SMFF-YOLO: A Scale-Adaptive YOLO Algorithm with Multi-Level Feature Fusion for Object Detection in UAV Scenes
Object detection in images captured by unmanned aerial vehicles (UAVs) holds great potential in various domains, including civilian applications, urban planning, and disaster response. However, it faces several challenges, such as multi-scale variations, dense scenes, complex backgrounds, and tiny-s...
Saved in:
| Published in: | Remote sensing (Basel, Switzerland) Vol. 15; no. 18; p. 4580 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.09.2023
|
| Subjects: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Object detection in images captured by unmanned aerial vehicles (UAVs) holds great potential in various domains, including civilian applications, urban planning, and disaster response. However, it faces several challenges, such as multi-scale variations, dense scenes, complex backgrounds, and tiny-sized objects. In this paper, we present a novel scale-adaptive YOLO framework called SMFF-YOLO, which addresses these challenges through a multi-level feature fusion approach. To improve the detection accuracy of small objects, our framework incorporates the ELAN-SW object detection prediction head. This newly designed head effectively utilizes both global contextual information and local features, enhancing the detection accuracy of tiny objects. Additionally, the proposed bidirectional feature fusion pyramid (BFFP) module tackles the issue of scale variations in object sizes by aggregating multi-scale features. To handle complex backgrounds, we introduce the adaptive atrous spatial pyramid pooling (AASPP) module, which enables adaptive feature fusion and alleviates the negative impact of cluttered scenes. Moreover, we adopt the Wise-IoU(WIoU) bounding box regression loss to enhance the competitiveness of different quality anchor boxes, which offers the framework a more informed gradient allocation strategy. We validate the effectiveness of SMFF-YOLO using the VisDrone and UAVDT datasets. Experimental results demonstrate that our model achieves higher detection accuracy, with AP50 reaching 54.3% for VisDrone and 42.4% for UAVDT datasets. Visual comparative experiments with other YOLO-based methods further illustrate the robustness and adaptability of our approach. |
|---|---|
| AbstractList | Object detection in images captured by unmanned aerial vehicles (UAVs) holds great potential in various domains, including civilian applications, urban planning, and disaster response. However, it faces several challenges, such as multi-scale variations, dense scenes, complex backgrounds, and tiny-sized objects. In this paper, we present a novel scale-adaptive YOLO framework called SMFF-YOLO, which addresses these challenges through a multi-level feature fusion approach. To improve the detection accuracy of small objects, our framework incorporates the ELAN-SW object detection prediction head. This newly designed head effectively utilizes both global contextual information and local features, enhancing the detection accuracy of tiny objects. Additionally, the proposed bidirectional feature fusion pyramid (BFFP) module tackles the issue of scale variations in object sizes by aggregating multi-scale features. To handle complex backgrounds, we introduce the adaptive atrous spatial pyramid pooling (AASPP) module, which enables adaptive feature fusion and alleviates the negative impact of cluttered scenes. Moreover, we adopt the Wise-IoU(WIoU) bounding box regression loss to enhance the competitiveness of different quality anchor boxes, which offers the framework a more informed gradient allocation strategy. We validate the effectiveness of SMFF-YOLO using the VisDrone and UAVDT datasets. Experimental results demonstrate that our model achieves higher detection accuracy, with AP50 reaching 54.3% for VisDrone and 42.4% for UAVDT datasets. Visual comparative experiments with other YOLO-based methods further illustrate the robustness and adaptability of our approach. |
| Audience | Academic |
| Author | Zou, Hua Wang, Yuming Zhang, Xining Yin, Ming |
| Author_xml | – sequence: 1 givenname: Yuming surname: Wang fullname: Wang, Yuming – sequence: 2 givenname: Hua orcidid: 0000-0002-3641-2686 surname: Zou fullname: Zou, Hua – sequence: 3 givenname: Ming surname: Yin fullname: Yin, Ming – sequence: 4 givenname: Xining surname: Zhang fullname: Zhang, Xining |
| BookMark | eNptUV1rFDEUHaSCtfbFXxDwRYSp-ZpMxrehddrCln2oFXwK-bizZpmdrEmm4r8364pKMYHcy-Gcc7k5L6uTOcxQVa8JvmCsw-9jIg2RvJH4WXVKcUtrTjt68k__ojpPaYvLYYx0mJ9Wu_u7Yai_rFfrD6hH91ZPUPdO77N_BHSAUT9tQvT56w59Ly-6W6bs6xU8woQG0HmJgIYl-TCjMUS0NluwGV1BLuUA-hk99J-LM8yQXlXPRz0lOP9dz6qH4eOny5t6tb6-vexXteWM5bpxlJuO4hG0cMZwzQjHRGujmeBYUC2NGEt1IKVz2sqxwZp3phWuEYI17Ky6Pfq6oLdqH_1Oxx8qaK9-ASFulI7Z2wmUaZ2lAjSMjeSECTNaxomhTBLhMCPF6-3Rax_DtwVSVjufLEyTniEsSTHMMadlbluob55Qt2GJc9lUUSk6QVoiWGFdHFmb8tnKz2PIUdtyHey8LZGOvuB9KzGmuOO8CN4dBTaGlCKMfzYiWB2SV3-TL2T8hGx91ocoyhQ__U_yEz4kroE |
| CitedBy_id | crossref_primary_10_3390_agronomy14112650 crossref_primary_10_1088_1361_6501_ada6f0 crossref_primary_10_1109_ACCESS_2025_3596039 crossref_primary_10_1016_j_eswa_2024_124848 crossref_primary_10_3390_rs16010165 crossref_primary_10_3390_rs16132465 crossref_primary_10_3390_info16030250 crossref_primary_10_1109_ACCESS_2024_3452716 crossref_primary_10_3390_app15052718 crossref_primary_10_1016_j_measurement_2024_116019 crossref_primary_10_1038_s41598_025_85488_z crossref_primary_10_1109_ACCESS_2024_3515201 crossref_primary_10_1109_JIOT_2024_3435130 crossref_primary_10_1109_JSTARS_2025_3554821 crossref_primary_10_3390_rs17142441 crossref_primary_10_3390_rs16040729 crossref_primary_10_1109_ACCESS_2024_3371514 crossref_primary_10_1049_ipr2_70145 crossref_primary_10_1109_LGRS_2023_3336178 crossref_primary_10_3390_electronics13163269 crossref_primary_10_3389_frai_2025_1622100 crossref_primary_10_1016_j_dsp_2025_105543 crossref_primary_10_1016_j_rsase_2025_101582 crossref_primary_10_1088_1361_6501_ade326 crossref_primary_10_1088_1361_6501_adf657 crossref_primary_10_1109_TGRS_2024_3392794 crossref_primary_10_3390_s25082494 crossref_primary_10_1142_S0218126625502986 crossref_primary_10_1007_s11227_025_06961_0 crossref_primary_10_1007_s00530_024_01589_1 |
| Cites_doi | 10.1109/ICCV.2017.322 10.1007/978-3-030-01234-2_1 10.1109/CVPRW50498.2020.00103 10.1109/ICCV48922.2021.00986 10.3390/rs9050413 10.1016/j.neucom.2022.03.033 10.1109/ICCVW54120.2021.00314 10.1109/CVPR.2018.00913 10.1109/ACCESS.2019.2939201 10.1109/CVPR42600.2020.01155 10.1109/CVPR.2016.91 10.1007/978-3-030-01264-9_45 10.1109/CVPR.2014.81 10.1109/CVPR.2017.106 10.1109/CVPR46437.2021.01008 10.3390/rs13214209 10.1109/ICCV.2017.324 10.1007/978-3-030-01249-6_23 10.1007/978-3-319-10602-1_48 10.1109/ICCVW54120.2021.00313 10.1109/CVPR52729.2023.01780 10.1016/j.neucom.2022.07.042 10.1109/CVPR52729.2023.00721 10.1007/s11263-014-0733-5 10.1007/s11227-022-04596-z 10.1007/978-3-319-46448-0_2 10.3390/rs12193140 10.1109/WACV48630.2021.00330 10.1109/CCDC.2019.8832735 10.3390/rs14020420 10.1109/TIP.2020.3045636 10.1109/CVPR42600.2020.01079 10.1007/978-3-030-01234-2_49 10.1109/TPAMI.2021.3119563 10.1109/TPAMI.2015.2389824 10.1007/978-3-030-58452-8_13 10.3390/rs15061687 10.1016/j.isprsjprs.2021.08.002 10.1109/CVPR.2016.141 10.1109/ICCVW54120.2021.00312 10.1109/CVPR52729.2023.00995 10.1109/CVPR.2018.00644 10.1109/MCOM.2018.1700422 10.3390/rs14194801 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs15184580 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_b7dc26eaef584136bfc341b23816d031 A780020944 10_3390_rs15184580 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
| ID | FETCH-LOGICAL-c433t-5d24b920fea6dbb4a31401aaba364062a8b6f062de88ddac8f50a49b76d566353 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001072287000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 19:00:11 EDT 2025 Sun Nov 09 10:39:29 EST 2025 Tue Nov 18 16:21:31 EST 2025 Tue Nov 04 18:11:23 EST 2025 Sat Nov 29 07:13:34 EST 2025 Tue Nov 18 22:16:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c433t-5d24b920fea6dbb4a31401aaba364062a8b6f062de88ddac8f50a49b76d566353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3641-2686 |
| OpenAccessLink | https://doaj.org/article/b7dc26eaef584136bfc341b23816d031 |
| PQID | 2869617163 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b7dc26eaef584136bfc341b23816d031 proquest_miscellaneous_3040425667 proquest_journals_2869617163 gale_infotracacademiconefile_A780020944 crossref_primary_10_3390_rs15184580 crossref_citationtrail_10_3390_rs15184580 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_50) 2022; 506 ref_14 ref_58 ref_13 ref_57 ref_12 ref_11 ref_55 ref_54 ref_52 ref_51 Everingham (ref_10) 2015; 111 ref_19 ref_18 ref_17 ref_16 Zhu (ref_30) 2021; 44 Deng (ref_59) 2020; 30 ref_61 ref_60 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_62 ref_29 ref_28 ref_27 ref_26 Gu (ref_1) 2018; 56 ref_36 ref_35 Zheng (ref_49) 2020; 34 ref_33 ref_32 Zhang (ref_56) 2022; 489 ref_39 ref_38 ref_37 Zhang (ref_34) 2021; 180 ref_47 ref_46 He (ref_53) 2015; 37 ref_45 ref_44 ref_43 ref_42 ref_41 Huang (ref_63) 2022; 36 ref_40 ref_3 ref_2 Wu (ref_31) 2022; 78 ref_48 ref_9 Jiao (ref_15) 2019; 7 ref_8 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_23 doi: 10.1109/ICCV.2017.322 – ident: ref_42 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_60 doi: 10.1109/CVPRW50498.2020.00103 – volume: 34 start-page: 12993 year: 2020 ident: ref_49 article-title: Distance-IoU loss: Faster and better learning for bounding box regression publication-title: AAAI Conf. Artif. Intell. – ident: ref_18 doi: 10.1109/ICCV48922.2021.00986 – ident: ref_55 – ident: ref_26 – ident: ref_51 – ident: ref_2 doi: 10.3390/rs9050413 – volume: 489 start-page: 377 year: 2022 ident: ref_56 article-title: Adaptive dense pyramid network for object detection in UAV imagery publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.03.033 – ident: ref_39 doi: 10.1109/ICCVW54120.2021.00314 – ident: ref_44 doi: 10.1109/CVPR.2018.00913 – volume: 7 start-page: 128837 year: 2019 ident: ref_15 article-title: A survey of deep learning-based object detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939201 – ident: ref_41 doi: 10.1109/CVPR42600.2020.01155 – ident: ref_58 – ident: ref_4 doi: 10.1109/CVPR.2016.91 – ident: ref_28 doi: 10.1007/978-3-030-01264-9_45 – ident: ref_27 – ident: ref_52 – ident: ref_20 doi: 10.1109/CVPR.2014.81 – ident: ref_43 doi: 10.1109/CVPR.2017.106 – ident: ref_47 doi: 10.1109/CVPR46437.2021.01008 – ident: ref_48 – ident: ref_36 doi: 10.3390/rs13214209 – ident: ref_6 doi: 10.1109/ICCV.2017.324 – ident: ref_29 doi: 10.1007/978-3-030-01249-6_23 – ident: ref_13 – ident: ref_9 doi: 10.1007/978-3-319-10602-1_48 – ident: ref_17 – ident: ref_45 – ident: ref_62 doi: 10.1109/ICCVW54120.2021.00313 – ident: ref_8 doi: 10.1109/CVPR52729.2023.01780 – volume: 506 start-page: 146 year: 2022 ident: ref_50 article-title: Focal and efficient IOU loss for accurate bounding box regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.07.042 – ident: ref_19 doi: 10.1109/CVPR52729.2023.00721 – volume: 36 start-page: 1026 year: 2022 ident: ref_63 article-title: UFPMP-Det: Toward accurate and efficient object detection on drone imagery publication-title: AAAI Conf. Artif. Intell. – volume: 111 start-page: 98 year: 2015 ident: ref_10 article-title: The pascal visual object classes challenge: A retrospective publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0733-5 – volume: 78 start-page: 18209 year: 2022 ident: ref_31 article-title: A lightweight network for vehicle detection based on embedded system publication-title: J. Supercomput. doi: 10.1007/s11227-022-04596-z – ident: ref_3 – ident: ref_11 – ident: ref_5 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_57 doi: 10.3390/rs12193140 – ident: ref_61 doi: 10.1109/WACV48630.2021.00330 – ident: ref_32 doi: 10.1109/CCDC.2019.8832735 – ident: ref_14 doi: 10.3390/rs14020420 – ident: ref_21 – volume: 30 start-page: 1556 year: 2020 ident: ref_59 article-title: A global-local self-adaptive network for drone-view object detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3045636 – ident: ref_40 doi: 10.1109/CVPR42600.2020.01079 – ident: ref_25 – ident: ref_54 doi: 10.1007/978-3-030-01234-2_49 – volume: 44 start-page: 7380 year: 2021 ident: ref_30 article-title: Detection and tracking meet drones challenge publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3119563 – ident: ref_33 – volume: 37 start-page: 1904 year: 2015 ident: ref_53 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: ref_46 – ident: ref_7 doi: 10.1007/978-3-030-58452-8_13 – ident: ref_38 doi: 10.3390/rs15061687 – volume: 180 start-page: 283 year: 2021 ident: ref_34 article-title: Multi-scale adversarial network for vehicle detection in UAV imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.08.002 – ident: ref_16 doi: 10.1109/CVPR.2016.141 – ident: ref_37 doi: 10.1109/ICCVW54120.2021.00312 – ident: ref_12 doi: 10.1109/CVPR52729.2023.00995 – ident: ref_24 doi: 10.1109/CVPR.2018.00644 – volume: 56 start-page: 82 year: 2018 ident: ref_1 article-title: Multiple moving targets surveillance based on a cooperative network for multi-UAV publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2018.1700422 – ident: ref_22 – ident: ref_35 doi: 10.3390/rs14194801 |
| SSID | ssj0000331904 |
| Score | 2.5395114 |
| Snippet | Object detection in images captured by unmanned aerial vehicles (UAVs) holds great potential in various domains, including civilian applications, urban... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 4580 |
| SubjectTerms | Accuracy Adaptability Adaptive algorithms algorithms Comparative analysis Competitiveness complex scenarios data collection Datasets Deep learning Disaster management Drone aircraft head Image segmentation Localization Machine learning Machine vision Methods Modules multi-level feature information fusion Neural networks object detection Object recognition Performance evaluation Photography, Aerial prediction Remote sensing Technology application Telematics tiny objects Unmanned aerial vehicles Urban planning |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRYIL74pAi4xAQhysZmPHSbig9BFxWHYrSqtysvxKW6nNLkkWiX_PTNa75VC4cIrkWFaieX0ztr8h5F3tc2NrzpnWtYYEpR6xIoMsZeQEcn1I54dS9uk4m0zys7PiKBTcunCscuUTB0ftZhZr5LtJLguJ3C780_wHw65RuLsaWmjcJZvIVAZ6vrl3ODn6uq6yxBxULBZLXlIO-f1u20GMy0WKPJB_RKKBsP9vbnmINdWj__3Kx-RhQJm0XKrFE3LHN0_J_dDw_OLXM3J9_KWq2PfpePqRlvQYBOVZ6fQcnR_FYVpencPC_cU1xVItHS7qsjEeMaIIGxetp9UCS20UYC-dGqzn0APfD0e7GnrZ0JPyFFZGX_qcnFSH3_Y_s9B5gVnBec9SlwhTJHHttXTGCM0xD9PaaC4BASQ6N7KGp_N57py2eZ3GWhQmky5FCMO3yEYza_wLQkfWFd6m1goXi0w7yK947GJrfFGkaS4j8mElBWUDLTl2x7hSkJ6gxNSNxCLydj13viTjuHXWHgpzPQMJtIeBWXuugj0qkzmbSK99DQhsxKWpLcRzgwBGOnB0EXmPqqDQzOFzrA63FeCnkDBLldmAtAshIrK9UgUV7L9TN3oQkTfr12C5uB2jGz9bdIqD_wSPKWX28t9LvCIPsMn98mTbNtno24XfIffsz_6ya18Hlf8NuKAJrQ priority: 102 providerName: ProQuest |
| Title | SMFF-YOLO: A Scale-Adaptive YOLO Algorithm with Multi-Level Feature Fusion for Object Detection in UAV Scenes |
| URI | https://www.proquest.com/docview/2869617163 https://www.proquest.com/docview/3040425667 https://doaj.org/article/b7dc26eaef584136bfc341b23816d031 |
| Volume | 15 |
| WOSCitedRecordID | wos001072287000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQiwQXxFMEysoIJMQhajZ2nJhbChuBtN2NWFq1XCy_0lZqs9U-KnHhtzPjpMseQFy4OJJtRc54PK-MvyHkbeMLYxvGYq0bDQ5KM4xlDl7K0HHE-hDOh1D28TifTIqTE1lvlfrCnLAOHrgj3L7JnU2F174BVTlkwjQWBK9BTSNcEm5Qp0kut5ypIIMZsFbCOzxSBn79_mIJuq3gGeI_bmmgANT_N3EcdEz1kDzojUNadot6RO749jG519cpP__xhFzNDqsqPp2Opx9oSWdAXx-XTl-jzKLYTcvLszn4--dXFCOsNNyvjceYGUTR2lsvPK3WGCGjYK3SqcEwDP3kVyEjq6UXLT0qj-HNKAKfkqNq9O3j57gvmBBbztgqzlzKjUyTxmvhjOGaofuktdFMgOJOdWFEA0_ni8I5bYsmSzSXJhcuQ8uDPSM77bz1zwkdWie9zazlLuG5duAWscQl1ngps6wQEXl_S0RlezRxLGpxqcCrQIKr3wSPyJvN3OsOQ-OPsw5wLzYzEPc6dAA3qJ4b1L-4ISLvcCcVnk5YjtX9JQP4KMS5UmUeDGTJeUT2bjdb9cd2qdJCSIEAQiwirzfDcODwL4pu_Xy9VAzEHgg6IfIX_2PFL8l9rGDfpa3tkZ3VYu1fkbv2ZnWxXAzI7sFoUn8dBO4eYGLqDNufI2jr7DuM118O69NfjQUArA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglQuvBELBYwAIQ5Rs7HjJEgIBcqqVbe7lfpQy8X4lbZSm132Aeqf4jcyk8eWA3DrgVMkx7Li-PN8M-PxDMCrwqfGFpwHWhcaDZSiG2QJWildJyjXh3S-cmUf9JPBID08zHaW4Gd7F4bCKluZWAlqN7LkI1-LUplJyu3CP4y_BVQ1ik5X2xIaNSy2_MUPNNmm7zfXcX1fR1Hv896njaCpKhBYwfksiF0kTBaFhdfSGSM0JxtDa6O5RHaLdGpkgU_n09Q5bdMiDrXITCJdTPTMcdxrcF2IKKSKCTvxl4VPJ-QI6FDUWVA5z8K1yRQZNRUxZZ38jfeq8gB_I4GK2Xq3_7d_cgduNTo0y2vQ34UlX96Dlaac-8nFfTjf3e71gqNhf_iO5WwXYeiD3OkxiXZGzSw_O8aJzE7OGTmiWXUNOehTABUjpXg-8aw3J0ciQ6WeDQ15q9i6n1WBayU7Ldl-foAjE1M8gP0rme1DWC5HpX8ErGtd5m1srXChSLRD65GHLrTGZ1kcp7IDb9tVV7ZJuk61P84UGl-EEHWJkA68XPQd16lG_tjrI4Fn0YPSg1cNo8mxaqSNMomzkfTaF6hfdrk0hUVtxZB6Jh2K8Q68IegpEmL4OVY3dzFwUpQOTOVJZUdkQnRgtYWeaqTbVF3irgMvFq9RLtFhky79aD5VHNkB-UDK5PG_h3gOKxt7233V3xxsPYGbuKt4HcO3Csuzydw_hRv2--x0OnlWbTYGX68ayb8A8Dpl5g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFAEX3ghDgUWAEAcrjne99iIh5DZYVA1JRB8qp2Vfbiu1TsgD1L_Gr2PGcVIOwK0HTpbs1cprf55vZjz7DSEvS58ZWzIWal1qCFDKTihTiFI6jqPWh3C-TmUf9NJ-Pzs8lMM18nO5FwbLKpc2sTbUbmQxR96OMyEFaruwdtmURQy7xfvxtxA7SOGf1mU7jQVEdvz5Dwjfpu-2u_CuX8Vx8WFv62PYdBgILWdsFiYu5kbGUem1cMZwzTDe0NpoJoDpYp0ZUcLR-SxzTtusTCLNpUmFS5CqGcx7haxnQsi4RdaHW5v551WGJ2IA74gvNFEZk1F7MgV-zXiCGpS_sWDdLOBvlFDzXHHrf35Ct8nNxrum-eJzuEPWfHWXXG8avR-f3yNnu5-KIvwy6A3e0pzuAkB9mDs9RqNP8TTNT49gIbPjM4opalpvUA57WFpF0V2eTzwt5phipODu04HBPBbt-lld0lbRk4ru5wcwM3LIfbJ_Kat9QFrVqPIPCe1YJ71NrOUu4ql2EFeyyEXWeCmTJBMBebNEgLKNHDt2BTlVEJYhWtQFWgLyYjV2vBAh-eOoTQTSagQKh9cnRpMj1dghZVJnY-G1L8Hz7DBhSgt-jEHHTTgw8AF5jTBUaN7gdqxudmnAolAoTOVpHWFIzgOysYShauzeVF1gMCDPV5fBYuFvKF350XyqGPAGMIUQ6aN_T_GMXAMAq952f-cxuRGDd7ko7tsgrdlk7p-Qq_b77GQ6edp8eZR8vWwo_wLgIW_N |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SMFF-YOLO%3A+A+Scale-Adaptive+YOLO+Algorithm+with+Multi-Level+Feature+Fusion+for+Object+Detection+in+UAV+Scenes&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yuming&rft.au=Zou%2C+Hua&rft.au=Yin%2C+Ming&rft.au=Zhang%2C+Xining&rft.date=2023-09-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=18&rft_id=info:doi/10.3390%2Frs15184580&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |