Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease
Treatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic structural MRI classification methods for detecting subtle degenerative change. The availability of a definitive genet...
Saved in:
| Published in: | Neurology Vol. 72; no. 5; p. 426 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
03.02.2009
|
| Subjects: | |
| ISSN: | 1526-632X, 1526-632X |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Treatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic structural MRI classification methods for detecting subtle degenerative change. The availability of a definitive genetic test for Huntington disease (HD) provides an excellent metric for judging the performance of such methods in gene mutation carriers who are free of symptoms.
Using the gray matter segment of MRI scans, this study explored the usefulness of a multivariate support vector machine to automatically identify presymptomatic HD gene mutation carriers (PSCs) in the absence of any a priori information. A multicenter data set of 96 PSCs and 95 age- and sex-matched controls was studied. The PSC group was subclassified into three groups based on time from predicted clinical onset, an estimate that is a function of DNA mutation size and age.
Subjects with at least a 33% chance of developing unequivocal signs of HD in 5 years were correctly assigned to the PSC group 69% of the time. Accuracy improved to 83% when regions affected by the disease were selected a priori for analysis. Performance was at chance when the probability of developing symptoms in 5 years was less than 10%.
Presymptomatic Huntington disease gene mutation carriers close to estimated diagnostic onset were successfully separated from controls on the basis of single anatomic scans, without additional a priori information. Prior information is required to allow separation when degenerative changes are either subtle or variable. |
|---|---|
| AbstractList | Treatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic structural MRI classification methods for detecting subtle degenerative change. The availability of a definitive genetic test for Huntington disease (HD) provides an excellent metric for judging the performance of such methods in gene mutation carriers who are free of symptoms.
Using the gray matter segment of MRI scans, this study explored the usefulness of a multivariate support vector machine to automatically identify presymptomatic HD gene mutation carriers (PSCs) in the absence of any a priori information. A multicenter data set of 96 PSCs and 95 age- and sex-matched controls was studied. The PSC group was subclassified into three groups based on time from predicted clinical onset, an estimate that is a function of DNA mutation size and age.
Subjects with at least a 33% chance of developing unequivocal signs of HD in 5 years were correctly assigned to the PSC group 69% of the time. Accuracy improved to 83% when regions affected by the disease were selected a priori for analysis. Performance was at chance when the probability of developing symptoms in 5 years was less than 10%.
Presymptomatic Huntington disease gene mutation carriers close to estimated diagnostic onset were successfully separated from controls on the basis of single anatomic scans, without additional a priori information. Prior information is required to allow separation when degenerative changes are either subtle or variable. Treatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic structural MRI classification methods for detecting subtle degenerative change. The availability of a definitive genetic test for Huntington disease (HD) provides an excellent metric for judging the performance of such methods in gene mutation carriers who are free of symptoms.BACKGROUNDTreatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic structural MRI classification methods for detecting subtle degenerative change. The availability of a definitive genetic test for Huntington disease (HD) provides an excellent metric for judging the performance of such methods in gene mutation carriers who are free of symptoms.Using the gray matter segment of MRI scans, this study explored the usefulness of a multivariate support vector machine to automatically identify presymptomatic HD gene mutation carriers (PSCs) in the absence of any a priori information. A multicenter data set of 96 PSCs and 95 age- and sex-matched controls was studied. The PSC group was subclassified into three groups based on time from predicted clinical onset, an estimate that is a function of DNA mutation size and age.METHODSUsing the gray matter segment of MRI scans, this study explored the usefulness of a multivariate support vector machine to automatically identify presymptomatic HD gene mutation carriers (PSCs) in the absence of any a priori information. A multicenter data set of 96 PSCs and 95 age- and sex-matched controls was studied. The PSC group was subclassified into three groups based on time from predicted clinical onset, an estimate that is a function of DNA mutation size and age.Subjects with at least a 33% chance of developing unequivocal signs of HD in 5 years were correctly assigned to the PSC group 69% of the time. Accuracy improved to 83% when regions affected by the disease were selected a priori for analysis. Performance was at chance when the probability of developing symptoms in 5 years was less than 10%.RESULTSSubjects with at least a 33% chance of developing unequivocal signs of HD in 5 years were correctly assigned to the PSC group 69% of the time. Accuracy improved to 83% when regions affected by the disease were selected a priori for analysis. Performance was at chance when the probability of developing symptoms in 5 years was less than 10%.Presymptomatic Huntington disease gene mutation carriers close to estimated diagnostic onset were successfully separated from controls on the basis of single anatomic scans, without additional a priori information. Prior information is required to allow separation when degenerative changes are either subtle or variable.CONCLUSIONSPresymptomatic Huntington disease gene mutation carriers close to estimated diagnostic onset were successfully separated from controls on the basis of single anatomic scans, without additional a priori information. Prior information is required to allow separation when degenerative changes are either subtle or variable. |
| Author | Johnson, H Frackowiak, R S J Tan, G C Chu, C Draganski, B Tabrizi, S J Ashburner, J Paulsen, J S Klöppel, S Kienzle, W |
| Author_xml | – sequence: 1 givenname: S surname: Klöppel fullname: Klöppel, S email: stefan.kloeppel@uniklinik-freiburg.de organization: Department of Psychiatry and Psychotherapy, Freiburg Brain Imaging, University Clinic Freiburg, Germany. stefan.kloeppel@uniklinik-freiburg.de – sequence: 2 givenname: C surname: Chu fullname: Chu, C – sequence: 3 givenname: G C surname: Tan fullname: Tan, G C – sequence: 4 givenname: B surname: Draganski fullname: Draganski, B – sequence: 5 givenname: H surname: Johnson fullname: Johnson, H – sequence: 6 givenname: J S surname: Paulsen fullname: Paulsen, J S – sequence: 7 givenname: W surname: Kienzle fullname: Kienzle, W – sequence: 8 givenname: S J surname: Tabrizi fullname: Tabrizi, S J – sequence: 9 givenname: J surname: Ashburner fullname: Ashburner, J – sequence: 10 givenname: R S J surname: Frackowiak fullname: Frackowiak, R S J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19188573$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkFtLw0AQhRep2Iv-BQk--Ja49yS-laJWKPii6FvYy6SsJJuY3SD996ZYwXk5w8x3Dsws0cx3HhC6ITgjlNA7TLJv32R4KsZJLouMFpLLTMsztCCCylQy-jH718_RMoRPjKdBXl6gOSlJUYicLdD7eoxdq6IziYUIJrrOJ12d9AOYxnlnVJN4GIfOwh48DOoI3B_X4dD2f9bt6KPz-zh5rQugAlyi81o1Aa5OukJvjw-vm226e3l63qx3qeGMxVTg3NZSKlFrrrHBuSgU1pZrLXJhtDG1IQymoy1wprkRNeGWUV0KVdaMCbpCt7-5_dB9jRBi1bpgoGmUh24MlZRFQWXOJvD6BI66BVv1g2vVcKj-XkF_AEJ9Z9c |
| CitedBy_id | crossref_primary_10_1007_s10897_010_9294_0 crossref_primary_10_1016_j_neuroimage_2010_02_018 crossref_primary_10_1007_s12021_014_9238_1 crossref_primary_10_1007_s13311_021_01023_8 crossref_primary_10_1007_s00406_016_0707_4 crossref_primary_10_1016_j_clinph_2018_09_006 crossref_primary_10_1371_journal_pcbi_1002079 crossref_primary_10_3390_jcm13237009 crossref_primary_10_1016_S1474_4422_11_70070_9 crossref_primary_10_1093_cercor_bhv154 crossref_primary_10_1016_j_neubiorev_2012_01_004 crossref_primary_10_21300_18_1_2016_5 crossref_primary_10_1093_schbul_sbu078 crossref_primary_10_1007_s00415_012_6475_9 crossref_primary_10_1093_schbul_sbs095 crossref_primary_10_1016_j_nicl_2018_11_003 crossref_primary_10_1016_j_nbd_2012_10_001 crossref_primary_10_1016_j_mri_2015_04_006 crossref_primary_10_1097_WCO_0b013e328332ba0f crossref_primary_10_1016_j_neuroimage_2011_07_068 crossref_primary_10_1016_j_neuroimage_2011_11_066 crossref_primary_10_1147_JRD_2017_2648700 crossref_primary_10_1002_mds_25835 crossref_primary_10_1007_s11682_019_00138_z crossref_primary_10_1016_j_neuroimage_2014_04_057 crossref_primary_10_1111_j_1399_0004_2012_01900_x crossref_primary_10_1093_hmg_ddq063 crossref_primary_10_1016_j_nicl_2014_11_021 crossref_primary_10_3390_jpm12050704 crossref_primary_10_1016_j_jns_2011_09_035 crossref_primary_10_1093_brain_awq021 crossref_primary_10_1016_j_neuroscience_2009_01_045 crossref_primary_10_1002_hbm_25013 crossref_primary_10_1097_WCO_0b013e32833bc59c crossref_primary_10_1097_WCO_0b013e32834028c7 crossref_primary_10_1002_ajmg_b_31232 crossref_primary_10_1002_ana_25171 crossref_primary_10_1159_000339528 crossref_primary_10_1371_journal_pone_0069237 crossref_primary_10_1016_j_neuroimage_2016_02_079 crossref_primary_10_1186_s13195_021_00900_w crossref_primary_10_1016_j_bbadis_2009_04_001 crossref_primary_10_1016_j_nicl_2015_09_015 crossref_primary_10_1093_cercor_bhs378 crossref_primary_10_1016_j_neubiorev_2013_01_022 crossref_primary_10_1093_brain_aws084 crossref_primary_10_1371_journal_pone_0047714 crossref_primary_10_2217_fnl_09_78 crossref_primary_10_3390_diagnostics13233592 crossref_primary_10_1016_j_nicl_2018_05_008 crossref_primary_10_1016_j_pscychresns_2013_09_009 crossref_primary_10_1016_j_neuroimage_2010_10_023 crossref_primary_10_1002_hbm_21161 crossref_primary_10_1016_j_pnpbp_2019_109837 crossref_primary_10_1016_j_neuroimage_2015_06_008 crossref_primary_10_1016_j_gaitpost_2011_04_011 crossref_primary_10_3389_fnins_2016_00014 crossref_primary_10_1017_S1355617716001132 crossref_primary_10_1016_j_neuroimage_2011_12_070 crossref_primary_10_1038_s41598_018_34269_y crossref_primary_10_1016_j_neuroimage_2012_05_022 crossref_primary_10_1016_j_expneurol_2013_03_022 crossref_primary_10_1016_j_neuroimage_2011_11_002 crossref_primary_10_1016_j_neuroimage_2010_01_005 crossref_primary_10_1371_journal_pone_0154742 crossref_primary_10_5665_sleep_2638 crossref_primary_10_1007_s10309_012_0255_5 crossref_primary_10_1016_j_neuroimage_2010_04_273 |
| ContentType | Journal Article |
| CorporateAuthor | PREDICT-HD Investigators of the Huntington Study Group |
| CorporateAuthor_xml | – name: PREDICT-HD Investigators of the Huntington Study Group |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1212/01.wnl.0000341768.28646.b6 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1526-632X |
| ExternalDocumentID | 19188573 |
| Genre | Multicenter Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS040068 – fundername: Wellcome Trust grantid: 075696 2/04/2 – fundername: NCATS NIH HHS grantid: UL1 TR000442 – fundername: NINDS NIH HHS grantid: NS 40068 – fundername: NINDS NIH HHS grantid: R01 NS050568 |
| GroupedDBID | --- -~X .55 .XZ .Z2 01R 0R~ 123 1J1 29N 354 3PY 4Q1 4Q2 4Q3 53G 5RE 5VS 6PF 77Y AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAWTL AAXQO AAYEP AAYOK ABBLC ABIVO ABJNI ABOCM ABVCZ ACCJW ACDDN ACGFS ACIJW ACILI ACLDA ACOAL ACWRI ACXJB ADGGA ADNKB AE6 AEBDS AENEX AFDTB AFEXH AFFNX AFUWQ AGINI AHOMT AHQNM AHVBC AIJEX AJCLO AKCTQ AKULP AKWKN ALMA_UNASSIGNED_HOLDINGS AMJPA AMKUR AMNEI AOHHW AWKKM BOYCO BQLVK BYPQX C45 CGR CS3 CUY CVF DIWNM DU5 E.X EBS ECM EIF EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FW0 GQDEL HZ~ H~9 IKYAY IN~ JF7 KD2 KMI L-C L7B N9A NEJ NPM N~7 N~B O9- OAG OAH OBH ODMTH OHH OHYEH OJAPA OL1 OLB OLH OLU OLV OLW OLY OLZ OPX OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P2P RHI RLZ RXW SJN TEORI V2I VVN VXZ W3M WH7 WOQ WOW X7M XJT XOL XSW XXN XYM XYN YBU YCJ YFH ~9M 7X8 ABPXF ABXYN ABZZY ACZKN ADKSD ADSXY AFNMH AHQVU |
| ID | FETCH-LOGICAL-c433t-507df66a5fb4b0c0758a0bd4bb575cbccfc13e212de43b4c5f14d32b95a9f3352 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 81 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263188200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1526-632X |
| IngestDate | Thu Oct 02 06:13:22 EDT 2025 Wed Feb 19 01:44:11 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c433t-507df66a5fb4b0c0758a0bd4bb575cbccfc13e212de43b4c5f14d32b95a9f3352 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 19188573 |
| PQID | 66882673 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_66882673 pubmed_primary_19188573 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-02-03 |
| PublicationDateYYYYMMDD | 2009-02-03 |
| PublicationDate_xml | – month: 02 year: 2009 text: 2009-02-03 day: 03 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neurology |
| PublicationTitleAlternate | Neurology |
| PublicationYear | 2009 |
| References | 16769871 - Arch Neurol. 2006 Jun;63(6):883-90 18054253 - Neuroimage. 2008 Feb 1;39(3):1186-97 11476837 - Lancet. 2001 Jul 21;358(9277):201-5 18202106 - Brain. 2008 Mar;131(Pt 3):681-9 15249612 - Neurology. 2004 Jul 13;63(1):66-72 15025718 - Clin Genet. 2004 Apr;65(4):267-77 16199141 - Psychiatry Res. 2005 Oct 30;140(1):55-62 17827035 - Neuroimage. 2007 Oct 15;38(1):13-24 16875847 - Neuroimage. 2006 Oct 1;32(4):1562-75 16443497 - Neuroimaging Clin N Am. 2005 Nov;15(4):869-77, xi-xii 14980579 - Neuroimage. 2004 Feb;21(2):757-67 18056161 - Brain. 2008 Jan;131(Pt 1):196-204 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21 17045492 - Neuroimage. 2007 Jan 1;34(1):235-42 17174012 - Neurobiol Aging. 2008 Apr;29(4):514-23 18053747 - Neuroimage. 2008 Feb 15;39(4):1731-43 17166745 - Neuroimage. 2007 Feb 1;34(3):985-95 16157910 - Neurology. 2005 Sep 13;65(5):745-7 8684382 - Mov Disord. 1996 Mar;11(2):136-42 16755582 - Mov Disord. 2006 Sep;21(9):1317-25 9595616 - Stat Med. 1998 Apr 30;17(8):857-72 16685822 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):1-8 12135972 - Brain. 2002 Aug;125(Pt 8):1815-28 18096682 - J Neurol Neurosurg Psychiatry. 2008 Aug;79(8):874-80 17761438 - Neuroimage. 2007 Oct 15;38(1):95-113 9343609 - Neuroimage. 1995 Dec;2(4):244-52 14741641 - Neuroimage. 2004 Jan;21(1):46-57 |
| References_xml | – reference: 16875847 - Neuroimage. 2006 Oct 1;32(4):1562-75 – reference: 16443497 - Neuroimaging Clin N Am. 2005 Nov;15(4):869-77, xi-xii – reference: 18056161 - Brain. 2008 Jan;131(Pt 1):196-204 – reference: 12135972 - Brain. 2002 Aug;125(Pt 8):1815-28 – reference: 18202106 - Brain. 2008 Mar;131(Pt 3):681-9 – reference: 17045492 - Neuroimage. 2007 Jan 1;34(1):235-42 – reference: 16199141 - Psychiatry Res. 2005 Oct 30;140(1):55-62 – reference: 15025718 - Clin Genet. 2004 Apr;65(4):267-77 – reference: 18054253 - Neuroimage. 2008 Feb 1;39(3):1186-97 – reference: 14741641 - Neuroimage. 2004 Jan;21(1):46-57 – reference: 16157910 - Neurology. 2005 Sep 13;65(5):745-7 – reference: 17827035 - Neuroimage. 2007 Oct 15;38(1):13-24 – reference: 18096682 - J Neurol Neurosurg Psychiatry. 2008 Aug;79(8):874-80 – reference: 17761438 - Neuroimage. 2007 Oct 15;38(1):95-113 – reference: 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21 – reference: 16769871 - Arch Neurol. 2006 Jun;63(6):883-90 – reference: 17174012 - Neurobiol Aging. 2008 Apr;29(4):514-23 – reference: 11476837 - Lancet. 2001 Jul 21;358(9277):201-5 – reference: 17166745 - Neuroimage. 2007 Feb 1;34(3):985-95 – reference: 9595616 - Stat Med. 1998 Apr 30;17(8):857-72 – reference: 14980579 - Neuroimage. 2004 Feb;21(2):757-67 – reference: 16755582 - Mov Disord. 2006 Sep;21(9):1317-25 – reference: 15249612 - Neurology. 2004 Jul 13;63(1):66-72 – reference: 9343609 - Neuroimage. 1995 Dec;2(4):244-52 – reference: 8684382 - Mov Disord. 1996 Mar;11(2):136-42 – reference: 18053747 - Neuroimage. 2008 Feb 15;39(4):1731-43 – reference: 16685822 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):1-8 |
| SSID | ssj0015279 |
| Score | 2.2714803 |
| Snippet | Treatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 426 |
| SubjectTerms | Adult Age Distribution Age of Onset Aged Automatic Data Processing - methods Brain - pathology Brain - physiopathology Disease Progression Early Diagnosis Female Genetic Testing Heterozygote Humans Huntington Disease - diagnosis Huntington Disease - physiopathology Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Middle Aged Nerve Degeneration - diagnosis Nerve Degeneration - physiopathology Predictive Value of Tests Young Adult |
| Title | Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19188573 https://www.proquest.com/docview/66882673 |
| Volume | 72 |
| WOSCitedRecordID | wos000263188200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN5Ua4wX34_65OB1W2AfgDExjbHpwTY9-OiNsC9jooC21fjvnV0gnowHL5DAbgLDMHzLN_MNQudw2AqrxTgWQYappBFOEmGw4kwaATFTOqL94TYaj-PpNJm00GVTC2PTKpuY6AK1KqT9R97jHLAgj8hV-YZtzyjLrdYNNJZQmwCQsQld0fSHQ2ChU9qDPcechNNachRidc8Pup_5i9MuhCgOiLsbxpzyruC_A033wRls_O9SN9F6DTS9fuUZW6il8220Oqqp9B302F_MC6fX6ik9dwlZuVcYr4QQWFdLek7sUuknJ01tB1zY07Ov17KZOqw6TQCA9GqqZxfdD27uroe47rKAJSVkjgEQKsN5xoygwocnx-LMF4oKAUhOCimNDIgGqylNiaCSmYAqEoqEZYmxFVt7aDkvcn2APGUC2zUiUHD7NNMs1laeHxZYMC5iQnfQWWOwFLzYUhNZrovFLG1M1kH7lc3TshLbSGE9GccsIod_zj1CaxXVE2KfHKO2gfdXn6AV-TF_nr2fOueA7Xgy-gYoJsVb |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+of+preclinical+neurodegeneration%3A+presymptomatic+Huntington+disease&rft.jtitle=Neurology&rft.au=Kl%C3%B6ppel%2C+S&rft.au=Chu%2C+C&rft.au=Tan%2C+G+C&rft.au=Draganski%2C+B&rft.date=2009-02-03&rft.issn=1526-632X&rft.eissn=1526-632X&rft.volume=72&rft.issue=5&rft.spage=426&rft_id=info:doi/10.1212%2F01.wnl.0000341768.28646.b6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-632X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-632X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-632X&client=summon |