A Comparison of New and Old Algorithms for a Mixture Estimation Problem

We investigate the problem of estimating the proportion vector which maximizes the likelihood of a given sample for a mixture of given densities. We adapt a framework developed for supervised learning and give simple derivations for many of the standard iterative algorithms like gradient projection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning Jg. 27; H. 1; S. 97 - 119
Hauptverfasser: Helmbold, David P., Schapire, Robert E., Singer, Yoram, Warmuth, Manfred K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Nature B.V 1997
Schlagworte:
ISSN:0885-6125, 1573-0565
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We investigate the problem of estimating the proportion vector which maximizes the likelihood of a given sample for a mixture of given densities. We adapt a framework developed for supervised learning and give simple derivations for many of the standard iterative algorithms like gradient projection and EM. In this framework, the distance between the new and old proportion vectors is used as a penalty term. The square distance leads to the gradient projection update, and the relative entropy to a new update which we call the exponentiated gradient update (EG^sub ^). Curiously, when a second order Taylor expansion of the relative entropy is used, we arrive at an update EM^sub ^ which, for =1, gives the usual EM update. Experimentally, both the EM^sub ^-update and the EG^sub ^-update for > 1 outperform the EM algorithm and its variants. We also prove a polynomial bound on the rate of convergence of the EG^sub ^ algorithm.[PUBLICATION ABSTRACT]
AbstractList We investigate the problem of estimating the proportion vector which maximizes the likelihood of a given sample for a mixture of given densities. We adapt a framework developed for supervised learning and give simple derivations for many of the standard iterative algorithms like gradient projection and EM. In this framework, the distance between the new and old proportion vectors is used as a penalty term. The square distance leads to the gradient projection update, and the relative entropy to a new update which we call the exponentiated gradient update (EG sub( eta )). Curiously, when a second order Taylor expansion of the relative entropy is used, we arrive at an update EM sub( eta ) which, for eta identical with 1, gives the usual EM update. Experimentally, both the EM sub( eta )-update and the EG sub( eta )-update for eta > 1 outperform the EM algorithm and its variants. We also prove a polynomial bound on the rate of convergence of the EG sub( eta ) algorithm.
We investigate the problem of estimating the proportion vector which maximizes the likelihood of a given sample for a mixture of given densities. We adapt a framework developed for supervised learning and give simple derivations for many of the standard iterative algorithms like gradient projection and EM. In this framework, the distance between the new and old proportion vectors is used as a penalty term. The square distance leads to the gradient projection update, and the relative entropy to a new update which we call the exponentiated gradient update (EG^sub ^). Curiously, when a second order Taylor expansion of the relative entropy is used, we arrive at an update EM^sub ^ which, for =1, gives the usual EM update. Experimentally, both the EM^sub ^-update and the EG^sub ^-update for > 1 outperform the EM algorithm and its variants. We also prove a polynomial bound on the rate of convergence of the EG^sub ^ algorithm.[PUBLICATION ABSTRACT]
Author Warmuth, Manfred K.
Schapire, Robert E.
Helmbold, David P.
Singer, Yoram
Author_xml – sequence: 1
  givenname: David P.
  surname: Helmbold
  fullname: Helmbold, David P.
– sequence: 2
  givenname: Robert E.
  surname: Schapire
  fullname: Schapire, Robert E.
– sequence: 3
  givenname: Yoram
  surname: Singer
  fullname: Singer, Yoram
– sequence: 4
  givenname: Manfred K.
  surname: Warmuth
  fullname: Warmuth, Manfred K.
BookMark eNp1kD1PwzAQQC1UJNrCzGoxsIWe7fgDtqiCglQoA8yR4zjgKomL7Qr49wTKQiWmW9473b0JGvW-twidErggQNmsuCIAkgEBQrggB2hMuGQZcMFHaAxK8UwQyo_QJMY1AFChxBgtCjz33UYHF32PfYMf7DvWfY1XbY2L9sUHl167iBsfsMb37iNtg8XXMblOJzcoj8FXre2O0WGj22hPfucUPd9cP81vs-VqcTcvlpnJGUsZV5qxHJiVlFNDtah1ZTRRmppLLqmuqhxIRaxolNC64VJSJSwBU9emgapmU3S-27sJ_m1rYyo7F41tW91bv40lFbmiEvgAnu2Ba78N_XBbKbkESUDKAeI7yAQfY7BNaVz6-SsF7dqSQPndtizKP20Hb7bnbcIQJHz-a3wBm4x65g
CitedBy_id crossref_primary_10_1016_j_artint_2015_01_006
crossref_primary_10_1109_TSP_2016_2601299
crossref_primary_10_1080_13642530701197710
crossref_primary_10_1016_j_eswa_2021_115889
crossref_primary_10_1145_2512962
crossref_primary_10_1145_2435209_2435213
crossref_primary_10_1080_14697688_2017_1357831
crossref_primary_10_1162_089976699300016764
crossref_primary_10_1016_j_physa_2019_04_185
crossref_primary_10_1109_18_857792
crossref_primary_10_1007_s43069_022_00169_1
crossref_primary_10_1016_j_eswa_2023_119837
crossref_primary_10_1016_j_dsp_2012_09_006
crossref_primary_10_1088_1367_2630_ab0438
crossref_primary_10_1016_j_jmva_2013_08_013
crossref_primary_10_1007_s10994_011_5269_0
crossref_primary_10_1007_s10994_008_5075_5
crossref_primary_10_1016_j_ipm_2012_06_002
crossref_primary_10_1109_72_809075
crossref_primary_10_1007_s10994_012_5281_z
crossref_primary_10_1006_game_2000_0799
Cites_doi 10.1137/1026034
10.1145/225058.225121
10.1137/0135036
10.1111/j.1467-9965.1991.tb00002.x
10.1016/B978-1-55860-213-7.50029-8
10.1137/0135032
10.1023/A:1022869011914
10.1145/225298.225333
ContentType Journal Article
Copyright Kluwer Academic Publishers 1997
Copyright_xml – notice: Kluwer Academic Publishers 1997
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1023/A:1007301011561
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer and Information Systems Abstracts
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 119
ExternalDocumentID 2158027641
10_1023_A_1007301011561
Genre Feature
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
YLTOR
Z45
Z8Z
ZMTXR
3V.
7SC
7XB
8AL
8FD
8FK
AESKC
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c433t-58a33403e7252c2a6dabca18a2c9572abb401b1e6f86aaf577286e10cddcf0bd3
IEDL.DBID M2P
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10.1023/a:1007301011561&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Sun Nov 09 09:58:48 EST 2025
Tue Nov 04 19:04:49 EST 2025
Sat Nov 29 07:47:17 EST 2025
Tue Nov 18 20:53:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-58a33403e7252c2a6dabca18a2c9572abb401b1e6f86aaf577286e10cddcf0bd3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1023/A:1007301011561.pdf
PQID 757071077
PQPubID 54194
PageCount 23
ParticipantIDs proquest_miscellaneous_26482705
proquest_journals_757071077
crossref_citationtrail_10_1023_A_1007301011561
crossref_primary_10_1023_A_1007301011561
PublicationCentury 1900
PublicationDate 1997-00-00
PublicationDateYYYYMMDD 1997-01-01
PublicationDate_xml – year: 1997
  text: 1997-00-00
PublicationDecade 1990
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Machine learning
PublicationYear 1997
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References D. Helmbold (130973_CR7) 1996
B. Peters (130973_CR14) 1978; 35
J. Bridle (130973_CR2) 1989
T. Cover (130973_CR3) 1991; 1
X. Meng (130973_CR12) 1992
130973_CR1
130973_CR6
130973_CR5
R. Redner (130973_CR16) 1984; 26
130973_CR8
130973_CR11
130973_CR9
N. Littlestone (130973_CR10) 1988; 2
130973_CR17
A. Dempster (130973_CR4) 1977; B39
B. Peters (130973_CR15) 1978; 35
130973_CR13
References_xml – volume: 26
  start-page: 195
  year: 1984
  ident: 130973_CR16
  publication-title: Siam Review
  doi: 10.1137/1026034
– ident: 130973_CR8
  doi: 10.1145/225058.225121
– volume: 35
  start-page: 447
  year: 1978
  ident: 130973_CR15
  publication-title: SIAM Journal of Applied Mathematics
  doi: 10.1137/0135036
– volume: 1
  start-page: 1
  issue: 1
  year: 1991
  ident: 130973_CR3
  publication-title: Mathematical Finance
  doi: 10.1111/j.1467-9965.1991.tb00002.x
– start-page: 243
  volume-title: Proc. 13th International Conference on Machine Learning
  year: 1996
  ident: 130973_CR7
– volume: B39
  start-page: 1
  year: 1977
  ident: 130973_CR4
  publication-title: Journal of the Royal Statistical Society
– volume-title: Bayesian Statistics, 4
  year: 1992
  ident: 130973_CR12
– ident: 130973_CR1
  doi: 10.1016/B978-1-55860-213-7.50029-8
– volume: 35
  start-page: 362
  year: 1978
  ident: 130973_CR14
  publication-title: SIAM Journal of Applied Mathematics
  doi: 10.1137/0135032
– ident: 130973_CR13
– ident: 130973_CR11
– volume: 2
  start-page: 285
  year: 1988
  ident: 130973_CR10
  publication-title: Machine Learning
  doi: 10.1023/A:1022869011914
– ident: 130973_CR6
– volume-title: Neuro-Computing: Algorithms, Architectures, and Applications
  year: 1989
  ident: 130973_CR2
– ident: 130973_CR5
– ident: 130973_CR9
  doi: 10.1145/225298.225333
– ident: 130973_CR17
SSID ssj0002686
Score 1.6799082
SecondaryResourceType review_article
Snippet We investigate the problem of estimating the proportion vector which maximizes the likelihood of a given sample for a mixture of given densities. We adapt a...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 97
SubjectTerms Entropy
Title A Comparison of New and Old Algorithms for a Mixture Estimation Problem
URI https://www.proquest.com/docview/757071077
https://www.proquest.com/docview/26482705
Volume 27
WOSCitedRecordID wos10.1023/a:1007301011561&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB2VpQcupS2tukC3PnDoxTRx4jg-VQtaQCpso4pKiEtkj22KtM3CZqn4_NpJNtIitRcuuSSOooznvbFnPA_gQGYSHZdhkWMETZMUqWROUI3aKE8vnoMaS5-L6TS_upJFV5tTd2WVK0xsgNrMMeyRfxFcBDYU4uvdPQ2iUSG52ilobMCmD2ziUNF1wYoeiFnWCD16P-I0EPmTzj7N5A4RURavk9I6JjdEc7L9zE98Da-6CJOM2ynxBl7Y6i1sr9QbSOfMO3A6Jse9CCGZO-LxjqjKkO8zQ8azG__q5a_fNfFRLVHk4vYx5BrIxENCe9qRFK0WzTv4eTK5PD6jnawCxTRJlpTnKknSKLGCcYZMZUZpVHGuGEoumNLar7l0bDOXZ0o57uPvPLNxhMagi7RJ3sOgmlf2AxCO1ulUMEQ0aeqc5DLVkcVYSxQSoyEcrv5riV3P8SB9MSub3DdLynG5ZoghfO4H3LXtNv796N7KCmXnd3XZm2AIn_q73mFCFkRVdv5Ql6Gkj4mI7_53_B5stY1qw2bLPgyWiwf7EV7in-VtvRjB5tFkWvwYwcY3QUfNrPPXgl__BeZZ3Cg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0BrQQXaEsRC23xoZV6SZs4dhwfqmpFoSCW7R5A4pbaY7tFWrJAln78qP7H2vmStlJ749Bz4kjOjN8be8bzAF7KTKLjMmxyjIhYyjCS1IlIozbK04vnoNrSIzEe5xcXcrIEv7q7MKGsssPEGqjNDMMZ-VvBRWBDId5f30RBNCokVzsFjcYrTuzP737HVr07_uDN-4rSw4Oz_aOoFRWIkKXpPOK5SlMWp1ZQTpGqzCiNKskVRckFVVr7HYdObObyTCnHffSZZzaJ0Rh0sTap_-4yPGChsVioFKSTHvhpVgtL-nXLoxA4_NFJqF5MIQLLkkUSXOSAmtgON_6zX_II1tsImgwbl38MS7Z8AhudOgVpwWoTPg7Jfi-ySGaOeDwnqjTk09SQ4fSLn8r861VFfNROFDm9_BFyKeTAQ15zm5NMGq2dp3B-L9PZgpVyVtptIByt00xQRDSMOSe5ZDq2mGiJQmI8gDedHQtse6oHaY9pUef2aVoMiwXDD-B1P-C6aSfy91d3O6sXLa5URW_yAez1Tz0ghCyPKu3sripCySIVMd_55_g9WD06Ox0Vo-PxyS6sNU15w8HSM1iZ397Z5_AQv80vq9sXtY8T-HzfHvQbfGg3Pg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BrRCX0geILW3xoUi9pCROHMeHqloBCwjY7gEk1Euwx3aLtGSBLG35afy72nlJW6ncOHBOHMmZmW9mPOP5AD6KVKBlwic5mgdJnGAgqOWBQqWlcy_OB1WSPuLDYXZ2JkZzcN_ehfFtlS0mVkCtJ-jPyLc4494bcr5lm66I0c7g69V14AmkfKG1ZdOoNeTQ3P122Vv55WDHiXqT0sHuyfZ-0BAMBJjE8TRgmYzjJIwNp4wilamWCmWUSYqCcSqVctmHikxqs1RKy1wkmqUmClFrtKHSsfvuPDzjLsX03YQj9r1zAjStSCadDbPABxH_TBWqDMtHY2k06xBn_UHl5AbLT_j3vIQXTWRN-rUpvII5U7yG5Za1gjQg9gb2-mS7I18kE0sczhNZaPJtrEl__MNtZfrzsiQumieSHF_88TUWsuugsL7lSUY1B88KnD7KdlZhoZgUZg0IQ2NVwiki6iSxVjCRqNBgpARygWEPPrcyzbGZte4pP8Z5VfOncd7PZ5SgB5-6BVf1mJH_v7reakDe4E2Zd-LvwUb31AGFr_7Iwkxuy9y3MlIesrcPrt-ARac4-dHB8HAdlupZvf686R0sTG9uzXt4jr-mF-XNh0rdCZw_tgL9BTJhQCo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+new+and+old+algorithms+for+a+mixture+estimation+problem&rft.jtitle=Machine+learning&rft.au=Helmbold%2C+David+P&rft.au=Schapire%2C+Robert+E&rft.au=Singer%2C+Yoram&rft.au=Warmuth%2C+Manfred+K&rft.date=1997&rft.issn=0885-6125&rft.volume=27&rft.issue=1&rft.spage=97&rft.epage=119&rft_id=info:doi/10.1023%2Fa%3A1007301011561&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon