An efficient solution to the five-point relative pose problem

An efficient algorithmic solution to the classical five-point relative pose problem is presented. The problem is to find the possible solutions for relative camera pose between two calibrated views given five corresponding points. The algorithm consists of computing the coefficients of a tenth degre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 26; H. 6; S. 756 - 770
1. Verfasser: Nister, D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.06.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An efficient algorithmic solution to the classical five-point relative pose problem is presented. The problem is to find the possible solutions for relative camera pose between two calibrated views given five corresponding points. The algorithm consists of computing the coefficients of a tenth degree polynomial in closed form and, subsequently, finding its roots. It is the first algorithm well-suited for numerical implementation that also corresponds to the inherent complexity of the problem. We investigate the numerical precision of the algorithm. We also study its performance under noise in minimal as well as overdetermined cases. The performance is compared to that of the well-known 8 and 7-point methods and a 6-point scheme. The algorithm is used in a robust hypothesize-and-test framework to estimate structure and motion in real-time with low delay. The real-time system uses solely visual input and has been demonstrated at major conferences.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2004.17