Crown-Level Structure and Fuel Load Characterization from Airborne and Terrestrial Laser Scanning in a Longleaf Pine (Pinus palustris Mill.) Forest Ecosystem
Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems frequently used for remote sensing forested ecosystems. The aim of this study was to compare crown metrics derived from TLS, ALS, and a combination of both for describing the crown structure and fuel attributes...
Gespeichert in:
| Veröffentlicht in: | Remote sensing (Basel, Switzerland) Jg. 15; H. 4; S. 1002 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.02.2023
|
| Schlagworte: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems frequently used for remote sensing forested ecosystems. The aim of this study was to compare crown metrics derived from TLS, ALS, and a combination of both for describing the crown structure and fuel attributes of longleaf pine (Pinus palustris Mill.) dominated forest located at Eglin Air Force Base (AFB), Florida, USA. The study landscape was characterized by an ALS and TLS data collection along with field measurements within three large (1963 m2 each) plots in total, each one representing a distinct stand condition at Eglin AFB. Tree-level measurements included bole diameter at breast height (DBH), total height (HT), crown base height (CBH), and crown width (CW). In addition, the crown structure and fuel metrics foliage biomass (FB), stem branches biomass (SB), crown biomass (CB), and crown bulk density (CBD) were calculated using allometric equations. Canopy Height Models (CHM) were created from ALS and TLS point clouds separately and by combining them (ALS + TLS). Individual trees were extracted, and crown-level metrics were computed from the three lidar-derived datasets and used to train random forest (RF) models. The results of the individual tree detection showed successful estimation of tree count from all lidar-derived datasets, with marginal errors ranging from −4 to 3%. For all three lidar-derived datasets, the RF models accurately predicted all tree-level attributes. Overall, we found strong positive correlations between model predictions and observed values (R2 between 0.80 and 0.98), low to moderate errors (RMSE% between 4.56 and 50.99%), and low biases (between 0.03% and −2.86%). The highest R2 using ALS data was achieved predicting CBH (R2 = 0.98), while for TLS and ALS + TLS, the highest R2 was observed predicting HT, CW, and CBD (R2 = 0.94) and HT (R2 = 0.98), respectively. Relative RMSE was lowest for HT using three lidar datasets (ALS = 4.83%, TLS = 7.22%, and ALS + TLS = 4.56%). All models and datasets had similar accuracies in terms of bias (<2.0%), except for CB in ALS (−2.53%) and ALS + TLS (−2.86%), and SB in ALS + TLS data (−2.22%). These results demonstrate the usefulness of all three lidar-related methodologies and lidar modeling overall, along with lidar applicability in the estimation of crown structure and fuel attributes of longleaf pine forest ecosystems. Given that TLS measurements are less practical and more expensive, our comparison suggests that ALS measurements are still reasonable for many applications, and its usefulness is justified. This novel tree-level analysis and its respective results contribute to lidar-based planning of forest structure and fuel management. |
|---|---|
| AbstractList | Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems frequently used for remote sensing forested ecosystems. The aim of this study was to compare crown metrics derived from TLS, ALS, and a combination of both for describing the crown structure and fuel attributes of longleaf pine (Pinus palustris Mill.) dominated forest located at Eglin Air Force Base (AFB), Florida, USA. The study landscape was characterized by an ALS and TLS data collection along with field measurements within three large (1963 m² each) plots in total, each one representing a distinct stand condition at Eglin AFB. Tree-level measurements included bole diameter at breast height (DBH), total height (HT), crown base height (CBH), and crown width (CW). In addition, the crown structure and fuel metrics foliage biomass (FB), stem branches biomass (SB), crown biomass (CB), and crown bulk density (CBD) were calculated using allometric equations. Canopy Height Models (CHM) were created from ALS and TLS point clouds separately and by combining them (ALS + TLS). Individual trees were extracted, and crown-level metrics were computed from the three lidar-derived datasets and used to train random forest (RF) models. The results of the individual tree detection showed successful estimation of tree count from all lidar-derived datasets, with marginal errors ranging from −4 to 3%. For all three lidar-derived datasets, the RF models accurately predicted all tree-level attributes. Overall, we found strong positive correlations between model predictions and observed values (R² between 0.80 and 0.98), low to moderate errors (RMSE% between 4.56 and 50.99%), and low biases (between 0.03% and −2.86%). The highest R² using ALS data was achieved predicting CBH (R² = 0.98), while for TLS and ALS + TLS, the highest R² was observed predicting HT, CW, and CBD (R² = 0.94) and HT (R² = 0.98), respectively. Relative RMSE was lowest for HT using three lidar datasets (ALS = 4.83%, TLS = 7.22%, and ALS + TLS = 4.56%). All models and datasets had similar accuracies in terms of bias (<2.0%), except for CB in ALS (−2.53%) and ALS + TLS (−2.86%), and SB in ALS + TLS data (−2.22%). These results demonstrate the usefulness of all three lidar-related methodologies and lidar modeling overall, along with lidar applicability in the estimation of crown structure and fuel attributes of longleaf pine forest ecosystems. Given that TLS measurements are less practical and more expensive, our comparison suggests that ALS measurements are still reasonable for many applications, and its usefulness is justified. This novel tree-level analysis and its respective results contribute to lidar-based planning of forest structure and fuel management. Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems frequently used for remote sensing forested ecosystems. The aim of this study was to compare crown metrics derived from TLS, ALS, and a combination of both for describing the crown structure and fuel attributes of longleaf pine (Pinus palustris Mill.) dominated forest located at Eglin Air Force Base (AFB), Florida, USA. The study landscape was characterized by an ALS and TLS data collection along with field measurements within three large (1963 m[sup.2] each) plots in total, each one representing a distinct stand condition at Eglin AFB. Tree-level measurements included bole diameter at breast height (DBH), total height (HT), crown base height (CBH), and crown width (CW). In addition, the crown structure and fuel metrics foliage biomass (FB), stem branches biomass (SB), crown biomass (CB), and crown bulk density (CBD) were calculated using allometric equations. Canopy Height Models (CHM) were created from ALS and TLS point clouds separately and by combining them (ALS + TLS). Individual trees were extracted, and crown-level metrics were computed from the three lidar-derived datasets and used to train random forest (RF) models. The results of the individual tree detection showed successful estimation of tree count from all lidar-derived datasets, with marginal errors ranging from −4 to 3%. For all three lidar-derived datasets, the RF models accurately predicted all tree-level attributes. Overall, we found strong positive correlations between model predictions and observed values (R[sup.2] between 0.80 and 0.98), low to moderate errors (RMSE% between 4.56 and 50.99%), and low biases (between 0.03% and −2.86%). The highest R[sup.2] using ALS data was achieved predicting CBH (R[sup.2] = 0.98), while for TLS and ALS + TLS, the highest R[sup.2] was observed predicting HT, CW, and CBD (R[sup.2] = 0.94) and HT (R[sup.2] = 0.98), respectively. Relative RMSE was lowest for HT using three lidar datasets (ALS = 4.83%, TLS = 7.22%, and ALS + TLS = 4.56%). All models and datasets had similar accuracies in terms of bias (<2.0%), except for CB in ALS (−2.53%) and ALS + TLS (−2.86%), and SB in ALS + TLS data (−2.22%). These results demonstrate the usefulness of all three lidar-related methodologies and lidar modeling overall, along with lidar applicability in the estimation of crown structure and fuel attributes of longleaf pine forest ecosystems. Given that TLS measurements are less practical and more expensive, our comparison suggests that ALS measurements are still reasonable for many applications, and its usefulness is justified. This novel tree-level analysis and its respective results contribute to lidar-based planning of forest structure and fuel management. Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems frequently used for remote sensing forested ecosystems. The aim of this study was to compare crown metrics derived from TLS, ALS, and a combination of both for describing the crown structure and fuel attributes of longleaf pine (Pinus palustris Mill.) dominated forest located at Eglin Air Force Base (AFB), Florida, USA. The study landscape was characterized by an ALS and TLS data collection along with field measurements within three large (1963 m2 each) plots in total, each one representing a distinct stand condition at Eglin AFB. Tree-level measurements included bole diameter at breast height (DBH), total height (HT), crown base height (CBH), and crown width (CW). In addition, the crown structure and fuel metrics foliage biomass (FB), stem branches biomass (SB), crown biomass (CB), and crown bulk density (CBD) were calculated using allometric equations. Canopy Height Models (CHM) were created from ALS and TLS point clouds separately and by combining them (ALS + TLS). Individual trees were extracted, and crown-level metrics were computed from the three lidar-derived datasets and used to train random forest (RF) models. The results of the individual tree detection showed successful estimation of tree count from all lidar-derived datasets, with marginal errors ranging from −4 to 3%. For all three lidar-derived datasets, the RF models accurately predicted all tree-level attributes. Overall, we found strong positive correlations between model predictions and observed values (R2 between 0.80 and 0.98), low to moderate errors (RMSE% between 4.56 and 50.99%), and low biases (between 0.03% and −2.86%). The highest R2 using ALS data was achieved predicting CBH (R2 = 0.98), while for TLS and ALS + TLS, the highest R2 was observed predicting HT, CW, and CBD (R2 = 0.94) and HT (R2 = 0.98), respectively. Relative RMSE was lowest for HT using three lidar datasets (ALS = 4.83%, TLS = 7.22%, and ALS + TLS = 4.56%). All models and datasets had similar accuracies in terms of bias (<2.0%), except for CB in ALS (−2.53%) and ALS + TLS (−2.86%), and SB in ALS + TLS data (−2.22%). These results demonstrate the usefulness of all three lidar-related methodologies and lidar modeling overall, along with lidar applicability in the estimation of crown structure and fuel attributes of longleaf pine forest ecosystems. Given that TLS measurements are less practical and more expensive, our comparison suggests that ALS measurements are still reasonable for many applications, and its usefulness is justified. This novel tree-level analysis and its respective results contribute to lidar-based planning of forest structure and fuel management. |
| Audience | Academic |
| Author | Klauberg, Carine Schlickmann, Monique Bohora Leite, Rodrigo V. Atkins, Jeff W. Xia, Jinyi Prichard, Susan J. Parsons, Russ Mohan, Midhun Hudak, Andrew T. Rowell, Eric Cosenza, Diogo N. Cardil, Adrian Almeida, Danilo Roberti Alves de Rocha, Kleydson Diego Sánchez-López, Nuria Silva, Carlos Alberto |
| Author_xml | – sequence: 1 givenname: Kleydson Diego orcidid: 0000-0002-5950-8066 surname: Rocha fullname: Rocha, Kleydson Diego – sequence: 2 givenname: Carlos Alberto orcidid: 0000-0002-7844-3560 surname: Silva fullname: Silva, Carlos Alberto – sequence: 3 givenname: Diogo N. orcidid: 0000-0001-8495-8002 surname: Cosenza fullname: Cosenza, Diogo N. – sequence: 4 givenname: Midhun orcidid: 0000-0003-1824-1841 surname: Mohan fullname: Mohan, Midhun – sequence: 5 givenname: Carine orcidid: 0000-0002-6898-5593 surname: Klauberg fullname: Klauberg, Carine – sequence: 6 givenname: Monique Bohora orcidid: 0000-0001-6912-4771 surname: Schlickmann fullname: Schlickmann, Monique Bohora – sequence: 7 givenname: Jinyi surname: Xia fullname: Xia, Jinyi – sequence: 8 givenname: Rodrigo V. surname: Leite fullname: Leite, Rodrigo V. – sequence: 9 givenname: Danilo Roberti Alves de surname: Almeida fullname: Almeida, Danilo Roberti Alves de – sequence: 10 givenname: Jeff W. surname: Atkins fullname: Atkins, Jeff W. – sequence: 11 givenname: Adrian orcidid: 0000-0002-0185-3959 surname: Cardil fullname: Cardil, Adrian – sequence: 12 givenname: Eric surname: Rowell fullname: Rowell, Eric – sequence: 13 givenname: Russ orcidid: 0000-0001-5091-8993 surname: Parsons fullname: Parsons, Russ – sequence: 14 givenname: Nuria orcidid: 0000-0002-0455-3951 surname: Sánchez-López fullname: Sánchez-López, Nuria – sequence: 15 givenname: Susan J. surname: Prichard fullname: Prichard, Susan J. – sequence: 16 givenname: Andrew T. orcidid: 0000-0001-7480-1458 surname: Hudak fullname: Hudak, Andrew T. |
| BookMark | eNptUltrFDEUHqSCde2LvyDgSxVmzSSZSx6XpVsLKwqtz8OZTLJmmU3Wkxml_pf-V892RKWYQC6H7_vO9WV2FmKwWfa64EspNX-PqSi5KjgXz7JzwWuRK6HF2T_vF9lFSntOS8pCc3WePawx_gj51n63A7sdcTLjhJZB6NlmItM2Qs_WXwHBjBb9Txh9DMxhPLCVxy5imMF3FtGmET0QB5JFdmsgBB92zAcGpBN2gwXHPntiXNI5JXaEYTpxEvvoh2H5lm3iSYRdmZju02gPr7LnDoZkL37fi-zL5upu_SHffrq-Wa-2uVFSjrmqKm646pxpXGmaHkptqrJSYGWtOX1NIXTlyq7odNNTrSqQtjFG99bpqu_kIruZdfsI-_aI_gB430bw7aMh4q4FHL0ZbNtpqqYUruOFUEWjoOFOilqZrhGypngW2eWsdcT4baJ02oNPxg4DBBun1EquuKp4XQiCvnkC3ccJA2XairrWVVMqXhFqOaN2QP59cHGkbtDu7cEbGgHnyb6qS16SZnmK4N1MMBhTQuv-ZFTw9jQp7d9JITB_AjZ-fOwyefHD_yi_AKbawbo |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3542128 crossref_primary_10_3390_rs15082082 crossref_primary_10_3390_f16030390 crossref_primary_10_3390_rs17030552 crossref_primary_10_1016_j_foreco_2024_122305 crossref_primary_10_1016_j_isprsjprs_2024_02_010 crossref_primary_10_1016_j_envsoft_2024_106214 crossref_primary_10_1109_JSTARS_2024_3355173 crossref_primary_10_3390_rs15133272 crossref_primary_10_3390_land14071460 crossref_primary_10_1080_10095020_2024_2429376 crossref_primary_10_1016_j_ecolmodel_2023_110369 crossref_primary_10_3390_fire6030108 crossref_primary_10_1186_s42408_025_00383_2 crossref_primary_10_1007_s40725_024_00223_7 crossref_primary_10_1016_j_rse_2024_114310 crossref_primary_10_3390_drones8120772 |
| Cites_doi | 10.1016/j.envsoft.2019.104616 10.5589/m08-055 10.1080/01621459.1951.10500769 10.1016/B978-044482537-7/50006-1 10.1016/j.ecolmodel.2019.108820 10.14358/PERS.76.3.277 10.1080/22797254.2018.1482733 10.1093/forsci/fxz085 10.1016/j.isprsjprs.2016.03.016 10.1016/j.foreco.2019.02.002 10.1016/j.isprsjprs.2018.06.021 10.1109/TGRS.2014.2315649 10.1016/j.isprsjprs.2018.11.020 10.3390/f8090340 10.1016/j.coesh.2021.100291 10.1674/0003-0031(1999)141[0085:IOFCSB]2.0.CO;2 10.1023/A:1009776020438 10.1016/j.isprsjprs.2022.07.021 10.3390/f11101054 10.1088/1755-1315/228/1/012018 10.1525/bio.2011.61.12.7 10.1071/WF19001 10.1016/j.jag.2020.102091 10.3390/f13040555 10.2737/SRS-GTR-166 10.1016/j.agrformet.2011.10.006 10.5589/m08-052 10.1016/j.foreco.2015.06.014 10.1139/x99-051 10.1111/2041-210X.13211 10.5558/tfc84807-6 10.1139/cjfr-2012-0347 10.3390/rs3112346 10.1016/j.envsoft.2016.03.003 10.1016/j.rse.2013.05.012 10.1071/WF15092 10.1007/s10980-009-9341-0 10.5849/wjaf.11-039 10.1016/j.rse.2009.11.002 10.1016/j.isprsjprs.2013.12.006 10.3390/f6051721 10.1007/s00468-010-0452-7 10.1016/j.rse.2020.112061 10.3390/f8070254 10.1080/02827581.2016.1220617 10.3390/fire2030038 10.1007/s11676-014-0427-4 10.5424/fs/2018272-11713 10.1111/2041-210X.13830 10.1016/j.isprsjprs.2016.01.006 10.3390/f8040111 10.1890/06-1015 10.1051/forest:2007006 10.1109/JSTARS.2018.2803110 10.1109/TGRS.2006.887002 10.31223/OSF.IO/H7ASU 10.3390/rs13224598 10.1109/TGRS.2017.2675963 10.5721/EuJRS20164911 10.1016/j.rse.2020.112102 10.1016/j.rse.2010.10.012 10.1016/j.ecolmodel.2010.10.023 10.1080/07038992.2016.1196582 10.1071/WF06002 10.3390/fire5050126 10.1016/j.rse.2021.112857 10.5589/m06-011 10.1007/s10342-010-0381-4 10.3390/f9120759 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs15041002 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Collection (ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_b920732fb0124184a80f3274cb8237c4 A750512354 10_3390_rs15041002 |
| GeographicLocations | United States--US Florida |
| GeographicLocations_xml | – name: United States--US – name: Florida |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
| ID | FETCH-LOGICAL-c433t-4660c04bfc8f5c8da59c6564ae3790da5c1296f5b1b98d3396a3e8cc9def96db3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000942283800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 19:01:04 EDT 2025 Sun Nov 09 13:30:48 EST 2025 Sun Nov 09 08:49:03 EST 2025 Tue Nov 04 18:15:53 EST 2025 Sat Nov 29 07:13:24 EST 2025 Tue Nov 18 22:16:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c433t-4660c04bfc8f5c8da59c6564ae3790da5c1296f5b1b98d3396a3e8cc9def96db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5091-8993 0000-0003-1824-1841 0000-0002-6898-5593 0000-0001-6912-4771 0000-0001-7480-1458 0000-0001-8495-8002 0000-0002-7844-3560 0000-0002-0455-3951 0000-0002-5950-8066 0000-0002-0185-3959 |
| OpenAccessLink | https://www.proquest.com/docview/2779685406?pq-origsite=%requestingapplication% |
| PQID | 2779685406 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b920732fb0124184a80f3274cb8237c4 proquest_miscellaneous_3040460712 proquest_journals_2779685406 gale_infotracacademiconefile_A750512354 crossref_primary_10_3390_rs15041002 crossref_citationtrail_10_3390_rs15041002 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Laurin (ref_84) 2019; 82 Kwak (ref_27) 2010; 76 Mitchell (ref_43) 1999; 29 Roise (ref_4) 2016; 31 Wulder (ref_25) 2008; 84 Erdody (ref_71) 2010; 114 ref_12 ref_56 ref_11 Liang (ref_90) 2018; 144 ref_53 ref_52 Linn (ref_34) 2019; 125 Silva (ref_15) 2016; 89 ref_18 Sharma (ref_1) 1992; 29 ref_17 Trochta (ref_28) 2013; 43 ref_59 Saatchi (ref_66) 2007; 45 Jeronimo (ref_79) 2018; 116 Keenan (ref_2) 2015; 352 Wallace (ref_82) 2014; 52 Seidel (ref_31) 2012; 154–155 Jung (ref_16) 2011; 3 ref_61 ref_60 Mitsopoulos (ref_67) 2007; 64 ref_69 ref_21 ref_20 Silva (ref_22) 2019; 10 ref_63 Evans (ref_58) 2009; 24 Silva (ref_64) 2022; 13 Paris (ref_92) 2017; 55 Polewski (ref_85) 2018; 147 Hentz (ref_23) 2018; 27 Parsons (ref_33) 2011; 222 Giannetti (ref_91) 2018; 51 Stovall (ref_95) 2018; 11 Aurenhammer (ref_55) 2000; Volume 5 Liang (ref_88) 2016; 115 ref_70 Calders (ref_87) 2020; 251 Vauhkonen (ref_83) 2008; 34 Wu (ref_65) 2020; 89 Botequim (ref_73) 2019; 28 ref_76 ref_75 Bazezew (ref_89) 2018; 73 ref_74 Thompson (ref_5) 2011; 61 Chasmer (ref_30) 2006; 32 Massey (ref_62) 1951; 46 Gilliam (ref_80) 1999; 140 Falkowski (ref_78) 2008; 34 Silva (ref_14) 2014; 42 Mell (ref_37) 2007; 16 Hiers (ref_39) 2007; 17 Roussel (ref_51) 2022; 251 Pimont (ref_32) 2016; 80 Zhao (ref_49) 2016; 117 Rodriguez (ref_86) 2016; 49 Gezan (ref_7) 2014; 25 Cardil (ref_35) 2021; 23 Kennedy (ref_36) 2020; 67 Hilker (ref_26) 2010; 24 ref_47 Affleck (ref_68) 2012; 27 ref_46 ref_45 ref_44 Qi (ref_96) 2022; 192 Hudak (ref_93) 2020; 66 ref_42 ref_41 ref_40 Eysn (ref_54) 2015; 6 Almeida (ref_24) 2019; 438 Olsoy (ref_94) 2014; 88 ref_3 Clark (ref_10) 2018; 5 Klauberg (ref_57) 2019; 412 Ottmar (ref_38) 2016; 25 ref_48 ref_9 Hopkinson (ref_29) 2013; 136 Huo (ref_77) 2022; 270 Silva (ref_8) 2016; 42 Nieuwenhuis (ref_19) 2010; 129 Jacqmain (ref_81) 1999; 141 Skowronski (ref_72) 2011; 115 Mohan (ref_13) 2019; 228 ref_6 |
| References_xml | – volume: 125 start-page: 104616 year: 2019 ident: ref_34 article-title: QUIC-fire: A fast-running simulation tool for prescribed fire planning publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.104616 – volume: 34 start-page: S338 year: 2008 ident: ref_78 article-title: The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data publication-title: Can. J. Remote Sens. doi: 10.5589/m08-055 – volume: 89 start-page: 422 year: 2016 ident: ref_15 article-title: A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data publication-title: For. Int. J. For. Res. – volume: 46 start-page: 68 year: 1951 ident: ref_62 article-title: The Kolmogorov-Smirnov Test for Goodness of Fit publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1951.10500769 – volume: Volume 5 start-page: 201 year: 2000 ident: ref_55 article-title: Voronoi Diagrams publication-title: Handbook of Computational Geometry doi: 10.1016/B978-044482537-7/50006-1 – volume: 412 start-page: 108820 year: 2019 ident: ref_57 article-title: Characterizing fire effects on conifers at tree level from airborne laser scanning and high-resolution, multispectral satellite data publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2019.108820 – volume: 116 start-page: 336 year: 2018 ident: ref_79 article-title: Applying LiDAR Individual Tree Detection to Management of Structurally Diverse Forest Landscapes publication-title: J. For. – volume: 76 start-page: 277 year: 2010 ident: ref_27 article-title: Evaluation for Damaged Degree of Vegetation by Forest Fire using Lidar and a Digital Aerial Photograph publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.76.3.277 – volume: 51 start-page: 795 year: 2018 ident: ref_91 article-title: Integrating terrestrial and airborne laser scanning for the assessment of single-tree attributes in Mediterranean forest stands publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2018.1482733 – volume: 66 start-page: 428 year: 2020 ident: ref_93 article-title: Towards Spatially Explicit Quantification of Pre- and Postfire Fuels and Fuel Consumption from Traditional and Point Cloud Measurements publication-title: For. Sci. doi: 10.1093/forsci/fxz085 – ident: ref_42 – volume: 67 start-page: 30 year: 2020 ident: ref_36 article-title: Model Predictions of Postwildfire Woody Fuel Succession and Fire Behavior Are Sensitive to Fuel Dynamics Parameters publication-title: For. Sci. – volume: 5 start-page: 160 year: 2018 ident: ref_10 article-title: Evaluating Climate Change Planning for Longleaf Pine Ecosystems in the Southeast United States publication-title: J. Southeast. Assoc. Fish Wildl. Agencies – volume: 117 start-page: 79 year: 2016 ident: ref_49 article-title: Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.016 – volume: 438 start-page: 34 year: 2019 ident: ref_24 article-title: The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2019.02.002 – volume: 144 start-page: 137 year: 2018 ident: ref_90 article-title: International benchmarking of terrestrial laser scanning approaches for forest inventories publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.06.021 – volume: 52 start-page: 7619 year: 2014 ident: ref_82 article-title: Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2315649 – volume: 147 start-page: 307 year: 2018 ident: ref_85 article-title: Marker-free coregistration of UAV and backpack LiDAR point clouds in forested areas publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.020 – ident: ref_20 doi: 10.3390/f8090340 – volume: 23 start-page: 100291 year: 2021 ident: ref_35 article-title: Fire behavior modeling for operational decision-making publication-title: Curr. Opin. Environ. Sci. Health doi: 10.1016/j.coesh.2021.100291 – ident: ref_56 – ident: ref_52 – volume: 141 start-page: 85 year: 1999 ident: ref_81 article-title: Influences of Frequent Cool-season Burning Across a Soil Moisture Gradient on Oak Community Structure in Longleaf Pine Ecosystems publication-title: Am. Midl. Nat. doi: 10.1674/0003-0031(1999)141[0085:IOFCSB]2.0.CO;2 – volume: 140 start-page: 15 year: 1999 ident: ref_80 article-title: Effects of long-term fire exclusion on tree species composition and stand structure in an old-growth Pinus palustris (Longleaf pine) forest publication-title: Plant Ecol. doi: 10.1023/A:1009776020438 – ident: ref_48 – volume: 192 start-page: 49 year: 2022 ident: ref_96 article-title: Comparing tree attributes derived from quantitative structure models based on drone and mobile laser scanning point clouds across varying canopy cover conditions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.07.021 – ident: ref_69 doi: 10.3390/f11101054 – ident: ref_41 – volume: 228 start-page: 012018 year: 2019 ident: ref_13 article-title: What Makes a Location into a “Favorable Habitat” under Changing Climate and Environmental Conditions? A Pilot Study Focused on Exploring the Differences between Natural and Non-natural Habitats using Airborne LiDAR publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/228/1/012018 – volume: 61 start-page: 972 year: 2011 ident: ref_5 article-title: Forest Biodiversity and the Delivery of Ecosystem Goods and Services: Translating Science into Policy publication-title: Bioscience doi: 10.1525/bio.2011.61.12.7 – volume: 28 start-page: 823 year: 2019 ident: ref_73 article-title: Improving Silvicultural Practices for Mediterranean Forests through Fire Behaviour Modelling Using LiDAR-Derived Canopy Fuel Characteristics publication-title: Int. J. Wildland Fire doi: 10.1071/WF19001 – volume: 89 start-page: 102091 year: 2020 ident: ref_65 article-title: Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns publication-title: Int. J. Appl. Earth Obs. Geoinformation doi: 10.1016/j.jag.2020.102091 – ident: ref_70 doi: 10.3390/f13040555 – ident: ref_45 – ident: ref_9 doi: 10.2737/SRS-GTR-166 – volume: 154–155 start-page: 1 year: 2012 ident: ref_31 article-title: Analyzing forest canopies with ground-based laser scanning: A comparison with hemispherical photography publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.10.006 – ident: ref_59 – volume: 34 start-page: S441 year: 2008 ident: ref_83 article-title: Effects of pulse density on predicting characteristics of individual trees of Scandinavian commercial species using alpha shape metrics based on airborne laser scanning data publication-title: Can. J. Remote Sens. doi: 10.5589/m08-052 – volume: 82 start-page: 101899 year: 2019 ident: ref_84 article-title: Tree Height in Tropical Forest as Measured by Different Ground, Proximal, and Remote Sensing Instruments, and Impacts on above Ground Biomass Estimates publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 352 start-page: 9 year: 2015 ident: ref_2 article-title: Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2015.06.014 – volume: 29 start-page: 743 year: 1999 ident: ref_43 article-title: Patterns and Controls of Ecosystem Function in Longleaf Pine-Wiregrass Savannas. I. Aboveground Net Primary Productivity publication-title: Can. J. For. Res. doi: 10.1139/x99-051 – volume: 10 start-page: 1347 year: 2019 ident: ref_22 article-title: F orest G ap R: An r Package for forest gap analysis from canopy height models publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13211 – ident: ref_53 – volume: 84 start-page: 807 year: 2008 ident: ref_25 article-title: The role of LiDAR in sustainable forest management publication-title: For. Chron. doi: 10.5558/tfc84807-6 – volume: 43 start-page: 355 year: 2013 ident: ref_28 article-title: Arrangement of terrestrial laser scanner positions for area-wide stem mapping of natural forests publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2012-0347 – ident: ref_3 – volume: 3 start-page: 2346 year: 2011 ident: ref_16 article-title: Estimating Crown Variables of Individual Trees Using Airborne and Terrestrial Laser Scanners publication-title: Remote Sens. doi: 10.3390/rs3112346 – volume: 80 start-page: 225 year: 2016 ident: ref_32 article-title: Modeling fuels and fire effects in 3D: Model description and applications publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2016.03.003 – ident: ref_47 – volume: 136 start-page: 301 year: 2013 ident: ref_29 article-title: Integrating terrestrial and airborne lidar to calibrate a 3D canopy model of effective leaf area index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.05.012 – volume: 25 start-page: 10 year: 2016 ident: ref_38 article-title: Pre-fire and post-fire surface fuel and cover measurements collected in the south-eastern United States for model evaluation and development—RxCADRE 2008, 2011 and 2012 publication-title: Int. J. Wildland Fire doi: 10.1071/WF15092 – volume: 24 start-page: 673 year: 2009 ident: ref_58 article-title: Gradient modeling of conifer species using random forests publication-title: Landsc. Ecol. doi: 10.1007/s10980-009-9341-0 – ident: ref_11 – volume: 42 start-page: 591 year: 2014 ident: ref_14 article-title: Mapping aboveground carbon stocks using LiDAR data in Eucalyptus spp. plantations in the state of Sao Paulo, Brazil publication-title: Sci. For. – volume: 27 start-page: 165 year: 2012 ident: ref_68 article-title: Conifer Crown Fuel Modeling: Current Limits and Potential for Improvement publication-title: West. J. Appl. For. doi: 10.5849/wjaf.11-039 – volume: 114 start-page: 725 year: 2010 ident: ref_71 article-title: Fusion of LiDAR and imagery for estimating forest canopy fuels publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.11.002 – volume: 88 start-page: 166 year: 2014 ident: ref_94 article-title: Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.12.006 – ident: ref_40 – volume: 6 start-page: 1721 year: 2015 ident: ref_54 article-title: A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space publication-title: Forests doi: 10.3390/f6051721 – volume: 24 start-page: 819 year: 2010 ident: ref_26 article-title: Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand publication-title: Trees doi: 10.1007/s00468-010-0452-7 – volume: 251 start-page: 112061 year: 2022 ident: ref_51 article-title: LidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112061 – ident: ref_61 doi: 10.3390/f8070254 – ident: ref_63 – volume: 31 start-page: 674 year: 2016 ident: ref_4 article-title: Valuation and production possibilities on a working forest using multi-objective programming, Woodstock, timber NPV, and carbon storage and sequestration publication-title: Scand. J. For. Res. doi: 10.1080/02827581.2016.1220617 – ident: ref_18 – ident: ref_44 – volume: 29 start-page: 31 year: 1992 ident: ref_1 article-title: Managing the world’s forests publication-title: Financ. Dev. – ident: ref_74 doi: 10.3390/fire2030038 – volume: 25 start-page: 43 year: 2014 ident: ref_7 article-title: Estimating Pinus palustris tree diameter and stem volume from tree height, crown area and stand-level parameters publication-title: J. For. Res. doi: 10.1007/s11676-014-0427-4 – volume: 27 start-page: e005 year: 2018 ident: ref_23 article-title: Estimating forest uniformity in Eucalyptus spp. and Pinus taeda L. stands using field measurements and structure from motion point clouds generated from unmanned aerial vehicle (UAV) data collection publication-title: For. Syst. doi: 10.5424/fs/2018272-11713 – volume: 13 start-page: 1164 year: 2022 ident: ref_64 article-title: treetop: A Shiny-based application and R package for extracting forest information from LiDAR data for ecologists and conservationists publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13830 – volume: 115 start-page: 63 year: 2016 ident: ref_88 article-title: Terrestrial laser scanning in forest inventories publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.006 – ident: ref_17 doi: 10.3390/f8040111 – volume: 17 start-page: 806 year: 2007 ident: ref_39 article-title: Forest Floor Depth Mediates Understory Vigor in Xeric Pinus palustris Ecosystems publication-title: Ecol. Appl. doi: 10.1890/06-1015 – volume: 64 start-page: 287 year: 2007 ident: ref_67 article-title: Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) forests publication-title: Ann. For. Sci. doi: 10.1051/forest:2007006 – volume: 11 start-page: 3527 year: 2018 ident: ref_95 article-title: Improved Biomass Calibration and Validation With Terrestrial LiDAR: Implications for Future LiDAR and SAR Missions publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2803110 – volume: 45 start-page: 1726 year: 2007 ident: ref_66 article-title: Estimation of Forest Fuel Load From Radar Remote Sensing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.887002 – ident: ref_50 – ident: ref_6 doi: 10.31223/OSF.IO/H7ASU – ident: ref_46 – ident: ref_12 – ident: ref_75 doi: 10.3390/rs13224598 – volume: 55 start-page: 3679 year: 2017 ident: ref_92 article-title: A Novel Automatic Method for the Fusion of ALS and TLS LiDAR Data for Robust Assessment of Tree Crown Structure publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2675963 – volume: 49 start-page: 185 year: 2016 ident: ref_86 article-title: Comparison of ALS based models for estimating aboveground biomass in three types of Mediterranean forest publication-title: Eur. J. Remote Sens. doi: 10.5721/EuJRS20164911 – volume: 251 start-page: 112102 year: 2020 ident: ref_87 article-title: Terrestrial laser scanning in forest ecology: Expanding the horizon publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112102 – volume: 115 start-page: 703 year: 2011 ident: ref_72 article-title: Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.10.012 – volume: 222 start-page: 679 year: 2011 ident: ref_33 article-title: Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2010.10.023 – volume: 42 start-page: 554 year: 2016 ident: ref_8 article-title: Imputation of Individual Longleaf Pine (Pinus palustrisMill.) Tree Attributes from Field and LiDAR Data publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2016.1196582 – volume: 16 start-page: 1 year: 2007 ident: ref_37 article-title: A physics-based approach to modelling grassland fires publication-title: Int. J. Wildland Fire doi: 10.1071/WF06002 – ident: ref_76 doi: 10.3390/fire5050126 – volume: 270 start-page: 112857 year: 2022 ident: ref_77 article-title: Towards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112857 – ident: ref_60 – volume: 73 start-page: 638 year: 2018 ident: ref_89 article-title: Integrating Airborne LiDAR and Terrestrial Laser Scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 32 start-page: 116 year: 2006 ident: ref_30 article-title: Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial lidar publication-title: Can. J. Remote Sens. doi: 10.5589/m06-011 – volume: 129 start-page: 749 year: 2010 ident: ref_19 article-title: Retrieval of forest structural parameters using LiDAR remote sensing publication-title: Eur. J. For. Res. doi: 10.1007/s10342-010-0381-4 – ident: ref_21 doi: 10.3390/f9120759 |
| SSID | ssj0000331904 |
| Score | 2.4219801 |
| Snippet | Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems frequently used for remote sensing forested ecosystems. The aim of... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1002 |
| SubjectTerms | Accuracy Airborne lasers allometry Analysis Biomass Branches Bulk density canopy height Climate change Coniferous forests crown structure Data collection Datasets Diameters Ecosystems Errors Evergreen trees Florida Foliage Forest & brush fires Forest ecology Forest ecosystems Forest management fuel loading Fuels fusion Height landscapes Laser applications Lasers leaves Lidar machine learning Optical radar Pine Pine trees Pinus palustris Prescribed fire Remote sensing Scanners southern forest Structural analysis Terrestrial ecosystems tree and stand measurements tree trunk trees |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlFNpLSb_otklRaaHNwY1iaWXpuF2y9LCEQFLITchjqV1YvMHeDeTH5L9mRvJuc2jppReD5cFImhlpxta8x9inEKKHSouiaYjCLERReO0lXYwJoYyNqBPZRHV2Zq6u7PkDqi86E5bhgfPEHde2RCssY40rqcJ0xBsRJaZSUBPMCiQkUFHZB8lUWoMlmpZQGY9UYl5_3PUY-qiT7feT7Q6UgPr_thynPWa2z54NwSGf5E49Z49C-4I9GXjKf92-ZHdTypqLOZ304RcJ-nXTBe7bhs822DRf-YZPdxjMucSSUwkJnyw6VHebhS9D4uQg4-Nz3Mc6fgGZvIgvWu7xPe3PZfCRn2MQyr_gddPza79MLB89pwLCr0ecaD37NT-FVcaDfsV-zE4vp9-LgWChACXlulBaCxCqjmDiGEzjxxYwvlM-yMoKvAWMBnQc1ye1NQ1OI2oxGADbhGh1U8vXbK9dteEN40J7ENaXIECroBR6M0QAZaOvohF6xI62k-5gQB8nEoylwyyEFOR-K2jEPu5krzPmxh-lvpHudhKEk50a0HrcYD3uX9YzYp9J8468GbsDfihKwEERLpabYEA1pnJilDzYGocb3Lx3ZVVZbTDoxfF92D1GB6W_Lr4Nq03vJC6TilD8yrf_o8fv2FNivM8Hxw_YHppaOGSP4Wa96Lv3yQvuASKrDPk priority: 102 providerName: Directory of Open Access Journals |
| Title | Crown-Level Structure and Fuel Load Characterization from Airborne and Terrestrial Laser Scanning in a Longleaf Pine (Pinus palustris Mill.) Forest Ecosystem |
| URI | https://www.proquest.com/docview/2779685406 https://www.proquest.com/docview/3040460712 https://doaj.org/article/b920732fb0124184a80f3274cb8237c4 |
| Volume | 15 |
| WOSCitedRecordID | wos000942283800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9NAEF70TvBe_C1Wz7KioPcQb5tsNsmT9EqLQi3BnnD6EjaT3bNQkl7SCr74n_i_OrNJcy_qiy8LSYaQMLOzM7M738fYK2OshkgJryiIwsxY4WmlAxri2BjfFiJ3ZBPRYhFfXCRpV3BrumOVe5_oHHVRAdXIT_0oSlSM8YV6t7nyiDWKdlc7Co2b7JBQEkbu6N6yr7GIAA1MyBaVNMDs_rRuMACSo30VZb8OObj-vzllt9LM7v7vN95jd7oYk49bo7jPbpjyAbvd0Z1_-_GQ_ZpQ8u3N6cAQXzoE2V1tuC4LPtvhrXmlCz7poZzbTk1OnSh8vKrRaspW-Nw4ag-yYT7H5bDmS2g5kPiq5BrfU16ujbY8xViWv8Fx1_CNXjuykIZTH-LbE07soM2WT6FqYaUfsc-z6fnkvdfxNHggg2DrSaUECJlbiG0IcaHDBDBMlNoEUSLwEjCoUDbMR3kSF6gHNAYTAySFsYkq8uAxOyir0jxhXCgNItE-CFDSSIlOASyATKyObCzUgJ3stZZBB2JOXBrrDJMZ0nB2reEBe9nLblrojj9KnZHyewmC23Y3qvoy62Zvlic-ukLf5ricS8yJdSxsgPk85IT1A3LAXpPpZOQU8HNAd70N-FMEr5WNMS4LqSsZJY_3ppN13qLJru1mwF70j3Ge0-aNLk21a7IAva0kMED_6b9f8Ywd-RiItSfLj9kBGpF5zm7B9-2qqYfs8Gy6SD8NXe1h6KYLjT-nOKbhV3yefviYfvkN8JYjKA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFKlceCMCBRYBgh5Mt_bG9h4QCqFRo6ZRpAapnJb1eLdEiuxgJ6D-GP4Cv5EZP9ILcOuBiyXb45Uf387Mrne-j7GX1joDUSi8NCUJM-uEZ0IT0CaOrfVdKpJKbCKaTOKzMzXdYr_aWhhaVtn6xMpRpznQHPm-H0UqjDG_CN8vv3mkGkV_V1sJjRoWx_biBw7Zynejj_h9X_n-8HA2OPIaVQEPZBCsPBmGAoRMHMSuB3FqegowqZHGBpESuAsYAkPXSw4SFadBoPDWbQygUutUmCYBtnuNbUsCe4dtT0cn08-bWR0RIKSFrHlQ8VqxX5SYcsmDdt6mjXyVQMDfwkAV24a3_re3cpvdbLJo3q9hf4dt2ewu22kE3b9e3GM_BzS94I1pSRQ_rThy14XlJkv5cI2HxrlJ-WBDVl3XonKqteH9eYH9IquNZ7YSL6FeyscY8At-CrXKE59n3GA72fnCGsenmK3zN7hdl3xpFpUcSsmp0vLtHif903LFDyGvibPvs09X8nYesE6WZ_Yh4yI0IJTxQUAorZTo9sABSOVM5GIRdtleixINDU07qYUsNA7XCFH6ElFd9mJju6zJSf5o9YHAtrEgQvHqQF6c68Y_6UT56Ox9l2DCInHUb2LhAj-SkBCbEcgue01Q1eT28HbANNUb-FBEIKb7mHn2qO4aLXdbqOrGH5b6Eqdd9nxzGj0Z_Z4ymc3XpQ4wnkiiO_Qf_buJZ2znaHYy1uPR5Pgxu-Fj2lmvo99lHQSUfcKuw_fVvCyeNt2Tsy9Xjf3fHvV8zQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF2VgoAL34hAgUWAoAeTjb1erw8IhbQRVaMoUotU9WLW490SKbKDnYD6Y_gj_Dpm_JFegFsPXCzFmaxs5-3M7HrmPcZeWesMREp4WUYSZtYJzygT0EFra32XibQWm4imU31yEs-22K-uF4bKKjufWDvqrADaI-_7URQrjfmF6ru2LGK2N_6w_OaRghS9ae3kNBqIHNrzH7h8q94f7OF__dr3x_vHo09eqzDggQyClSeVEiBk6kC7EHRmwhgwwZHGBlEs8CNgOFQuTAdprLMgiPE2rAaIM-tilaUBjnuFXY1wjUnlhLPwdLO_IwIEt5ANIyr-UvTLCpMvOeh2cLoYWEsF_C0g1FFufPt_fj532K02t-bDZjLcZVs2v8dutDLvX8_vs58j2nTwJlQoxY9q5tx1abnJMz5e46lJYTI-2lBYNx2qnDpw-HBe4mzJG-NjW0ua0NzlE0wDSn4EjfYTn-fc4Dj52cIax2eYw_O3eFxXfGkWtUhKxan_8t0uJ1XUasX3oWjotB-wz5fydB6y7bzI7SPGhTIgYuODACWtlOgMwQHI2JnIaaF6bLdDTAIteTtpiCwSXMQRupILdPXYy43tsqEs-aPVRwLexoJoxusTRXmWtF4rSWMfQ4DvUkxj5EBLo4UL_EhCShxHIHvsDcE2IWeIlwOm7enAmyJasWSI-WhI3dhoudPBNmm9ZJVcYLbHXmy-Rv9GL61Mbot1lQQYZSSRIPqP_z3Ec3YdAZ9MDqaHT9hNH3PRprh-h20jnuxTdg2-r-ZV-ayep5x9uWzg_wa4WIQw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crown-Level+Structure+and+Fuel+Load+Characterization+from+Airborne+and+Terrestrial+Laser+Scanning+in+a+Longleaf+Pine+%28Pinus+palustris+Mill.%29+Forest+Ecosystem&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Rocha%2C+Kleydson+Diego&rft.au=Silva%2C+Carlos+Alberto&rft.au=Cosenza%2C+Diogo+N&rft.au=Mohan%2C+Midhun&rft.date=2023-02-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=4&rft_id=info:doi/10.3390%2Frs15041002&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |