Crop-Planting Area Prediction from Multi-Source Gaofen Satellite Images Using a Novel Deep Learning Model: A Case Study of Yangling District

Neural network models play an important role in crop extraction based on remote sensing data. However, when dealing with high-dimensional remote sensing data, these models are susceptible to performance degradation. In order to address the challenges associated with multi-source Gaofen satellite dat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 15; číslo 15; s. 3792
Hlavní autoři: Kuang, Xiaofei, Guo, Jiao, Bai, Jingyuan, Geng, Hongsuo, Wang, Hui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.08.2023
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Neural network models play an important role in crop extraction based on remote sensing data. However, when dealing with high-dimensional remote sensing data, these models are susceptible to performance degradation. In order to address the challenges associated with multi-source Gaofen satellite data, a novel method is proposed for dimension reduction and crop classification. This method combines the benefits of the stacked autoencoder network for data dimensionality reduction, and the convolutional neural network for classification. By leveraging the advantages of multi-dimensional remote sensing information, and mitigating the impact of dimensionality on the classification accuracy, this method aims to improve the effectiveness of crop classification. The proposed method was applied to the extraction of crop-planting areas in the Yangling Agricultural Demonstration Zone, using multi-temporal spectral data collected from the Gaofen satellites. The results demonstrate that the fusion network, which extracts low-dimensional characteristics, offers advantages in classification accuracy. At the same time, the proposed model is compared with methods such as the decision tree (DT), random forest (RF), support vector machine (SVM), hyperspectral image classification based on a convolutional neural network (HICCNN), and a characteristic selection classification method based on a convolutional neural network (CSCNN). The overall accuracy of the proposed method can reach 98.57%, which is 7.95%, 4.69%, 5.68%, 1.21%, and 1.10% higher than the above methods, respectively. The effectiveness of the proposed model was verified through experiments. Additionally, the model demonstrates a strong robustness when classifying based on new data. When extracting the crop area of the entire Yangling District, the errors for wheat and corn are only 9.6% and 6.3%, respectively, and the extraction results accurately reflect the actual planting situation of crops.
AbstractList Neural network models play an important role in crop extraction based on remote sensing data. However, when dealing with high-dimensional remote sensing data, these models are susceptible to performance degradation. In order to address the challenges associated with multi-source Gaofen satellite data, a novel method is proposed for dimension reduction and crop classification. This method combines the benefits of the stacked autoencoder network for data dimensionality reduction, and the convolutional neural network for classification. By leveraging the advantages of multi-dimensional remote sensing information, and mitigating the impact of dimensionality on the classification accuracy, this method aims to improve the effectiveness of crop classification. The proposed method was applied to the extraction of crop-planting areas in the Yangling Agricultural Demonstration Zone, using multi-temporal spectral data collected from the Gaofen satellites. The results demonstrate that the fusion network, which extracts low-dimensional characteristics, offers advantages in classification accuracy. At the same time, the proposed model is compared with methods such as the decision tree (DT), random forest (RF), support vector machine (SVM), hyperspectral image classification based on a convolutional neural network (HICCNN), and a characteristic selection classification method based on a convolutional neural network (CSCNN). The overall accuracy of the proposed method can reach 98.57%, which is 7.95%, 4.69%, 5.68%, 1.21%, and 1.10% higher than the above methods, respectively. The effectiveness of the proposed model was verified through experiments. Additionally, the model demonstrates a strong robustness when classifying based on new data. When extracting the crop area of the entire Yangling District, the errors for wheat and corn are only 9.6% and 6.3%, respectively, and the extraction results accurately reflect the actual planting situation of crops.
Audience Academic
Author Guo, Jiao
Geng, Hongsuo
Wang, Hui
Kuang, Xiaofei
Bai, Jingyuan
Author_xml – sequence: 1
  givenname: Xiaofei
  surname: Kuang
  fullname: Kuang, Xiaofei
– sequence: 2
  givenname: Jiao
  surname: Guo
  fullname: Guo, Jiao
– sequence: 3
  givenname: Jingyuan
  surname: Bai
  fullname: Bai, Jingyuan
– sequence: 4
  givenname: Hongsuo
  surname: Geng
  fullname: Geng, Hongsuo
– sequence: 5
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
BookMark eNptks1uEzEQx1eoSJTSC09giQtC2uL1xzrmFqVQIqVQKfTAaTVrjyNHGzvYDlLfgYfGIQhQhX2wPf79ZzQfz5uzEAM2zcuOXnGu6duUO9lJrjR70pwzqlgrmGZn_9yfNZc5b2ldnHeaivPmxyLFfXs3QSg-bMg8IZC7hNab4mMgLsUduT1MxbfreEgGyQ1Eh4GsoeA0-YJkuYMNZnKfj3ogn-J3nMg14p6sEFI4Wm-jxekdmZMFZCTrcrAPJDryFcJmOv5f-1xSjfiieepgynj5-7xo7j-8_7L42K4-3ywX81VrBOel5b2dMQujcNyMrLMCFaiatxMMpEJl6KikBYVARytphTWojo2z-rIUOb9olie_NsJ22Ce_g_QwRPDDL0NMmwFS8WbCwfSSW8kNF1IJORu1VcZJ3aleO8WQVl-vT772KX47YC7DzmdTawMB4yEPnAoquNBUVfTVI3RbaxpqpgObCd3VLslZpa5O1AZqfB9cLAlM3RZ33tSOO1_tc9XTvuulZlXw5iQwKeac0P3JqKPDcTCGv4NRYfoINr7Asdc1ip_-J_kJ6I67EA
CitedBy_id crossref_primary_10_3390_app14010008
crossref_primary_10_3390_rs15174156
crossref_primary_10_3390_rs15235614
crossref_primary_10_3390_agriculture15010092
crossref_primary_10_3390_biomimetics8070535
crossref_primary_10_3390_land14020299
crossref_primary_10_3390_rs15235550
Cites_doi 10.3390/rs12193119
10.1080/15481603.2021.1987005
10.1038/nature14539
10.1016/j.isprsjprs.2021.12.001
10.1016/j.isprsjprs.2022.11.020
10.3390/rs14030498
10.1007/s11119-022-09896-1
10.1109/JIOT.2020.3007130
10.1016/j.rse.2011.11.020
10.1023/B:PRAG.0000040806.39604.aa
10.1007/s11707-020-0861-x
10.3390/app11094292
10.3390/rs10010075
10.1109/TIP.2021.3055613
10.1016/j.isprsjprs.2020.11.007
10.1109/CVPR.2017.195
10.1016/j.isprsjprs.2021.02.018
10.1155/2015/258619
10.1080/15481603.2019.1690780
10.1016/j.inffus.2017.10.007
10.1109/TIT.1968.1054102
10.1080/15481603.2019.1658960
10.1016/j.compag.2019.105164
10.1016/j.rse.2015.03.031
10.1080/10298436.2018.1485917
10.1080/10106049.2021.1920628
10.3390/rs13091629
10.3390/ijgi11070388
10.3390/s19092087
10.1007/s11119-021-09803-0
10.1007/s00521-021-05933-8
10.1080/15481603.2022.2156123
10.1007/s11119-020-09735-1
10.3390/rs12050832
10.3390/app10155075
10.3390/ijgi11040252
10.1109/IGARSS.2016.7729969
10.1080/01431161.2019.1699973
10.1007/s11119-021-09806-x
10.1109/JSTARS.2019.2950466
10.1016/j.compag.2020.105864
10.34133/2022/9769536
10.1126/science.1127647
10.1016/j.isprsjprs.2015.07.001
10.1016/j.compag.2021.106092
10.1038/nature16961
10.1080/15481603.2019.1628412
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15153792
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_c653d53c3457458b9d7cf591769f72e0
A760616592
10_3390_rs15153792
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c433t-36d82dab4f3cb21d4e7a7537f42a57e7c0b75da7ea0bd50d829a712b8bd5d0e33
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001045641000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 18:48:37 EDT 2025
Sun Nov 09 10:36:51 EST 2025
Sat Nov 01 15:11:50 EDT 2025
Tue Nov 04 18:10:21 EST 2025
Sat Nov 29 07:11:01 EST 2025
Tue Nov 18 21:49:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-36d82dab4f3cb21d4e7a7537f42a57e7c0b75da7ea0bd50d829a712b8bd5d0e33
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/c653d53c3457458b9d7cf591769f72e0
PQID 2849107258
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_c653d53c3457458b9d7cf591769f72e0
proquest_miscellaneous_3040434907
proquest_journals_2849107258
gale_infotracacademiconefile_A760616592
crossref_primary_10_3390_rs15153792
crossref_citationtrail_10_3390_rs15153792
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Yuan (ref_7) 2022; 106
Jayakumari (ref_13) 2021; 22
Tian (ref_47) 2015; 163
Lv (ref_42) 2020; 8
Yuan (ref_22) 2023; 195
Sun (ref_26) 2021; 30
ref_18
Yang (ref_27) 2021; 184
Lee (ref_1) 2021; 22
ref_25
Gumma (ref_17) 2020; 57
ref_24
ref_23
Martinez (ref_9) 2021; 171
ref_21
Duro (ref_16) 2012; 118
Chen (ref_5) 2022; 108
LeCun (ref_51) 2015; 521
Kyere (ref_36) 2020; 179
Shi (ref_44) 2019; 13
Hu (ref_30) 2015; 2015
Ji (ref_33) 2020; 41
Yan (ref_6) 2021; 103
Bongiovanni (ref_3) 2004; 5
Wang (ref_11) 2022; 59
Tian (ref_4) 2021; 15
ref_35
ref_34
ref_31
Conrad (ref_20) 2015; 108
Li (ref_28) 2020; 21
Maponya (ref_19) 2020; 169
Zhang (ref_32) 2022; 184
Saleem (ref_29) 2021; 22
ref_37
Hughes (ref_38) 1968; 14
Silver (ref_52) 2016; 529
Amorim (ref_8) 2022; 23
Zhou (ref_10) 2019; 56
Yan (ref_48) 2021; 60
ref_46
ref_45
Zhao (ref_14) 2020; 57
Yu (ref_40) 2022; 34
Elango (ref_15) 2022; 37
ref_49
Hinton (ref_39) 2006; 313
Adrian (ref_12) 2021; 175
Chen (ref_43) 2022; 2022
Liu (ref_41) 2018; 42
Qiu (ref_2) 2021; 58
References_xml – ident: ref_35
  doi: 10.3390/rs12193119
– volume: 58
  start-page: 1335
  year: 2021
  ident: ref_2
  article-title: Phenology-pigment based automated peanut mapping using sentinel-2 images
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2021.1987005
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_51
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 184
  start-page: 45
  year: 2022
  ident: ref_32
  article-title: Seamless and automated rapeseed mapping for large cloudy regions using time-series optical satellite imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.12.001
– volume: 195
  start-page: 222
  year: 2023
  ident: ref_22
  article-title: Bridging optical and SAR satellite image time series via contrastive feature extraction for crop classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.11.020
– ident: ref_25
  doi: 10.3390/rs14030498
– volume: 60
  start-page: 21382349
  year: 2021
  ident: ref_48
  article-title: Evaluation of the vegetation-index-based dimidiate pixel model for fractional vegetation cover estimation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 23
  start-page: 1532
  year: 2022
  ident: ref_8
  article-title: Impact of soil types on sugarcane development monitored over time by remote sensing
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-022-09896-1
– volume: 103
  start-page: 102485
  year: 2021
  ident: ref_6
  article-title: Large-scale crop mapping from multi-source optical satellite imageries using machine learning with discrete grids
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 8
  start-page: 9531
  year: 2020
  ident: ref_42
  article-title: Deep-learning-enabled security issues in the internet of things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3007130
– volume: 118
  start-page: 259
  year: 2012
  ident: ref_16
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.020
– volume: 5
  start-page: 359
  year: 2004
  ident: ref_3
  article-title: Precision agriculture and sustainability
  publication-title: Precis. Agric.
  doi: 10.1023/B:PRAG.0000040806.39604.aa
– volume: 15
  start-page: 54
  year: 2021
  ident: ref_4
  article-title: Machine learning-based crop recognition from aerial remote sensing imagery
  publication-title: Front. Earth Sci.
  doi: 10.1007/s11707-020-0861-x
– ident: ref_24
  doi: 10.3390/app11094292
– ident: ref_23
  doi: 10.3390/rs10010075
– volume: 30
  start-page: 2810
  year: 2021
  ident: ref_26
  article-title: A supervised segmentation network for hyperspectral image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3055613
– volume: 171
  start-page: 188
  year: 2021
  ident: ref_9
  article-title: Fully convolutional recurrent networks for multidate crop recognition from multitemporal image sequences
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.11.007
– ident: ref_49
  doi: 10.1109/CVPR.2017.195
– volume: 175
  start-page: 215
  year: 2021
  ident: ref_12
  article-title: Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.02.018
– volume: 2015
  start-page: 258619
  year: 2015
  ident: ref_30
  article-title: Deep convolutional neural networks for hyperspectral image classification
  publication-title: J. Sens.
  doi: 10.1155/2015/258619
– volume: 57
  start-page: 302
  year: 2020
  ident: ref_17
  article-title: Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2019.1690780
– volume: 42
  start-page: 158
  year: 2018
  ident: ref_41
  article-title: Deep learning for pixel-level image fusion: Recent advances and future prospects
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.10.007
– volume: 14
  start-page: 55
  year: 1968
  ident: ref_38
  article-title: On the mean accuracy of statistical pattern recognizers
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1968.1054102
– volume: 57
  start-page: 37
  year: 2020
  ident: ref_14
  article-title: Mapping rice paddies in complex landscapes with convolutional neural networks and phenological metrics
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2019.1658960
– volume: 169
  start-page: 105164
  year: 2020
  ident: ref_19
  article-title: Pre-harvest classification of crop types using a Sentinel-2 time-series and machine learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105164
– volume: 163
  start-page: 326
  year: 2015
  ident: ref_47
  article-title: Evaluating temporal consistency of long-term global NDVI datasets for trend analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.03.031
– volume: 21
  start-page: 457
  year: 2020
  ident: ref_28
  article-title: Automatic classification of pavement crack using deep convolutional neural network
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2018.1485917
– volume: 37
  start-page: 5307
  year: 2022
  ident: ref_15
  article-title: Discrimination of maize crop in a mixed Kharif crop scenario with synergism of multiparametric SAR and optical data
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2021.1920628
– ident: ref_21
  doi: 10.3390/rs13091629
– ident: ref_37
  doi: 10.3390/ijgi11070388
– ident: ref_34
  doi: 10.3390/s19092087
– volume: 22
  start-page: 1617
  year: 2021
  ident: ref_13
  article-title: Object-level classification of vegetable crops in 3D LiDAR point cloud using deep learning convolutional neural networks
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-021-09803-0
– volume: 34
  start-page: 2503
  year: 2022
  ident: ref_40
  article-title: A model-based collaborate filtering algorithm based on stacked AutoEncoder
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05933-8
– volume: 59
  start-page: 2247
  year: 2022
  ident: ref_11
  article-title: Exploring the potential of multi-source unsupervised domain adaptation in crop mapping using Sentinel-2 images
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2022.2156123
– volume: 22
  start-page: 179
  year: 2021
  ident: ref_1
  article-title: A new color index for vegetation segmentation and classification
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-020-09735-1
– ident: ref_31
  doi: 10.3390/rs12050832
– ident: ref_50
  doi: 10.3390/app10155075
– ident: ref_18
  doi: 10.3390/ijgi11040252
– ident: ref_45
  doi: 10.1109/IGARSS.2016.7729969
– volume: 41
  start-page: 3162
  year: 2020
  ident: ref_33
  article-title: Learning discriminative spatiotemporal features for precise crop classification from multi-temporal satellite images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1699973
– volume: 22
  start-page: 2053
  year: 2021
  ident: ref_29
  article-title: Automation in agriculture by machine and deep learning techniques: A review of recent developments
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-021-09806-x
– volume: 13
  start-page: 49
  year: 2019
  ident: ref_44
  article-title: Mapping plastic greenhouses using spectral metrics derived from GaoFen-2 satellite data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2950466
– volume: 179
  start-page: 105864
  year: 2020
  ident: ref_36
  article-title: Agricultural crop discrimination in a heterogeneous low-mountain range region based on multi-temporal and multi-sensor satellite data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105864
– volume: 2022
  start-page: 9769536
  year: 2022
  ident: ref_43
  article-title: An Introduction to the Chinese High-Resolution Earth Observation System: Gaofen-1~7 Civilian Satellites
  publication-title: J. Remote Sens.
  doi: 10.34133/2022/9769536
– volume: 108
  start-page: 102762
  year: 2022
  ident: ref_5
  article-title: A joint learning Im-BiLSTM model for incomplete time-series Sentinel-2A data imputation and crop classification
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 313
  start-page: 504
  year: 2006
  ident: ref_39
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 108
  start-page: 191
  year: 2015
  ident: ref_20
  article-title: Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.07.001
– volume: 184
  start-page: 106092
  year: 2021
  ident: ref_27
  article-title: Estimation of corn yield based on hyperspectral imagery and convolutional neural network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106092
– ident: ref_46
– volume: 529
  start-page: 484
  year: 2016
  ident: ref_52
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 56
  start-page: 1170
  year: 2019
  ident: ref_10
  article-title: Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2019.1628412
– volume: 106
  start-page: 102651
  year: 2022
  ident: ref_7
  article-title: SITS-Former: A pre-trained spatio-spectral-temporal representation model for Sentinel-2 time series classification
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
SSID ssj0000331904
Score 2.4088995
Snippet Neural network models play an important role in crop extraction based on remote sensing data. However, when dealing with high-dimensional remote sensing data,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3792
SubjectTerms Accuracy
Agriculture
Artificial intelligence
Artificial neural networks
Calibration
case studies
characteristic dimensionality reduction
Classification
Comparative analysis
corn
crop-planting structure acquisition
Crops
Datasets
decision support systems
Decision trees
Deep learning
Distribution
Effectiveness
Greenhouses
hyperspectral imagery
Hyperspectral imaging
Identification and classification
image analysis
Image classification
Machine learning
multi-source remote sensing
multispectral
Neural networks
Performance degradation
Planting
precision agriculture
prediction
Reduction
Remote sensing
Satellite imagery
Satellite imaging
Satellites
Support vector machines
Technology application
Wheat
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIFEOPEorAgUZgYQ4RPXGdpxwQcuWApdVpQWpnCy_siAtyZJsK_U_8KOZ8Xq3QgIuHBPbeWjGMx575vsIeaGCkTaIOvey4bkomEEi9yp3Am7aMlZzRrIJNZ1WZ2f1adpwG1Ja5cYmRkPtO4d75EdgRsGzqUJWb5Y_cmSNwtPVRKFxndxAlIRRTN2bbfdYGAcFY2KNSsohuj_qB3TgXNXFb34owvX_zShHT3Ny93-_8R65k9aYdLxWivvkWmj3yO3xvE84G2GP3Erk518vH5Cfk75b5shehCnQMCwYetrjAQ4KjWIBCo11uvks7vTT96ZrQktnJqJ5rgL9-B2s0kBj-gE1dNpdhAU9DmFJE3zrnCLn2uI1HdMJuE2K2YuXtGvoF4NlxNB-jAC-8MZ98vnk3afJhzyRNIA4OV_lvPRV4Y0VDXe2GHkRlIEQSDWiMFIF5ZhV0hvQCWa9ZNC5NmpU2AquPAucH5CdtmvDQ0IraWGx5ioYCUGOKa0wwTExMkWAMLX0GXm1EZl2CcEciTQWGiIZFK--Em9Gnm_7Lte4HX_s9RYlv-2BWNvxRtfPdZq62pWSe8kdF1IJWdnaK9dICHPLulFFYBl5iXqj0SLA5ziTChvgpxBbS48VBIkjPL7OyOFGb3QyFYO-UpqMPNs2wyTHkxvThu580JwhCJKomXr070c8JrsFrMLWGYqHZGfVn4cn5Ka7WH0b-qdxdvwCl-AYrQ
  priority: 102
  providerName: ProQuest
Title Crop-Planting Area Prediction from Multi-Source Gaofen Satellite Images Using a Novel Deep Learning Model: A Case Study of Yangling District
URI https://www.proquest.com/docview/2849107258
https://www.proquest.com/docview/3040434907
https://doaj.org/article/c653d53c3457458b9d7cf591769f72e0
Volume 15
WOSCitedRecordID wos001045641000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Engineering Database (NC LIVE)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQQYJLxVOklJURSIhDVG9sxwm37XYLPbCKWJBaLpZfAaQlWWW3lXrhF_CjmXHSpUggLlwibTxRvJ6xx1888w0hL1Qw0gZRpl7WPBUZM1jIvUidgJs2j9mcsdiEms-L09OyulbqC2PCenrgfuAOXC65l9xxIZWQhS29crUEkJGXtcpCROtMldfAVFyDOZgWEz0fKQdcf9Ct0XVzVWa_eaBI1P-35Tj6mOO7ZHfYHNJJ36l75EZo7pPbQ53yL5cPyI9p165SLDSE0cogGAytOjxrwfGlmCtCY0ptuogf5ekb09ahoQsTiTc3gZ58gwVkTWOkADV03l6EJT0KYUUHptXPFMujLV_TCZ2Ch6MYaHhJ25qeGcz4hfYj5NqFNz4kH49nH6Zv06GeAow855uU577IvLGi5s5mYy-CMoBWVC0yI1VQjlklvQH1MeslA-HSqHFmC_jlWeD8Edlp2iY8JrSQFvZVroAnAY-Y3AoTHBNjkwVAlLlPyKurMdZuIBvHmhdLDaAD9aF_6SMhz7eyq55i449Sh6iqrQTSYscbYCx6MBb9L2NJyEtUtMbJC91xZshBgD-FNFh6ogDPjfGkOSH7V7agh1m91uDKYXelMlkk5Nm2GeYjHrKYJrTna80Z8hWJkqm9_9HjJ-QOFrjvQw73yc6mOw9PyS13sfm67kbk5uFsXr0fReMfYdzqAq_fZ3Ct5Cdor07eVWc_AYwyC4g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEF1VLVLhgUsBESiwCBDiwepmL14bCaGQUBq1jSK1SO3Tdr27DkghDnZalH_gW_hGZhwnFRLw1gceY6_j2_HszM7MOYS80MGqLMg08ioXkeTMopB7EjkJG7O47uasxSb0YJCcnKTDNfJz2QuDZZVLm1gbal84XCPfATMKM5vmKnk3_RahahRmV5cSGgtY7If5dwjZqrf9Hrzfl5zvfjju7kWNqgCcX4hZJGKfcG8zmQuX8baXQVvw2XUuuVU6aMcyrbyFm2CZVwwGp1a3eZbAL88CLoCCyd-QCPZ1sjHsHw5PV6s6TACkmVzwoAqRsp2yQpdB6JT_NvPVAgF_mwbquW331v_2VG6Tm40XTTsL2N8ha2GyRW50RmXDJBK2yGYj7_55fpf86JbFNEJ9JizyhsOCpcMSU1QIS4otNrTuRI6O6lwG_WiLPEzoka35SmeB9r-C3a1oXWBBLR0UF2FMeyFMaUNQO6KoKjd-Qzu0C44BxfrMOS1yemqxURr295CiGM54j3y6kkdzn6xPikl4QGiiMnBHXQJHQhhn40za4JhsWx4gEI99i7xeQsS4hqMdpULGBmI1hJO5hFOLPF-NnS6YSf446j0ibTUC2cTrDUU5Mo1xMi5WwivhhFRaqiRLvXa5gkA-TnPNA2uRV4hTgzYPLsfZpnUDbgrZw0xHQxjcxgR9i2wvcWoaY1iZS5C2yLPVbjBjmJuyk1CcV0YwpHmSKdMP__0XT8nm3vHhgTnoD_YfkescfM5FPeY2WZ-V5-ExueYuZl-q8knzbVJydtXA_wV2IHjN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEF1VBUF54FKoCBRYBAjxYGWzF6-NhFBICERFUaSC1PKyrHfXASnEwU6L8g98EV_HjOOkQgLe-sBj7LXjy_HszM7MOYQ81sGqLMg08ioXkeTMopB7EjkJG7O47uasxSb0aJQcHaXjLfJz3QuDZZVrm1gbal84XCNvgxmFmU1zlbTzpixi3B-8nH-LUEEKM61rOY0VRA7C8juEb9WLYR_e9RPOB6_f995GjcIAXIsQi0jEPuHeZjIXLuMdL4O24L_rXHKrdNCOZVp5CzfEMq8YDE6t7vAsgV-eBVwMBfN_QUOMieWEY_Vxs77DBICbyRUjqhApa5cVOg9Cp_y3ObCWCvjbhFDPcoNr__PzuU6uNr417a4-hhtkK8x2yZXupGz4RcIuudyIvn9e3iQ_emUxj1C1CUu_4bBg6bjExBWClWLjDa37k6PDOsNB39giDzN6aGsW00Wgw69gjStal11QS0fFaZjSfghz2tDWTihqzU2f0y7tgbtAsWpzSYucHltsn4b9fSQuhn-8RT6cy6PZI9uzYhZuE5qoDJxUl8CRENzZOJM2OCY7lgcIz2PfIs_WcDGuYW5HAZGpgQgOoWXOoNUijzZj5yu-kj-OeoWo24xAjvF6Q1FOTGOyjIuV8Eo4IZWWKslSr12uILyP01zzwFrkKWLWoCWEy3G2aeiAm0JOMdPVEBx3MG3fIvtrzJrGRFbmDLAt8nCzG4wbZqzsLBQnlREMyZ9kyvSdf5_iAbkEaDfvhqODu2SHgyO6KtLcJ9uL8iTcIxfd6eJLVd6vP1JKPp036n8B42OAMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop-Planting+Area+Prediction+from+Multi-Source+Gaofen+Satellite+Images+Using+a+Novel+Deep+Learning+Model%3A+A+Case+Study+of+Yangling+District&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Kuang%2C+Xiaofei&rft.au=Guo%2C+Jiao&rft.au=Bai%2C+Jingyuan&rft.au=Geng%2C+Hongsuo&rft.date=2023-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=15&rft_id=info:doi/10.3390%2Frs15153792&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon