Crown-Level Structure and Fuel Load Characterization from Airborne and Terrestrial Laser Scanning in a Longleaf Pine (Pinus palustris Mill.) Forest Ecosystem

Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems frequently used for remote sensing forested ecosystems. The aim of this study was to compare crown metrics derived from TLS, ALS, and a combination of both for describing the crown structure and fuel attributes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 15; H. 4; S. 1002
Hauptverfasser: Rocha, Kleydson Diego, Silva, Carlos Alberto, Cosenza, Diogo N., Mohan, Midhun, Klauberg, Carine, Schlickmann, Monique Bohora, Xia, Jinyi, Leite, Rodrigo V., Almeida, Danilo Roberti Alves de, Atkins, Jeff W., Cardil, Adrian, Rowell, Eric, Parsons, Russ, Sánchez-López, Nuria, Prichard, Susan J., Hudak, Andrew T.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.02.2023
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems frequently used for remote sensing forested ecosystems. The aim of this study was to compare crown metrics derived from TLS, ALS, and a combination of both for describing the crown structure and fuel attributes of longleaf pine (Pinus palustris Mill.) dominated forest located at Eglin Air Force Base (AFB), Florida, USA. The study landscape was characterized by an ALS and TLS data collection along with field measurements within three large (1963 m2 each) plots in total, each one representing a distinct stand condition at Eglin AFB. Tree-level measurements included bole diameter at breast height (DBH), total height (HT), crown base height (CBH), and crown width (CW). In addition, the crown structure and fuel metrics foliage biomass (FB), stem branches biomass (SB), crown biomass (CB), and crown bulk density (CBD) were calculated using allometric equations. Canopy Height Models (CHM) were created from ALS and TLS point clouds separately and by combining them (ALS + TLS). Individual trees were extracted, and crown-level metrics were computed from the three lidar-derived datasets and used to train random forest (RF) models. The results of the individual tree detection showed successful estimation of tree count from all lidar-derived datasets, with marginal errors ranging from −4 to 3%. For all three lidar-derived datasets, the RF models accurately predicted all tree-level attributes. Overall, we found strong positive correlations between model predictions and observed values (R2 between 0.80 and 0.98), low to moderate errors (RMSE% between 4.56 and 50.99%), and low biases (between 0.03% and −2.86%). The highest R2 using ALS data was achieved predicting CBH (R2 = 0.98), while for TLS and ALS + TLS, the highest R2 was observed predicting HT, CW, and CBD (R2 = 0.94) and HT (R2 = 0.98), respectively. Relative RMSE was lowest for HT using three lidar datasets (ALS = 4.83%, TLS = 7.22%, and ALS + TLS = 4.56%). All models and datasets had similar accuracies in terms of bias (<2.0%), except for CB in ALS (−2.53%) and ALS + TLS (−2.86%), and SB in ALS + TLS data (−2.22%). These results demonstrate the usefulness of all three lidar-related methodologies and lidar modeling overall, along with lidar applicability in the estimation of crown structure and fuel attributes of longleaf pine forest ecosystems. Given that TLS measurements are less practical and more expensive, our comparison suggests that ALS measurements are still reasonable for many applications, and its usefulness is justified. This novel tree-level analysis and its respective results contribute to lidar-based planning of forest structure and fuel management.
AbstractList Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems frequently used for remote sensing forested ecosystems. The aim of this study was to compare crown metrics derived from TLS, ALS, and a combination of both for describing the crown structure and fuel attributes of longleaf pine (Pinus palustris Mill.) dominated forest located at Eglin Air Force Base (AFB), Florida, USA. The study landscape was characterized by an ALS and TLS data collection along with field measurements within three large (1963 m² each) plots in total, each one representing a distinct stand condition at Eglin AFB. Tree-level measurements included bole diameter at breast height (DBH), total height (HT), crown base height (CBH), and crown width (CW). In addition, the crown structure and fuel metrics foliage biomass (FB), stem branches biomass (SB), crown biomass (CB), and crown bulk density (CBD) were calculated using allometric equations. Canopy Height Models (CHM) were created from ALS and TLS point clouds separately and by combining them (ALS + TLS). Individual trees were extracted, and crown-level metrics were computed from the three lidar-derived datasets and used to train random forest (RF) models. The results of the individual tree detection showed successful estimation of tree count from all lidar-derived datasets, with marginal errors ranging from −4 to 3%. For all three lidar-derived datasets, the RF models accurately predicted all tree-level attributes. Overall, we found strong positive correlations between model predictions and observed values (R² between 0.80 and 0.98), low to moderate errors (RMSE% between 4.56 and 50.99%), and low biases (between 0.03% and −2.86%). The highest R² using ALS data was achieved predicting CBH (R² = 0.98), while for TLS and ALS + TLS, the highest R² was observed predicting HT, CW, and CBD (R² = 0.94) and HT (R² = 0.98), respectively. Relative RMSE was lowest for HT using three lidar datasets (ALS = 4.83%, TLS = 7.22%, and ALS + TLS = 4.56%). All models and datasets had similar accuracies in terms of bias (<2.0%), except for CB in ALS (−2.53%) and ALS + TLS (−2.86%), and SB in ALS + TLS data (−2.22%). These results demonstrate the usefulness of all three lidar-related methodologies and lidar modeling overall, along with lidar applicability in the estimation of crown structure and fuel attributes of longleaf pine forest ecosystems. Given that TLS measurements are less practical and more expensive, our comparison suggests that ALS measurements are still reasonable for many applications, and its usefulness is justified. This novel tree-level analysis and its respective results contribute to lidar-based planning of forest structure and fuel management.
Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems frequently used for remote sensing forested ecosystems. The aim of this study was to compare crown metrics derived from TLS, ALS, and a combination of both for describing the crown structure and fuel attributes of longleaf pine (Pinus palustris Mill.) dominated forest located at Eglin Air Force Base (AFB), Florida, USA. The study landscape was characterized by an ALS and TLS data collection along with field measurements within three large (1963 m[sup.2] each) plots in total, each one representing a distinct stand condition at Eglin AFB. Tree-level measurements included bole diameter at breast height (DBH), total height (HT), crown base height (CBH), and crown width (CW). In addition, the crown structure and fuel metrics foliage biomass (FB), stem branches biomass (SB), crown biomass (CB), and crown bulk density (CBD) were calculated using allometric equations. Canopy Height Models (CHM) were created from ALS and TLS point clouds separately and by combining them (ALS + TLS). Individual trees were extracted, and crown-level metrics were computed from the three lidar-derived datasets and used to train random forest (RF) models. The results of the individual tree detection showed successful estimation of tree count from all lidar-derived datasets, with marginal errors ranging from −4 to 3%. For all three lidar-derived datasets, the RF models accurately predicted all tree-level attributes. Overall, we found strong positive correlations between model predictions and observed values (R[sup.2] between 0.80 and 0.98), low to moderate errors (RMSE% between 4.56 and 50.99%), and low biases (between 0.03% and −2.86%). The highest R[sup.2] using ALS data was achieved predicting CBH (R[sup.2] = 0.98), while for TLS and ALS + TLS, the highest R[sup.2] was observed predicting HT, CW, and CBD (R[sup.2] = 0.94) and HT (R[sup.2] = 0.98), respectively. Relative RMSE was lowest for HT using three lidar datasets (ALS = 4.83%, TLS = 7.22%, and ALS + TLS = 4.56%). All models and datasets had similar accuracies in terms of bias (<2.0%), except for CB in ALS (−2.53%) and ALS + TLS (−2.86%), and SB in ALS + TLS data (−2.22%). These results demonstrate the usefulness of all three lidar-related methodologies and lidar modeling overall, along with lidar applicability in the estimation of crown structure and fuel attributes of longleaf pine forest ecosystems. Given that TLS measurements are less practical and more expensive, our comparison suggests that ALS measurements are still reasonable for many applications, and its usefulness is justified. This novel tree-level analysis and its respective results contribute to lidar-based planning of forest structure and fuel management.
Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems frequently used for remote sensing forested ecosystems. The aim of this study was to compare crown metrics derived from TLS, ALS, and a combination of both for describing the crown structure and fuel attributes of longleaf pine (Pinus palustris Mill.) dominated forest located at Eglin Air Force Base (AFB), Florida, USA. The study landscape was characterized by an ALS and TLS data collection along with field measurements within three large (1963 m2 each) plots in total, each one representing a distinct stand condition at Eglin AFB. Tree-level measurements included bole diameter at breast height (DBH), total height (HT), crown base height (CBH), and crown width (CW). In addition, the crown structure and fuel metrics foliage biomass (FB), stem branches biomass (SB), crown biomass (CB), and crown bulk density (CBD) were calculated using allometric equations. Canopy Height Models (CHM) were created from ALS and TLS point clouds separately and by combining them (ALS + TLS). Individual trees were extracted, and crown-level metrics were computed from the three lidar-derived datasets and used to train random forest (RF) models. The results of the individual tree detection showed successful estimation of tree count from all lidar-derived datasets, with marginal errors ranging from −4 to 3%. For all three lidar-derived datasets, the RF models accurately predicted all tree-level attributes. Overall, we found strong positive correlations between model predictions and observed values (R2 between 0.80 and 0.98), low to moderate errors (RMSE% between 4.56 and 50.99%), and low biases (between 0.03% and −2.86%). The highest R2 using ALS data was achieved predicting CBH (R2 = 0.98), while for TLS and ALS + TLS, the highest R2 was observed predicting HT, CW, and CBD (R2 = 0.94) and HT (R2 = 0.98), respectively. Relative RMSE was lowest for HT using three lidar datasets (ALS = 4.83%, TLS = 7.22%, and ALS + TLS = 4.56%). All models and datasets had similar accuracies in terms of bias (<2.0%), except for CB in ALS (−2.53%) and ALS + TLS (−2.86%), and SB in ALS + TLS data (−2.22%). These results demonstrate the usefulness of all three lidar-related methodologies and lidar modeling overall, along with lidar applicability in the estimation of crown structure and fuel attributes of longleaf pine forest ecosystems. Given that TLS measurements are less practical and more expensive, our comparison suggests that ALS measurements are still reasonable for many applications, and its usefulness is justified. This novel tree-level analysis and its respective results contribute to lidar-based planning of forest structure and fuel management.
Audience Academic
Author Klauberg, Carine
Schlickmann, Monique Bohora
Leite, Rodrigo V.
Atkins, Jeff W.
Xia, Jinyi
Prichard, Susan J.
Parsons, Russ
Mohan, Midhun
Hudak, Andrew T.
Rowell, Eric
Cosenza, Diogo N.
Cardil, Adrian
Almeida, Danilo Roberti Alves de
Rocha, Kleydson Diego
Sánchez-López, Nuria
Silva, Carlos Alberto
Author_xml – sequence: 1
  givenname: Kleydson Diego
  orcidid: 0000-0002-5950-8066
  surname: Rocha
  fullname: Rocha, Kleydson Diego
– sequence: 2
  givenname: Carlos Alberto
  orcidid: 0000-0002-7844-3560
  surname: Silva
  fullname: Silva, Carlos Alberto
– sequence: 3
  givenname: Diogo N.
  orcidid: 0000-0001-8495-8002
  surname: Cosenza
  fullname: Cosenza, Diogo N.
– sequence: 4
  givenname: Midhun
  orcidid: 0000-0003-1824-1841
  surname: Mohan
  fullname: Mohan, Midhun
– sequence: 5
  givenname: Carine
  orcidid: 0000-0002-6898-5593
  surname: Klauberg
  fullname: Klauberg, Carine
– sequence: 6
  givenname: Monique Bohora
  orcidid: 0000-0001-6912-4771
  surname: Schlickmann
  fullname: Schlickmann, Monique Bohora
– sequence: 7
  givenname: Jinyi
  surname: Xia
  fullname: Xia, Jinyi
– sequence: 8
  givenname: Rodrigo V.
  surname: Leite
  fullname: Leite, Rodrigo V.
– sequence: 9
  givenname: Danilo Roberti Alves de
  surname: Almeida
  fullname: Almeida, Danilo Roberti Alves de
– sequence: 10
  givenname: Jeff W.
  surname: Atkins
  fullname: Atkins, Jeff W.
– sequence: 11
  givenname: Adrian
  orcidid: 0000-0002-0185-3959
  surname: Cardil
  fullname: Cardil, Adrian
– sequence: 12
  givenname: Eric
  surname: Rowell
  fullname: Rowell, Eric
– sequence: 13
  givenname: Russ
  orcidid: 0000-0001-5091-8993
  surname: Parsons
  fullname: Parsons, Russ
– sequence: 14
  givenname: Nuria
  orcidid: 0000-0002-0455-3951
  surname: Sánchez-López
  fullname: Sánchez-López, Nuria
– sequence: 15
  givenname: Susan J.
  surname: Prichard
  fullname: Prichard, Susan J.
– sequence: 16
  givenname: Andrew T.
  orcidid: 0000-0001-7480-1458
  surname: Hudak
  fullname: Hudak, Andrew T.
BookMark eNptUltrFDEUHqSCde2LvyDgSxVmzSSZSx6XpVsLKwqtz8OZTLJmmU3Wkxml_pf-V892RKWYQC6H7_vO9WV2FmKwWfa64EspNX-PqSi5KjgXz7JzwWuRK6HF2T_vF9lFSntOS8pCc3WePawx_gj51n63A7sdcTLjhJZB6NlmItM2Qs_WXwHBjBb9Txh9DMxhPLCVxy5imMF3FtGmET0QB5JFdmsgBB92zAcGpBN2gwXHPntiXNI5JXaEYTpxEvvoh2H5lm3iSYRdmZju02gPr7LnDoZkL37fi-zL5upu_SHffrq-Wa-2uVFSjrmqKm646pxpXGmaHkptqrJSYGWtOX1NIXTlyq7odNNTrSqQtjFG99bpqu_kIruZdfsI-_aI_gB430bw7aMh4q4FHL0ZbNtpqqYUruOFUEWjoOFOilqZrhGypngW2eWsdcT4baJ02oNPxg4DBBun1EquuKp4XQiCvnkC3ccJA2XairrWVVMqXhFqOaN2QP59cHGkbtDu7cEbGgHnyb6qS16SZnmK4N1MMBhTQuv-ZFTw9jQp7d9JITB_AjZ-fOwyefHD_yi_AKbawbo
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3542128
crossref_primary_10_3390_rs15082082
crossref_primary_10_3390_f16030390
crossref_primary_10_3390_rs17030552
crossref_primary_10_1016_j_foreco_2024_122305
crossref_primary_10_1016_j_isprsjprs_2024_02_010
crossref_primary_10_1016_j_envsoft_2024_106214
crossref_primary_10_1109_JSTARS_2024_3355173
crossref_primary_10_3390_rs15133272
crossref_primary_10_3390_land14071460
crossref_primary_10_1080_10095020_2024_2429376
crossref_primary_10_1016_j_ecolmodel_2023_110369
crossref_primary_10_3390_fire6030108
crossref_primary_10_1186_s42408_025_00383_2
crossref_primary_10_1007_s40725_024_00223_7
crossref_primary_10_1016_j_rse_2024_114310
crossref_primary_10_3390_drones8120772
Cites_doi 10.1016/j.envsoft.2019.104616
10.5589/m08-055
10.1080/01621459.1951.10500769
10.1016/B978-044482537-7/50006-1
10.1016/j.ecolmodel.2019.108820
10.14358/PERS.76.3.277
10.1080/22797254.2018.1482733
10.1093/forsci/fxz085
10.1016/j.isprsjprs.2016.03.016
10.1016/j.foreco.2019.02.002
10.1016/j.isprsjprs.2018.06.021
10.1109/TGRS.2014.2315649
10.1016/j.isprsjprs.2018.11.020
10.3390/f8090340
10.1016/j.coesh.2021.100291
10.1674/0003-0031(1999)141[0085:IOFCSB]2.0.CO;2
10.1023/A:1009776020438
10.1016/j.isprsjprs.2022.07.021
10.3390/f11101054
10.1088/1755-1315/228/1/012018
10.1525/bio.2011.61.12.7
10.1071/WF19001
10.1016/j.jag.2020.102091
10.3390/f13040555
10.2737/SRS-GTR-166
10.1016/j.agrformet.2011.10.006
10.5589/m08-052
10.1016/j.foreco.2015.06.014
10.1139/x99-051
10.1111/2041-210X.13211
10.5558/tfc84807-6
10.1139/cjfr-2012-0347
10.3390/rs3112346
10.1016/j.envsoft.2016.03.003
10.1016/j.rse.2013.05.012
10.1071/WF15092
10.1007/s10980-009-9341-0
10.5849/wjaf.11-039
10.1016/j.rse.2009.11.002
10.1016/j.isprsjprs.2013.12.006
10.3390/f6051721
10.1007/s00468-010-0452-7
10.1016/j.rse.2020.112061
10.3390/f8070254
10.1080/02827581.2016.1220617
10.3390/fire2030038
10.1007/s11676-014-0427-4
10.5424/fs/2018272-11713
10.1111/2041-210X.13830
10.1016/j.isprsjprs.2016.01.006
10.3390/f8040111
10.1890/06-1015
10.1051/forest:2007006
10.1109/JSTARS.2018.2803110
10.1109/TGRS.2006.887002
10.31223/OSF.IO/H7ASU
10.3390/rs13224598
10.1109/TGRS.2017.2675963
10.5721/EuJRS20164911
10.1016/j.rse.2020.112102
10.1016/j.rse.2010.10.012
10.1016/j.ecolmodel.2010.10.023
10.1080/07038992.2016.1196582
10.1071/WF06002
10.3390/fire5050126
10.1016/j.rse.2021.112857
10.5589/m06-011
10.1007/s10342-010-0381-4
10.3390/f9120759
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15041002
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Collection (ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_b920732fb0124184a80f3274cb8237c4
A750512354
10_3390_rs15041002
GeographicLocations United States--US
Florida
GeographicLocations_xml – name: United States--US
– name: Florida
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c433t-4660c04bfc8f5c8da59c6564ae3790da5c1296f5b1b98d3396a3e8cc9def96db3
IEDL.DBID M7S
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000942283800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 19:01:04 EDT 2025
Sun Nov 09 13:30:48 EST 2025
Sun Nov 09 08:49:03 EST 2025
Tue Nov 04 18:15:53 EST 2025
Sat Nov 29 07:13:24 EST 2025
Tue Nov 18 22:16:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-4660c04bfc8f5c8da59c6564ae3790da5c1296f5b1b98d3396a3e8cc9def96db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5091-8993
0000-0003-1824-1841
0000-0002-6898-5593
0000-0001-6912-4771
0000-0001-7480-1458
0000-0001-8495-8002
0000-0002-7844-3560
0000-0002-0455-3951
0000-0002-5950-8066
0000-0002-0185-3959
OpenAccessLink https://www.proquest.com/docview/2779685406?pq-origsite=%requestingapplication%
PQID 2779685406
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_b920732fb0124184a80f3274cb8237c4
proquest_miscellaneous_3040460712
proquest_journals_2779685406
gale_infotracacademiconefile_A750512354
crossref_primary_10_3390_rs15041002
crossref_citationtrail_10_3390_rs15041002
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Laurin (ref_84) 2019; 82
Kwak (ref_27) 2010; 76
Mitchell (ref_43) 1999; 29
Roise (ref_4) 2016; 31
Wulder (ref_25) 2008; 84
Erdody (ref_71) 2010; 114
ref_12
ref_56
ref_11
Liang (ref_90) 2018; 144
ref_53
ref_52
Linn (ref_34) 2019; 125
Silva (ref_15) 2016; 89
ref_18
Sharma (ref_1) 1992; 29
ref_17
Trochta (ref_28) 2013; 43
ref_59
Saatchi (ref_66) 2007; 45
Jeronimo (ref_79) 2018; 116
Keenan (ref_2) 2015; 352
Wallace (ref_82) 2014; 52
Seidel (ref_31) 2012; 154–155
Jung (ref_16) 2011; 3
ref_61
ref_60
Mitsopoulos (ref_67) 2007; 64
ref_69
ref_21
ref_20
Silva (ref_22) 2019; 10
ref_63
Evans (ref_58) 2009; 24
Silva (ref_64) 2022; 13
Paris (ref_92) 2017; 55
Polewski (ref_85) 2018; 147
Hentz (ref_23) 2018; 27
Parsons (ref_33) 2011; 222
Giannetti (ref_91) 2018; 51
Stovall (ref_95) 2018; 11
Aurenhammer (ref_55) 2000; Volume 5
Liang (ref_88) 2016; 115
ref_70
Calders (ref_87) 2020; 251
Vauhkonen (ref_83) 2008; 34
Wu (ref_65) 2020; 89
Botequim (ref_73) 2019; 28
ref_76
ref_75
Bazezew (ref_89) 2018; 73
ref_74
Thompson (ref_5) 2011; 61
Chasmer (ref_30) 2006; 32
Massey (ref_62) 1951; 46
Gilliam (ref_80) 1999; 140
Falkowski (ref_78) 2008; 34
Silva (ref_14) 2014; 42
Mell (ref_37) 2007; 16
Hiers (ref_39) 2007; 17
Roussel (ref_51) 2022; 251
Pimont (ref_32) 2016; 80
Zhao (ref_49) 2016; 117
Rodriguez (ref_86) 2016; 49
Gezan (ref_7) 2014; 25
Cardil (ref_35) 2021; 23
Kennedy (ref_36) 2020; 67
Hilker (ref_26) 2010; 24
ref_47
Affleck (ref_68) 2012; 27
ref_46
ref_45
ref_44
Qi (ref_96) 2022; 192
Hudak (ref_93) 2020; 66
ref_42
ref_41
ref_40
Eysn (ref_54) 2015; 6
Almeida (ref_24) 2019; 438
Olsoy (ref_94) 2014; 88
ref_3
Clark (ref_10) 2018; 5
Klauberg (ref_57) 2019; 412
Ottmar (ref_38) 2016; 25
ref_48
ref_9
Hopkinson (ref_29) 2013; 136
Huo (ref_77) 2022; 270
Silva (ref_8) 2016; 42
Nieuwenhuis (ref_19) 2010; 129
Jacqmain (ref_81) 1999; 141
Skowronski (ref_72) 2011; 115
Mohan (ref_13) 2019; 228
ref_6
References_xml – volume: 125
  start-page: 104616
  year: 2019
  ident: ref_34
  article-title: QUIC-fire: A fast-running simulation tool for prescribed fire planning
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.104616
– volume: 34
  start-page: S338
  year: 2008
  ident: ref_78
  article-title: The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m08-055
– volume: 89
  start-page: 422
  year: 2016
  ident: ref_15
  article-title: A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data
  publication-title: For. Int. J. For. Res.
– volume: 46
  start-page: 68
  year: 1951
  ident: ref_62
  article-title: The Kolmogorov-Smirnov Test for Goodness of Fit
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1951.10500769
– volume: Volume 5
  start-page: 201
  year: 2000
  ident: ref_55
  article-title: Voronoi Diagrams
  publication-title: Handbook of Computational Geometry
  doi: 10.1016/B978-044482537-7/50006-1
– volume: 412
  start-page: 108820
  year: 2019
  ident: ref_57
  article-title: Characterizing fire effects on conifers at tree level from airborne laser scanning and high-resolution, multispectral satellite data
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2019.108820
– volume: 116
  start-page: 336
  year: 2018
  ident: ref_79
  article-title: Applying LiDAR Individual Tree Detection to Management of Structurally Diverse Forest Landscapes
  publication-title: J. For.
– volume: 76
  start-page: 277
  year: 2010
  ident: ref_27
  article-title: Evaluation for Damaged Degree of Vegetation by Forest Fire using Lidar and a Digital Aerial Photograph
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.76.3.277
– volume: 51
  start-page: 795
  year: 2018
  ident: ref_91
  article-title: Integrating terrestrial and airborne laser scanning for the assessment of single-tree attributes in Mediterranean forest stands
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2018.1482733
– volume: 66
  start-page: 428
  year: 2020
  ident: ref_93
  article-title: Towards Spatially Explicit Quantification of Pre- and Postfire Fuels and Fuel Consumption from Traditional and Point Cloud Measurements
  publication-title: For. Sci.
  doi: 10.1093/forsci/fxz085
– ident: ref_42
– volume: 67
  start-page: 30
  year: 2020
  ident: ref_36
  article-title: Model Predictions of Postwildfire Woody Fuel Succession and Fire Behavior Are Sensitive to Fuel Dynamics Parameters
  publication-title: For. Sci.
– volume: 5
  start-page: 160
  year: 2018
  ident: ref_10
  article-title: Evaluating Climate Change Planning for Longleaf Pine Ecosystems in the Southeast United States
  publication-title: J. Southeast. Assoc. Fish Wildl. Agencies
– volume: 117
  start-page: 79
  year: 2016
  ident: ref_49
  article-title: Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.016
– volume: 438
  start-page: 34
  year: 2019
  ident: ref_24
  article-title: The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2019.02.002
– volume: 144
  start-page: 137
  year: 2018
  ident: ref_90
  article-title: International benchmarking of terrestrial laser scanning approaches for forest inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.06.021
– volume: 52
  start-page: 7619
  year: 2014
  ident: ref_82
  article-title: Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2315649
– volume: 147
  start-page: 307
  year: 2018
  ident: ref_85
  article-title: Marker-free coregistration of UAV and backpack LiDAR point clouds in forested areas
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.020
– ident: ref_20
  doi: 10.3390/f8090340
– volume: 23
  start-page: 100291
  year: 2021
  ident: ref_35
  article-title: Fire behavior modeling for operational decision-making
  publication-title: Curr. Opin. Environ. Sci. Health
  doi: 10.1016/j.coesh.2021.100291
– ident: ref_56
– ident: ref_52
– volume: 141
  start-page: 85
  year: 1999
  ident: ref_81
  article-title: Influences of Frequent Cool-season Burning Across a Soil Moisture Gradient on Oak Community Structure in Longleaf Pine Ecosystems
  publication-title: Am. Midl. Nat.
  doi: 10.1674/0003-0031(1999)141[0085:IOFCSB]2.0.CO;2
– volume: 140
  start-page: 15
  year: 1999
  ident: ref_80
  article-title: Effects of long-term fire exclusion on tree species composition and stand structure in an old-growth Pinus palustris (Longleaf pine) forest
  publication-title: Plant Ecol.
  doi: 10.1023/A:1009776020438
– ident: ref_48
– volume: 192
  start-page: 49
  year: 2022
  ident: ref_96
  article-title: Comparing tree attributes derived from quantitative structure models based on drone and mobile laser scanning point clouds across varying canopy cover conditions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.07.021
– ident: ref_69
  doi: 10.3390/f11101054
– ident: ref_41
– volume: 228
  start-page: 012018
  year: 2019
  ident: ref_13
  article-title: What Makes a Location into a “Favorable Habitat” under Changing Climate and Environmental Conditions? A Pilot Study Focused on Exploring the Differences between Natural and Non-natural Habitats using Airborne LiDAR
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/228/1/012018
– volume: 61
  start-page: 972
  year: 2011
  ident: ref_5
  article-title: Forest Biodiversity and the Delivery of Ecosystem Goods and Services: Translating Science into Policy
  publication-title: Bioscience
  doi: 10.1525/bio.2011.61.12.7
– volume: 28
  start-page: 823
  year: 2019
  ident: ref_73
  article-title: Improving Silvicultural Practices for Mediterranean Forests through Fire Behaviour Modelling Using LiDAR-Derived Canopy Fuel Characteristics
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF19001
– volume: 89
  start-page: 102091
  year: 2020
  ident: ref_65
  article-title: Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns
  publication-title: Int. J. Appl. Earth Obs. Geoinformation
  doi: 10.1016/j.jag.2020.102091
– ident: ref_70
  doi: 10.3390/f13040555
– ident: ref_45
– ident: ref_9
  doi: 10.2737/SRS-GTR-166
– volume: 154–155
  start-page: 1
  year: 2012
  ident: ref_31
  article-title: Analyzing forest canopies with ground-based laser scanning: A comparison with hemispherical photography
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.10.006
– ident: ref_59
– volume: 34
  start-page: S441
  year: 2008
  ident: ref_83
  article-title: Effects of pulse density on predicting characteristics of individual trees of Scandinavian commercial species using alpha shape metrics based on airborne laser scanning data
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m08-052
– volume: 82
  start-page: 101899
  year: 2019
  ident: ref_84
  article-title: Tree Height in Tropical Forest as Measured by Different Ground, Proximal, and Remote Sensing Instruments, and Impacts on above Ground Biomass Estimates
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 352
  start-page: 9
  year: 2015
  ident: ref_2
  article-title: Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2015.06.014
– volume: 29
  start-page: 743
  year: 1999
  ident: ref_43
  article-title: Patterns and Controls of Ecosystem Function in Longleaf Pine-Wiregrass Savannas. I. Aboveground Net Primary Productivity
  publication-title: Can. J. For. Res.
  doi: 10.1139/x99-051
– volume: 10
  start-page: 1347
  year: 2019
  ident: ref_22
  article-title: F orest G ap R: An r Package for forest gap analysis from canopy height models
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13211
– ident: ref_53
– volume: 84
  start-page: 807
  year: 2008
  ident: ref_25
  article-title: The role of LiDAR in sustainable forest management
  publication-title: For. Chron.
  doi: 10.5558/tfc84807-6
– volume: 43
  start-page: 355
  year: 2013
  ident: ref_28
  article-title: Arrangement of terrestrial laser scanner positions for area-wide stem mapping of natural forests
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2012-0347
– ident: ref_3
– volume: 3
  start-page: 2346
  year: 2011
  ident: ref_16
  article-title: Estimating Crown Variables of Individual Trees Using Airborne and Terrestrial Laser Scanners
  publication-title: Remote Sens.
  doi: 10.3390/rs3112346
– volume: 80
  start-page: 225
  year: 2016
  ident: ref_32
  article-title: Modeling fuels and fire effects in 3D: Model description and applications
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2016.03.003
– ident: ref_47
– volume: 136
  start-page: 301
  year: 2013
  ident: ref_29
  article-title: Integrating terrestrial and airborne lidar to calibrate a 3D canopy model of effective leaf area index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.05.012
– volume: 25
  start-page: 10
  year: 2016
  ident: ref_38
  article-title: Pre-fire and post-fire surface fuel and cover measurements collected in the south-eastern United States for model evaluation and development—RxCADRE 2008, 2011 and 2012
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF15092
– volume: 24
  start-page: 673
  year: 2009
  ident: ref_58
  article-title: Gradient modeling of conifer species using random forests
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-009-9341-0
– ident: ref_11
– volume: 42
  start-page: 591
  year: 2014
  ident: ref_14
  article-title: Mapping aboveground carbon stocks using LiDAR data in Eucalyptus spp. plantations in the state of Sao Paulo, Brazil
  publication-title: Sci. For.
– volume: 27
  start-page: 165
  year: 2012
  ident: ref_68
  article-title: Conifer Crown Fuel Modeling: Current Limits and Potential for Improvement
  publication-title: West. J. Appl. For.
  doi: 10.5849/wjaf.11-039
– volume: 114
  start-page: 725
  year: 2010
  ident: ref_71
  article-title: Fusion of LiDAR and imagery for estimating forest canopy fuels
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.11.002
– volume: 88
  start-page: 166
  year: 2014
  ident: ref_94
  article-title: Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.12.006
– ident: ref_40
– volume: 6
  start-page: 1721
  year: 2015
  ident: ref_54
  article-title: A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space
  publication-title: Forests
  doi: 10.3390/f6051721
– volume: 24
  start-page: 819
  year: 2010
  ident: ref_26
  article-title: Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand
  publication-title: Trees
  doi: 10.1007/s00468-010-0452-7
– volume: 251
  start-page: 112061
  year: 2022
  ident: ref_51
  article-title: LidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112061
– ident: ref_61
  doi: 10.3390/f8070254
– ident: ref_63
– volume: 31
  start-page: 674
  year: 2016
  ident: ref_4
  article-title: Valuation and production possibilities on a working forest using multi-objective programming, Woodstock, timber NPV, and carbon storage and sequestration
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827581.2016.1220617
– ident: ref_18
– ident: ref_44
– volume: 29
  start-page: 31
  year: 1992
  ident: ref_1
  article-title: Managing the world’s forests
  publication-title: Financ. Dev.
– ident: ref_74
  doi: 10.3390/fire2030038
– volume: 25
  start-page: 43
  year: 2014
  ident: ref_7
  article-title: Estimating Pinus palustris tree diameter and stem volume from tree height, crown area and stand-level parameters
  publication-title: J. For. Res.
  doi: 10.1007/s11676-014-0427-4
– volume: 27
  start-page: e005
  year: 2018
  ident: ref_23
  article-title: Estimating forest uniformity in Eucalyptus spp. and Pinus taeda L. stands using field measurements and structure from motion point clouds generated from unmanned aerial vehicle (UAV) data collection
  publication-title: For. Syst.
  doi: 10.5424/fs/2018272-11713
– volume: 13
  start-page: 1164
  year: 2022
  ident: ref_64
  article-title: treetop: A Shiny-based application and R package for extracting forest information from LiDAR data for ecologists and conservationists
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13830
– volume: 115
  start-page: 63
  year: 2016
  ident: ref_88
  article-title: Terrestrial laser scanning in forest inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.006
– ident: ref_17
  doi: 10.3390/f8040111
– volume: 17
  start-page: 806
  year: 2007
  ident: ref_39
  article-title: Forest Floor Depth Mediates Understory Vigor in Xeric Pinus palustris Ecosystems
  publication-title: Ecol. Appl.
  doi: 10.1890/06-1015
– volume: 64
  start-page: 287
  year: 2007
  ident: ref_67
  article-title: Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) forests
  publication-title: Ann. For. Sci.
  doi: 10.1051/forest:2007006
– volume: 11
  start-page: 3527
  year: 2018
  ident: ref_95
  article-title: Improved Biomass Calibration and Validation With Terrestrial LiDAR: Implications for Future LiDAR and SAR Missions
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2803110
– volume: 45
  start-page: 1726
  year: 2007
  ident: ref_66
  article-title: Estimation of Forest Fuel Load From Radar Remote Sensing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.887002
– ident: ref_50
– ident: ref_6
  doi: 10.31223/OSF.IO/H7ASU
– ident: ref_46
– ident: ref_12
– ident: ref_75
  doi: 10.3390/rs13224598
– volume: 55
  start-page: 3679
  year: 2017
  ident: ref_92
  article-title: A Novel Automatic Method for the Fusion of ALS and TLS LiDAR Data for Robust Assessment of Tree Crown Structure
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2675963
– volume: 49
  start-page: 185
  year: 2016
  ident: ref_86
  article-title: Comparison of ALS based models for estimating aboveground biomass in three types of Mediterranean forest
  publication-title: Eur. J. Remote Sens.
  doi: 10.5721/EuJRS20164911
– volume: 251
  start-page: 112102
  year: 2020
  ident: ref_87
  article-title: Terrestrial laser scanning in forest ecology: Expanding the horizon
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112102
– volume: 115
  start-page: 703
  year: 2011
  ident: ref_72
  article-title: Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.10.012
– volume: 222
  start-page: 679
  year: 2011
  ident: ref_33
  article-title: Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2010.10.023
– volume: 42
  start-page: 554
  year: 2016
  ident: ref_8
  article-title: Imputation of Individual Longleaf Pine (Pinus palustrisMill.) Tree Attributes from Field and LiDAR Data
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2016.1196582
– volume: 16
  start-page: 1
  year: 2007
  ident: ref_37
  article-title: A physics-based approach to modelling grassland fires
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF06002
– ident: ref_76
  doi: 10.3390/fire5050126
– volume: 270
  start-page: 112857
  year: 2022
  ident: ref_77
  article-title: Towards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112857
– ident: ref_60
– volume: 73
  start-page: 638
  year: 2018
  ident: ref_89
  article-title: Integrating Airborne LiDAR and Terrestrial Laser Scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 32
  start-page: 116
  year: 2006
  ident: ref_30
  article-title: Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial lidar
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m06-011
– volume: 129
  start-page: 749
  year: 2010
  ident: ref_19
  article-title: Retrieval of forest structural parameters using LiDAR remote sensing
  publication-title: Eur. J. For. Res.
  doi: 10.1007/s10342-010-0381-4
– ident: ref_21
  doi: 10.3390/f9120759
SSID ssj0000331904
Score 2.4219801
Snippet Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems frequently used for remote sensing forested ecosystems. The aim of...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1002
SubjectTerms Accuracy
Airborne lasers
allometry
Analysis
Biomass
Branches
Bulk density
canopy height
Climate change
Coniferous forests
crown structure
Data collection
Datasets
Diameters
Ecosystems
Errors
Evergreen trees
Florida
Foliage
Forest & brush fires
Forest ecology
Forest ecosystems
Forest management
fuel loading
Fuels
fusion
Height
landscapes
Laser applications
Lasers
leaves
Lidar
machine learning
Optical radar
Pine
Pine trees
Pinus palustris
Prescribed fire
Remote sensing
Scanners
southern forest
Structural analysis
Terrestrial ecosystems
tree and stand measurements
tree trunk
trees
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlFNpLSb_otklRaaHNwY1iaWXpuF2y9LCEQFLITchjqV1YvMHeDeTH5L9mRvJuc2jppReD5cFImhlpxta8x9inEKKHSouiaYjCLERReO0lXYwJoYyNqBPZRHV2Zq6u7PkDqi86E5bhgfPEHde2RCssY40rqcJ0xBsRJaZSUBPMCiQkUFHZB8lUWoMlmpZQGY9UYl5_3PUY-qiT7feT7Q6UgPr_thynPWa2z54NwSGf5E49Z49C-4I9GXjKf92-ZHdTypqLOZ304RcJ-nXTBe7bhs822DRf-YZPdxjMucSSUwkJnyw6VHebhS9D4uQg4-Nz3Mc6fgGZvIgvWu7xPe3PZfCRn2MQyr_gddPza79MLB89pwLCr0ecaD37NT-FVcaDfsV-zE4vp9-LgWChACXlulBaCxCqjmDiGEzjxxYwvlM-yMoKvAWMBnQc1ye1NQ1OI2oxGADbhGh1U8vXbK9dteEN40J7ENaXIECroBR6M0QAZaOvohF6xI62k-5gQB8nEoylwyyEFOR-K2jEPu5krzPmxh-lvpHudhKEk50a0HrcYD3uX9YzYp9J8468GbsDfihKwEERLpabYEA1pnJilDzYGocb3Lx3ZVVZbTDoxfF92D1GB6W_Lr4Nq03vJC6TilD8yrf_o8fv2FNivM8Hxw_YHppaOGSP4Wa96Lv3yQvuASKrDPk
  priority: 102
  providerName: Directory of Open Access Journals
Title Crown-Level Structure and Fuel Load Characterization from Airborne and Terrestrial Laser Scanning in a Longleaf Pine (Pinus palustris Mill.) Forest Ecosystem
URI https://www.proquest.com/docview/2779685406
https://www.proquest.com/docview/3040460712
https://doaj.org/article/b920732fb0124184a80f3274cb8237c4
Volume 15
WOSCitedRecordID wos000942283800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9NAEF70TvBe_C1Wz7KioPcQb5tsNsmT9EqLQi3BnnD6EjaT3bNQkl7SCr74n_i_OrNJcy_qiy8LSYaQMLOzM7M738fYK2OshkgJryiIwsxY4WmlAxri2BjfFiJ3ZBPRYhFfXCRpV3BrumOVe5_oHHVRAdXIT_0oSlSM8YV6t7nyiDWKdlc7Co2b7JBQEkbu6N6yr7GIAA1MyBaVNMDs_rRuMACSo30VZb8OObj-vzllt9LM7v7vN95jd7oYk49bo7jPbpjyAbvd0Z1_-_GQ_ZpQ8u3N6cAQXzoE2V1tuC4LPtvhrXmlCz7poZzbTk1OnSh8vKrRaspW-Nw4ag-yYT7H5bDmS2g5kPiq5BrfU16ujbY8xViWv8Fx1_CNXjuykIZTH-LbE07soM2WT6FqYaUfsc-z6fnkvdfxNHggg2DrSaUECJlbiG0IcaHDBDBMlNoEUSLwEjCoUDbMR3kSF6gHNAYTAySFsYkq8uAxOyir0jxhXCgNItE-CFDSSIlOASyATKyObCzUgJ3stZZBB2JOXBrrDJMZ0nB2reEBe9nLblrojj9KnZHyewmC23Y3qvoy62Zvlic-ukLf5ricS8yJdSxsgPk85IT1A3LAXpPpZOQU8HNAd70N-FMEr5WNMS4LqSsZJY_3ppN13qLJru1mwF70j3Ge0-aNLk21a7IAva0kMED_6b9f8Ywd-RiItSfLj9kBGpF5zm7B9-2qqYfs8Gy6SD8NXe1h6KYLjT-nOKbhV3yefviYfvkN8JYjKA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFKlceCMCBRYBgh5Mt_bG9h4QCqFRo6ZRpAapnJb1eLdEiuxgJ6D-GP4Cv5EZP9ILcOuBiyXb45Uf387Mrne-j7GX1joDUSi8NCUJM-uEZ0IT0CaOrfVdKpJKbCKaTOKzMzXdYr_aWhhaVtn6xMpRpznQHPm-H0UqjDG_CN8vv3mkGkV_V1sJjRoWx_biBw7Zynejj_h9X_n-8HA2OPIaVQEPZBCsPBmGAoRMHMSuB3FqegowqZHGBpESuAsYAkPXSw4SFadBoPDWbQygUutUmCYBtnuNbUsCe4dtT0cn08-bWR0RIKSFrHlQ8VqxX5SYcsmDdt6mjXyVQMDfwkAV24a3_re3cpvdbLJo3q9hf4dt2ewu22kE3b9e3GM_BzS94I1pSRQ_rThy14XlJkv5cI2HxrlJ-WBDVl3XonKqteH9eYH9IquNZ7YSL6FeyscY8At-CrXKE59n3GA72fnCGsenmK3zN7hdl3xpFpUcSsmp0vLtHif903LFDyGvibPvs09X8nYesE6WZ_Yh4yI0IJTxQUAorZTo9sABSOVM5GIRdtleixINDU07qYUsNA7XCFH6ElFd9mJju6zJSf5o9YHAtrEgQvHqQF6c68Y_6UT56Ox9l2DCInHUb2LhAj-SkBCbEcgue01Q1eT28HbANNUb-FBEIKb7mHn2qO4aLXdbqOrGH5b6Eqdd9nxzGj0Z_Z4ymc3XpQ4wnkiiO_Qf_buJZ2znaHYy1uPR5Pgxu-Fj2lmvo99lHQSUfcKuw_fVvCyeNt2Tsy9Xjf3fHvV8zQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF2VgoAL34hAgUWAoAeTjb1erw8IhbQRVaMoUotU9WLW490SKbKDnYD6Y_gj_Dpm_JFegFsPXCzFmaxs5-3M7HrmPcZeWesMREp4WUYSZtYJzygT0EFra32XibQWm4imU31yEs-22K-uF4bKKjufWDvqrADaI-_7URQrjfmF6ru2LGK2N_6w_OaRghS9ae3kNBqIHNrzH7h8q94f7OF__dr3x_vHo09eqzDggQyClSeVEiBk6kC7EHRmwhgwwZHGBlEs8CNgOFQuTAdprLMgiPE2rAaIM-tilaUBjnuFXY1wjUnlhLPwdLO_IwIEt5ANIyr-UvTLCpMvOeh2cLoYWEsF_C0g1FFufPt_fj532K02t-bDZjLcZVs2v8dutDLvX8_vs58j2nTwJlQoxY9q5tx1abnJMz5e46lJYTI-2lBYNx2qnDpw-HBe4mzJG-NjW0ua0NzlE0wDSn4EjfYTn-fc4Dj52cIax2eYw_O3eFxXfGkWtUhKxan_8t0uJ1XUasX3oWjotB-wz5fydB6y7bzI7SPGhTIgYuODACWtlOgMwQHI2JnIaaF6bLdDTAIteTtpiCwSXMQRupILdPXYy43tsqEs-aPVRwLexoJoxusTRXmWtF4rSWMfQ4DvUkxj5EBLo4UL_EhCShxHIHvsDcE2IWeIlwOm7enAmyJasWSI-WhI3dhoudPBNmm9ZJVcYLbHXmy-Rv9GL61Mbot1lQQYZSSRIPqP_z3Ec3YdAZ9MDqaHT9hNH3PRprh-h20jnuxTdg2-r-ZV-ayep5x9uWzg_wa4WIQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crown-Level+Structure+and+Fuel+Load+Characterization+from+Airborne+and+Terrestrial+Laser+Scanning+in+a+Longleaf+Pine+%28Pinus+palustris+Mill.%29+Forest+Ecosystem&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Rocha%2C+Kleydson+Diego&rft.au=Silva%2C+Carlos+Alberto&rft.au=Cosenza%2C+Diogo+N&rft.au=Mohan%2C+Midhun&rft.date=2023-02-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=4&rft_id=info:doi/10.3390%2Frs15041002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon