SMFF-YOLO: A Scale-Adaptive YOLO Algorithm with Multi-Level Feature Fusion for Object Detection in UAV Scenes

Object detection in images captured by unmanned aerial vehicles (UAVs) holds great potential in various domains, including civilian applications, urban planning, and disaster response. However, it faces several challenges, such as multi-scale variations, dense scenes, complex backgrounds, and tiny-s...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 15; no. 18; p. 4580
Main Authors: Wang, Yuming, Zou, Hua, Yin, Ming, Zhang, Xining
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.09.2023
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Object detection in images captured by unmanned aerial vehicles (UAVs) holds great potential in various domains, including civilian applications, urban planning, and disaster response. However, it faces several challenges, such as multi-scale variations, dense scenes, complex backgrounds, and tiny-sized objects. In this paper, we present a novel scale-adaptive YOLO framework called SMFF-YOLO, which addresses these challenges through a multi-level feature fusion approach. To improve the detection accuracy of small objects, our framework incorporates the ELAN-SW object detection prediction head. This newly designed head effectively utilizes both global contextual information and local features, enhancing the detection accuracy of tiny objects. Additionally, the proposed bidirectional feature fusion pyramid (BFFP) module tackles the issue of scale variations in object sizes by aggregating multi-scale features. To handle complex backgrounds, we introduce the adaptive atrous spatial pyramid pooling (AASPP) module, which enables adaptive feature fusion and alleviates the negative impact of cluttered scenes. Moreover, we adopt the Wise-IoU(WIoU) bounding box regression loss to enhance the competitiveness of different quality anchor boxes, which offers the framework a more informed gradient allocation strategy. We validate the effectiveness of SMFF-YOLO using the VisDrone and UAVDT datasets. Experimental results demonstrate that our model achieves higher detection accuracy, with AP50 reaching 54.3% for VisDrone and 42.4% for UAVDT datasets. Visual comparative experiments with other YOLO-based methods further illustrate the robustness and adaptability of our approach.
AbstractList Object detection in images captured by unmanned aerial vehicles (UAVs) holds great potential in various domains, including civilian applications, urban planning, and disaster response. However, it faces several challenges, such as multi-scale variations, dense scenes, complex backgrounds, and tiny-sized objects. In this paper, we present a novel scale-adaptive YOLO framework called SMFF-YOLO, which addresses these challenges through a multi-level feature fusion approach. To improve the detection accuracy of small objects, our framework incorporates the ELAN-SW object detection prediction head. This newly designed head effectively utilizes both global contextual information and local features, enhancing the detection accuracy of tiny objects. Additionally, the proposed bidirectional feature fusion pyramid (BFFP) module tackles the issue of scale variations in object sizes by aggregating multi-scale features. To handle complex backgrounds, we introduce the adaptive atrous spatial pyramid pooling (AASPP) module, which enables adaptive feature fusion and alleviates the negative impact of cluttered scenes. Moreover, we adopt the Wise-IoU(WIoU) bounding box regression loss to enhance the competitiveness of different quality anchor boxes, which offers the framework a more informed gradient allocation strategy. We validate the effectiveness of SMFF-YOLO using the VisDrone and UAVDT datasets. Experimental results demonstrate that our model achieves higher detection accuracy, with AP50 reaching 54.3% for VisDrone and 42.4% for UAVDT datasets. Visual comparative experiments with other YOLO-based methods further illustrate the robustness and adaptability of our approach.
Audience Academic
Author Zou, Hua
Wang, Yuming
Zhang, Xining
Yin, Ming
Author_xml – sequence: 1
  givenname: Yuming
  surname: Wang
  fullname: Wang, Yuming
– sequence: 2
  givenname: Hua
  orcidid: 0000-0002-3641-2686
  surname: Zou
  fullname: Zou, Hua
– sequence: 3
  givenname: Ming
  surname: Yin
  fullname: Yin, Ming
– sequence: 4
  givenname: Xining
  surname: Zhang
  fullname: Zhang, Xining
BookMark eNptUV1rFDEUHaSCtfbFXxDwRYSp-ZpMxrehddrCln2oFXwK-bizZpmdrEmm4r8364pKMYHcy-Gcc7k5L6uTOcxQVa8JvmCsw-9jIg2RvJH4WXVKcUtrTjt68k__ojpPaYvLYYx0mJ9Wu_u7Yai_rFfrD6hH91ZPUPdO77N_BHSAUT9tQvT56w59Ly-6W6bs6xU8woQG0HmJgIYl-TCjMUS0NluwGV1BLuUA-hk99J-LM8yQXlXPRz0lOP9dz6qH4eOny5t6tb6-vexXteWM5bpxlJuO4hG0cMZwzQjHRGujmeBYUC2NGEt1IKVz2sqxwZp3phWuEYI17Ky6Pfq6oLdqH_1Oxx8qaK9-ASFulI7Z2wmUaZ2lAjSMjeSECTNaxomhTBLhMCPF6-3Rax_DtwVSVjufLEyTniEsSTHMMadlbluob55Qt2GJc9lUUSk6QVoiWGFdHFmb8tnKz2PIUdtyHey8LZGOvuB9KzGmuOO8CN4dBTaGlCKMfzYiWB2SV3-TL2T8hGx91ocoyhQ__U_yEz4kroE
CitedBy_id crossref_primary_10_3390_agronomy14112650
crossref_primary_10_1088_1361_6501_ada6f0
crossref_primary_10_1109_ACCESS_2025_3596039
crossref_primary_10_1016_j_eswa_2024_124848
crossref_primary_10_3390_rs16010165
crossref_primary_10_3390_rs16132465
crossref_primary_10_3390_info16030250
crossref_primary_10_1109_ACCESS_2024_3452716
crossref_primary_10_3390_app15052718
crossref_primary_10_1016_j_measurement_2024_116019
crossref_primary_10_1038_s41598_025_85488_z
crossref_primary_10_1109_ACCESS_2024_3515201
crossref_primary_10_1109_JIOT_2024_3435130
crossref_primary_10_1109_JSTARS_2025_3554821
crossref_primary_10_3390_rs17142441
crossref_primary_10_3390_rs16040729
crossref_primary_10_1109_ACCESS_2024_3371514
crossref_primary_10_1049_ipr2_70145
crossref_primary_10_1109_LGRS_2023_3336178
crossref_primary_10_3390_electronics13163269
crossref_primary_10_3389_frai_2025_1622100
crossref_primary_10_1016_j_dsp_2025_105543
crossref_primary_10_1016_j_rsase_2025_101582
crossref_primary_10_1088_1361_6501_ade326
crossref_primary_10_1088_1361_6501_adf657
crossref_primary_10_1109_TGRS_2024_3392794
crossref_primary_10_3390_s25082494
crossref_primary_10_1142_S0218126625502986
crossref_primary_10_1007_s11227_025_06961_0
crossref_primary_10_1007_s00530_024_01589_1
Cites_doi 10.1109/ICCV.2017.322
10.1007/978-3-030-01234-2_1
10.1109/CVPRW50498.2020.00103
10.1109/ICCV48922.2021.00986
10.3390/rs9050413
10.1016/j.neucom.2022.03.033
10.1109/ICCVW54120.2021.00314
10.1109/CVPR.2018.00913
10.1109/ACCESS.2019.2939201
10.1109/CVPR42600.2020.01155
10.1109/CVPR.2016.91
10.1007/978-3-030-01264-9_45
10.1109/CVPR.2014.81
10.1109/CVPR.2017.106
10.1109/CVPR46437.2021.01008
10.3390/rs13214209
10.1109/ICCV.2017.324
10.1007/978-3-030-01249-6_23
10.1007/978-3-319-10602-1_48
10.1109/ICCVW54120.2021.00313
10.1109/CVPR52729.2023.01780
10.1016/j.neucom.2022.07.042
10.1109/CVPR52729.2023.00721
10.1007/s11263-014-0733-5
10.1007/s11227-022-04596-z
10.1007/978-3-319-46448-0_2
10.3390/rs12193140
10.1109/WACV48630.2021.00330
10.1109/CCDC.2019.8832735
10.3390/rs14020420
10.1109/TIP.2020.3045636
10.1109/CVPR42600.2020.01079
10.1007/978-3-030-01234-2_49
10.1109/TPAMI.2021.3119563
10.1109/TPAMI.2015.2389824
10.1007/978-3-030-58452-8_13
10.3390/rs15061687
10.1016/j.isprsjprs.2021.08.002
10.1109/CVPR.2016.141
10.1109/ICCVW54120.2021.00312
10.1109/CVPR52729.2023.00995
10.1109/CVPR.2018.00644
10.1109/MCOM.2018.1700422
10.3390/rs14194801
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15184580
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_b7dc26eaef584136bfc341b23816d031
A780020944
10_3390_rs15184580
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c433t-5d24b920fea6dbb4a31401aaba364062a8b6f062de88ddac8f50a49b76d566353
IEDL.DBID DOA
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001072287000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 19:00:11 EDT 2025
Sun Nov 09 10:39:29 EST 2025
Tue Nov 18 16:21:31 EST 2025
Tue Nov 04 18:11:23 EST 2025
Sat Nov 29 07:13:34 EST 2025
Tue Nov 18 22:16:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-5d24b920fea6dbb4a31401aaba364062a8b6f062de88ddac8f50a49b76d566353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3641-2686
OpenAccessLink https://doaj.org/article/b7dc26eaef584136bfc341b23816d031
PQID 2869617163
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_b7dc26eaef584136bfc341b23816d031
proquest_miscellaneous_3040425667
proquest_journals_2869617163
gale_infotracacademiconefile_A780020944
crossref_primary_10_3390_rs15184580
crossref_citationtrail_10_3390_rs15184580
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_50) 2022; 506
ref_14
ref_58
ref_13
ref_57
ref_12
ref_11
ref_55
ref_54
ref_52
ref_51
Everingham (ref_10) 2015; 111
ref_19
ref_18
ref_17
ref_16
Zhu (ref_30) 2021; 44
Deng (ref_59) 2020; 30
ref_61
ref_60
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_62
ref_29
ref_28
ref_27
ref_26
Gu (ref_1) 2018; 56
ref_36
ref_35
Zheng (ref_49) 2020; 34
ref_33
ref_32
Zhang (ref_56) 2022; 489
ref_39
ref_38
ref_37
Zhang (ref_34) 2021; 180
ref_47
ref_46
He (ref_53) 2015; 37
ref_45
ref_44
ref_43
ref_42
ref_41
Huang (ref_63) 2022; 36
ref_40
ref_3
ref_2
Wu (ref_31) 2022; 78
ref_48
ref_9
Jiao (ref_15) 2019; 7
ref_8
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_23
  doi: 10.1109/ICCV.2017.322
– ident: ref_42
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_60
  doi: 10.1109/CVPRW50498.2020.00103
– volume: 34
  start-page: 12993
  year: 2020
  ident: ref_49
  article-title: Distance-IoU loss: Faster and better learning for bounding box regression
  publication-title: AAAI Conf. Artif. Intell.
– ident: ref_18
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref_55
– ident: ref_26
– ident: ref_51
– ident: ref_2
  doi: 10.3390/rs9050413
– volume: 489
  start-page: 377
  year: 2022
  ident: ref_56
  article-title: Adaptive dense pyramid network for object detection in UAV imagery
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.03.033
– ident: ref_39
  doi: 10.1109/ICCVW54120.2021.00314
– ident: ref_44
  doi: 10.1109/CVPR.2018.00913
– volume: 7
  start-page: 128837
  year: 2019
  ident: ref_15
  article-title: A survey of deep learning-based object detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939201
– ident: ref_41
  doi: 10.1109/CVPR42600.2020.01155
– ident: ref_58
– ident: ref_4
  doi: 10.1109/CVPR.2016.91
– ident: ref_28
  doi: 10.1007/978-3-030-01264-9_45
– ident: ref_27
– ident: ref_52
– ident: ref_20
  doi: 10.1109/CVPR.2014.81
– ident: ref_43
  doi: 10.1109/CVPR.2017.106
– ident: ref_47
  doi: 10.1109/CVPR46437.2021.01008
– ident: ref_48
– ident: ref_36
  doi: 10.3390/rs13214209
– ident: ref_6
  doi: 10.1109/ICCV.2017.324
– ident: ref_29
  doi: 10.1007/978-3-030-01249-6_23
– ident: ref_13
– ident: ref_9
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref_17
– ident: ref_45
– ident: ref_62
  doi: 10.1109/ICCVW54120.2021.00313
– ident: ref_8
  doi: 10.1109/CVPR52729.2023.01780
– volume: 506
  start-page: 146
  year: 2022
  ident: ref_50
  article-title: Focal and efficient IOU loss for accurate bounding box regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.07.042
– ident: ref_19
  doi: 10.1109/CVPR52729.2023.00721
– volume: 36
  start-page: 1026
  year: 2022
  ident: ref_63
  article-title: UFPMP-Det: Toward accurate and efficient object detection on drone imagery
  publication-title: AAAI Conf. Artif. Intell.
– volume: 111
  start-page: 98
  year: 2015
  ident: ref_10
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0733-5
– volume: 78
  start-page: 18209
  year: 2022
  ident: ref_31
  article-title: A lightweight network for vehicle detection based on embedded system
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-04596-z
– ident: ref_3
– ident: ref_11
– ident: ref_5
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_57
  doi: 10.3390/rs12193140
– ident: ref_61
  doi: 10.1109/WACV48630.2021.00330
– ident: ref_32
  doi: 10.1109/CCDC.2019.8832735
– ident: ref_14
  doi: 10.3390/rs14020420
– ident: ref_21
– volume: 30
  start-page: 1556
  year: 2020
  ident: ref_59
  article-title: A global-local self-adaptive network for drone-view object detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3045636
– ident: ref_40
  doi: 10.1109/CVPR42600.2020.01079
– ident: ref_25
– ident: ref_54
  doi: 10.1007/978-3-030-01234-2_49
– volume: 44
  start-page: 7380
  year: 2021
  ident: ref_30
  article-title: Detection and tracking meet drones challenge
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3119563
– ident: ref_33
– volume: 37
  start-page: 1904
  year: 2015
  ident: ref_53
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref_46
– ident: ref_7
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref_38
  doi: 10.3390/rs15061687
– volume: 180
  start-page: 283
  year: 2021
  ident: ref_34
  article-title: Multi-scale adversarial network for vehicle detection in UAV imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.08.002
– ident: ref_16
  doi: 10.1109/CVPR.2016.141
– ident: ref_37
  doi: 10.1109/ICCVW54120.2021.00312
– ident: ref_12
  doi: 10.1109/CVPR52729.2023.00995
– ident: ref_24
  doi: 10.1109/CVPR.2018.00644
– volume: 56
  start-page: 82
  year: 2018
  ident: ref_1
  article-title: Multiple moving targets surveillance based on a cooperative network for multi-UAV
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2018.1700422
– ident: ref_22
– ident: ref_35
  doi: 10.3390/rs14194801
SSID ssj0000331904
Score 2.5395114
Snippet Object detection in images captured by unmanned aerial vehicles (UAVs) holds great potential in various domains, including civilian applications, urban...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4580
SubjectTerms Accuracy
Adaptability
Adaptive algorithms
algorithms
Comparative analysis
Competitiveness
complex scenarios
data collection
Datasets
Deep learning
Disaster management
Drone aircraft
head
Image segmentation
Localization
Machine learning
Machine vision
Methods
Modules
multi-level feature information fusion
Neural networks
object detection
Object recognition
Performance evaluation
Photography, Aerial
prediction
Remote sensing
Technology application
Telematics
tiny objects
Unmanned aerial vehicles
Urban planning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRYIL74pAi4xAQhysZmPHSbig9BFxWHYrSqtysvxKW6nNLkkWiX_PTNa75VC4cIrkWFaieX0ztr8h5F3tc2NrzpnWtYYEpR6xIoMsZeQEcn1I54dS9uk4m0zys7PiKBTcunCscuUTB0ftZhZr5LtJLguJ3C780_wHw65RuLsaWmjcJZvIVAZ6vrl3ODn6uq6yxBxULBZLXlIO-f1u20GMy0WKPJB_RKKBsP9vbnmINdWj__3Kx-RhQJm0XKrFE3LHN0_J_dDw_OLXM3J9_KWq2PfpePqRlvQYBOVZ6fQcnR_FYVpencPC_cU1xVItHS7qsjEeMaIIGxetp9UCS20UYC-dGqzn0APfD0e7GnrZ0JPyFFZGX_qcnFSH3_Y_s9B5gVnBec9SlwhTJHHttXTGCM0xD9PaaC4BASQ6N7KGp_N57py2eZ3GWhQmky5FCMO3yEYza_wLQkfWFd6m1goXi0w7yK947GJrfFGkaS4j8mElBWUDLTl2x7hSkJ6gxNSNxCLydj13viTjuHXWHgpzPQMJtIeBWXuugj0qkzmbSK99DQhsxKWpLcRzgwBGOnB0EXmPqqDQzOFzrA63FeCnkDBLldmAtAshIrK9UgUV7L9TN3oQkTfr12C5uB2jGz9bdIqD_wSPKWX28t9LvCIPsMn98mTbNtno24XfIffsz_6ya18Hlf8NuKAJrQ
  priority: 102
  providerName: ProQuest
Title SMFF-YOLO: A Scale-Adaptive YOLO Algorithm with Multi-Level Feature Fusion for Object Detection in UAV Scenes
URI https://www.proquest.com/docview/2869617163
https://www.proquest.com/docview/3040425667
https://doaj.org/article/b7dc26eaef584136bfc341b23816d031
Volume 15
WOSCitedRecordID wos001072287000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQiwQXxFMEysoIJMQhajZ2nJhbChuBtN2NWFq1XCy_0lZqs9U-KnHhtzPjpMseQFy4OJJtRc54PK-MvyHkbeMLYxvGYq0bDQ5KM4xlDl7K0HHE-hDOh1D28TifTIqTE1lvlfrCnLAOHrgj3L7JnU2F174BVTlkwjQWBK9BTSNcEm5Qp0kut5ypIIMZsFbCOzxSBn79_mIJuq3gGeI_bmmgANT_N3EcdEz1kDzojUNadot6RO749jG519cpP__xhFzNDqsqPp2Opx9oSWdAXx-XTl-jzKLYTcvLszn4--dXFCOsNNyvjceYGUTR2lsvPK3WGCGjYK3SqcEwDP3kVyEjq6UXLT0qj-HNKAKfkqNq9O3j57gvmBBbztgqzlzKjUyTxmvhjOGaofuktdFMgOJOdWFEA0_ni8I5bYsmSzSXJhcuQ8uDPSM77bz1zwkdWie9zazlLuG5duAWscQl1ngps6wQEXl_S0RlezRxLGpxqcCrQIKr3wSPyJvN3OsOQ-OPsw5wLzYzEPc6dAA3qJ4b1L-4ISLvcCcVnk5YjtX9JQP4KMS5UmUeDGTJeUT2bjdb9cd2qdJCSIEAQiwirzfDcODwL4pu_Xy9VAzEHgg6IfIX_2PFL8l9rGDfpa3tkZ3VYu1fkbv2ZnWxXAzI7sFoUn8dBO4eYGLqDNufI2jr7DuM118O69NfjQUArA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglQuvBELBYwAIQ5Rs7HjJEgIBcqqVbe7lfpQy8X4lbZSm132Aeqf4jcyk8eWA3DrgVMkx7Li-PN8M-PxDMCrwqfGFpwHWhcaDZSiG2QJWildJyjXh3S-cmUf9JPBID08zHaW4Gd7F4bCKluZWAlqN7LkI1-LUplJyu3CP4y_BVQ1ik5X2xIaNSy2_MUPNNmm7zfXcX1fR1Hv896njaCpKhBYwfksiF0kTBaFhdfSGSM0JxtDa6O5RHaLdGpkgU_n09Q5bdMiDrXITCJdTPTMcdxrcF2IKKSKCTvxl4VPJ-QI6FDUWVA5z8K1yRQZNRUxZZ38jfeq8gB_I4GK2Xq3_7d_cgduNTo0y2vQ34UlX96Dlaac-8nFfTjf3e71gqNhf_iO5WwXYeiD3OkxiXZGzSw_O8aJzE7OGTmiWXUNOehTABUjpXg-8aw3J0ciQ6WeDQ15q9i6n1WBayU7Ldl-foAjE1M8gP0rme1DWC5HpX8ErGtd5m1srXChSLRD65GHLrTGZ1kcp7IDb9tVV7ZJuk61P84UGl-EEHWJkA68XPQd16lG_tjrI4Fn0YPSg1cNo8mxaqSNMomzkfTaF6hfdrk0hUVtxZB6Jh2K8Q68IegpEmL4OVY3dzFwUpQOTOVJZUdkQnRgtYWeaqTbVF3irgMvFq9RLtFhky79aD5VHNkB-UDK5PG_h3gOKxt7233V3xxsPYGbuKt4HcO3Csuzydw_hRv2--x0OnlWbTYGX68ayb8A8Dpl5g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFAEX3ghDgUWAEAcrjne99iIh5DZYVA1JRB8qp2Vfbiu1TsgD1L_Gr2PGcVIOwK0HTpbs1cprf55vZjz7DSEvS58ZWzIWal1qCFDKTihTiFI6jqPWh3C-TmUf9NJ-Pzs8lMM18nO5FwbLKpc2sTbUbmQxR96OMyEFaruwdtmURQy7xfvxtxA7SOGf1mU7jQVEdvz5Dwjfpu-2u_CuX8Vx8WFv62PYdBgILWdsFiYu5kbGUem1cMZwzTDe0NpoJoDpYp0ZUcLR-SxzTtusTCLNpUmFS5CqGcx7haxnQsi4RdaHW5v551WGJ2IA74gvNFEZk1F7MgV-zXiCGpS_sWDdLOBvlFDzXHHrf35Ct8nNxrum-eJzuEPWfHWXXG8avR-f3yNnu5-KIvwy6A3e0pzuAkB9mDs9RqNP8TTNT49gIbPjM4opalpvUA57WFpF0V2eTzwt5phipODu04HBPBbt-lld0lbRk4ru5wcwM3LIfbJ_Kat9QFrVqPIPCe1YJ71NrOUu4ql2EFeyyEXWeCmTJBMBebNEgLKNHDt2BTlVEJYhWtQFWgLyYjV2vBAh-eOoTQTSagQKh9cnRpMj1dghZVJnY-G1L8Hz7DBhSgt-jEHHTTgw8AF5jTBUaN7gdqxudmnAolAoTOVpHWFIzgOysYShauzeVF1gMCDPV5fBYuFvKF350XyqGPAGMIUQ6aN_T_GMXAMAq952f-cxuRGDd7ko7tsgrdlk7p-Qq_b77GQ6edp8eZR8vWwo_wLgIW_N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SMFF-YOLO%3A+A+Scale-Adaptive+YOLO+Algorithm+with+Multi-Level+Feature+Fusion+for+Object+Detection+in+UAV+Scenes&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yuming&rft.au=Zou%2C+Hua&rft.au=Yin%2C+Ming&rft.au=Zhang%2C+Xining&rft.date=2023-09-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=18&rft_id=info:doi/10.3390%2Frs15184580&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon