of condensable suspended particulate matter from a laboratory scale RDF fluidized bed combustor publication-title: J Chem Eng Jpn doi: 10.1252/jcej.05SI115 – volume: 50 start-page: 207 issue: 2 year: 2000 ident: 10.1016/j.fuel.2018.03.118_b0030 article-title: In-stack condensible particulate matter measurements and issues publication-title: J Air Waste Manag Assoc doi: 10.1080/10473289.2000.10464002 – volume: 46 start-page: 2173 issue: 13–14 year: 2005 ident: 10.1016/j.fuel.2018.03.118_b0390 article-title: Experimental investigation of adsorption of NO and SO 2, on modified activated carbon sorbent from flue gases publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2004.10.011 – volume: 46 start-page: 431 issue: 1 year: 2012 ident: 10.1016/j.fuel.2018.03.118_b0410 article-title: Progress and trends in CO2 capture/separation technologies: a review publication-title: Energy doi: 10.1016/j.energy.2012.08.006 – ident: 10.1016/j.fuel.2018.03.118_b0060 – volume: 66 issue: 7 year: 1987 ident: 10.1016/j.fuel.2018.03.118_b0105 article-title: Get acid dew point of flue gas publication-title: Hydrocarbon Process – volume: 14 start-page: 2010 issue: 7 year: 2014 ident: 10.1016/j.fuel.2018.03.118_b0260 article-title: Filterable and condensable fine particulate emissions from stationary sources publication-title: Aerosol Air Qual Res doi: 10.4209/aaqr.2014.08.0178 – volume: 30 start-page: 1822 issue: 3 year: 2016 ident: 10.1016/j.fuel.2018.03.118_b0135 article-title: Characteristics of vapor condensation on coal-fired fine particles publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b02200 – volume: 50 start-page: 1565 year: 2000 ident: 10.1016/j.fuel.2018.03.118_b0150 article-title: Combustion aerosols: factors governing their size and composition and implications to human health publication-title: J Air Waste Manag Assoc doi: 10.1080/10473289.2000.10464197 – ident: 10.1016/j.fuel.2018.03.118_b0205 – year: 2001 ident: 10.1016/j.fuel.2018.03.118_b0045 – ident: 10.1016/j.fuel.2018.03.118_b0215 – volume: 26 start-page: 9 issue: 6 year: 2010 ident: 10.1016/j.fuel.2018.03.118_b0250 article-title: Discussion on the emission issues and testing of condensable particulate matter from exhaust gas of stationary source publication-title: Environ Monit China – volume: 172 start-page: 107 year: 2016 ident: 10.1016/j.fuel.2018.03.118_b0335 article-title: Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.017 – ident: 10.1016/j.fuel.2018.03.118_b0050 – volume: 31 start-page: 1778 issue: 2 year: 2017 ident: 10.1016/j.fuel.2018.03.118_b0095 article-title: Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b02919 – volume: 87 start-page: 2095 issue: 10–11 year: 2008 ident: 10.1016/j.fuel.2018.03.118_b0270 article-title: Composition and size distribution of particules emissions from a coal-fired power plant in India publication-title: Fuel doi: 10.1016/j.fuel.2007.11.001 – volume: 30 start-page: 379 issue: 30 year: 2003 ident: 10.1016/j.fuel.2018.03.118_b0080 article-title: Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles publication-title: Geophys Res Lett – volume: 189 start-page: 85 issue: 12 year: 2014 ident: 10.1016/j.fuel.2018.03.118_b0005 article-title: Haze in China: current and future challenges publication-title: Environ Pollut doi: 10.1016/j.envpol.2014.02.024 – ident: 10.1016/j.fuel.2018.03.118_b0055 – ident: 10.1016/j.fuel.2018.03.118_b0185 – volume: 85 start-page: 1418 issue: 10 year: 2006 ident: 10.1016/j.fuel.2018.03.118_b0275 article-title: Characteristics and composition of fly ash from Canadian coal-fired power plants publication-title: Fuel doi: 10.1016/j.fuel.2005.11.022 – volume: 31 start-page: 1457 issue: 8–9 year: 2011 ident: 10.1016/j.fuel.2018.03.118_b0110 article-title: Estimation of combustion flue gas acid dew point during heat recovery and efficiency gain publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.01.020 – year: 1983 ident: 10.1016/j.fuel.2018.03.118_b0065 – volume: 22 start-page: 587 issue: 1 year: 2008 ident: 10.1016/j.fuel.2018.03.118_b0315 article-title: Particulate emission reduction in small-scale biomass combustion plants by a condensing heat exchanger publication-title: Energy Fuels doi: 10.1021/ef060435t – volume: 40 start-page: 2449 issue: 14 year: 2006 ident: 10.1016/j.fuel.2018.03.118_b0285 article-title: Annual variation of particulate organic compounds in PM 2.5, in the urban atmosphere of Beijing publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2005.12.039 – volume: 120 start-page: 307 year: 2015 ident: 10.1016/j.fuel.2018.03.118_b0170 article-title: Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta, China publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2015.09.011 – volume: 514 start-page: 218 issue: 7521 year: 2014 ident: 10.1016/j.fuel.2018.03.118_b0075 article-title: High secondary aerosol contribution to particulate pollution during haze events in China publication-title: Nature doi: 10.1038/nature13774 – volume: 65 start-page: 133 issue: 3 year: 2007 ident: 10.1016/j.fuel.2018.03.118_b0175 article-title: Modern electrostatic devices and methods for exhaust gas cleaning: a brief review publication-title: J Electrostat doi: 10.1016/j.elstat.2006.07.012 – volume: 15 start-page: 1672 issue: 4 year: 2015 ident: 10.1016/j.fuel.2018.03.118_b0265 article-title: Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants publication-title: Aerosol Air Qual Res doi: 10.4209/aaqr.2015.06.0398 – volume: 82 start-page: 89 issue: 2 year: 2003 ident: 10.1016/j.fuel.2018.03.118_b0355 article-title: Status review of mercury control options for coal-fired power plants publication-title: Fuel Process Technol doi: 10.1016/S0378-3820(03)00059-6 – ident: 10.1016/j.fuel.2018.03.118_b0195 – year: 1990 ident: 10.1016/j.fuel.2018.03.118_b0230 – ident: 10.1016/j.fuel.2018.03.118_b0210 – volume: 31 start-page: 7831 issue: 8 year: 2017 ident: 10.1016/j.fuel.2018.03.118_b0245 article-title: Characterization of emissions of condensable particulate matter in clinker kilns using a dilution sampling system publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b00692 – volume: 19 start-page: 145 issue: 2 year: 1993 ident: 10.1016/j.fuel.2018.03.118_b0140 article-title: Toxic metal emissions from incineration: mechanisms and control publication-title: Prog Energy Combust Sci doi: 10.1016/0360-1285(93)90014-6 – volume: 39 start-page: 173 issue: 1–3 year: 1994 ident: 10.1016/j.fuel.2018.03.118_b0145 article-title: Trace metal transformation mechanisms during coal combustion publication-title: Fuel Process Technol doi: 10.1016/0378-3820(94)90179-1 – volume: 85 start-page: 1446 issue: 10–11 year: 2006 ident: 10.1016/j.fuel.2018.03.118_b0295 article-title: Formation of submicron particulate matter (PM 1) during coal combustion and influence of reaction temperature publication-title: Fuel doi: 10.1016/j.fuel.2006.01.009 – volume: 21 start-page: 9 issue: 1 year: 1996 ident: 10.1016/j.fuel.2018.03.118_b0180 article-title: Performance analysis of industrial bag filters to control particulate emissions publication-title: Energy doi: 10.1016/0360-5442(95)00087-9 – year: 2001 ident: 10.1016/j.fuel.2018.03.118_b0200 article-title: Artifact formation in method 202 sampling trains used to measure condensable particulate matter emissions from portland cement kilns. Paper 451 – volume: 48 start-page: 196 issue: 1 year: 2012 ident: 10.1016/j.fuel.2018.03.118_b0340 article-title: Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600MW power plant publication-title: Energy doi: 10.1016/j.energy.2012.01.045 |
| SSID | ssj0007854 |
| Score | 2.6059191 |
| SecondaryResourceType | review_article |
| Snippet | •A diagram of the formation of condensable particulate matter (CPM) is created.•Method for measuring CPM and its improvements are systematically... Particulate matter emitted by fuel combustion has become a major air pollutant. It comes in the form of filterable particulate matter (FPM) and condensable... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 801 |
| SubjectTerms | Air pollution Airborne particulates Condensable particulate matter (CPM) Emissions Emissions control Filterability Filterable particulate matter (FPM) Fossil fuels Fuel combustion Hazardous air pollutants Hazards Measurement methods Particulate emissions Particulate matter Particulate matter (PM) R&D Research & development Review Test procedures Total particulate matter (TPM) |
| Title | Critical review of condensable particulate matter |
| URI | https://dx.doi.org/10.1016/j.fuel.2018.03.118 https://www.proquest.com/docview/2083801368 |
| Volume | 224 |
| WOSCitedRecordID | wos000432920900077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA86PehB_MRvevAmlaVJk9ejjImKiAeVeSptmuJEuuE2Ef96X5q0qxNFD15KyZaQ9pe-L37vPUKOJHrJNMkzX1Hd9nnKhQ-UCV-CFmGSiSAp-6fcX8nra-j1ohvXqXBUthOQRQFvb9HwX6HGMQTbpM7-Ae56URzAewQdrwg7Xn8FfN28YJqVgj4vipdRmSU1LKeYpl2Gujqu2LlVp86Jfi4jB6ZbtuW915ECfMpSLjxMhtrpO8Pk6dux98fBdLAz6TuHvxlVoGDClTavspKUVPimMEtTUgYBb8g6cFEIpzZtSukXiWyDA08nOe7fMOnA1JSlTuZ-Kn89o5ZqsmDFQ3uKzRqxWSNuM3RdYJ4sBDKMoEUWTi-6vctaBUsIbflt9xAuW8oS-2Z38p1FMqObS4PjdpWsOE_BO7UIr5E5XayT5Ub9yA1CK6w9i7U3yL0G1l4Da89ivUnuzrq3nXPf9cDwFWds7INIWUKlRrdVM4HiFfIQjcAggzyLskxJHiquRIqOvpam0GRb5YHQIpKatTnP2RZpFYNCbxOPU2VmAKRCcwkq5TxMeZIaVhRPtdwhtHoPsXIF4k2fkuf4ewR2yHE9Z2jLo_z477B6vbEz8KzhFuNp-XHefoVF7L60Ef4ODEzFQdj90yb2yNL0wO-T1vhlog_Ionod90cvh-4kfQCSbHed |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+review+of+condensable+particulate+matter&rft.jtitle=Fuel+%28Guildford%29&rft.au=Feng%2C+Yupeng&rft.au=Li%2C+Yuzhong&rft.au=Cui%2C+Lin&rft.date=2018-07-15&rft.issn=0016-2361&rft.volume=224&rft.spage=801&rft.epage=813&rft_id=info:doi/10.1016%2Fj.fuel.2018.03.118&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2018_03_118 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |