Crop-Planting Area Prediction from Multi-Source Gaofen Satellite Images Using a Novel Deep Learning Model: A Case Study of Yangling District
Neural network models play an important role in crop extraction based on remote sensing data. However, when dealing with high-dimensional remote sensing data, these models are susceptible to performance degradation. In order to address the challenges associated with multi-source Gaofen satellite dat...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 15; číslo 15; s. 3792 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.08.2023
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Neural network models play an important role in crop extraction based on remote sensing data. However, when dealing with high-dimensional remote sensing data, these models are susceptible to performance degradation. In order to address the challenges associated with multi-source Gaofen satellite data, a novel method is proposed for dimension reduction and crop classification. This method combines the benefits of the stacked autoencoder network for data dimensionality reduction, and the convolutional neural network for classification. By leveraging the advantages of multi-dimensional remote sensing information, and mitigating the impact of dimensionality on the classification accuracy, this method aims to improve the effectiveness of crop classification. The proposed method was applied to the extraction of crop-planting areas in the Yangling Agricultural Demonstration Zone, using multi-temporal spectral data collected from the Gaofen satellites. The results demonstrate that the fusion network, which extracts low-dimensional characteristics, offers advantages in classification accuracy. At the same time, the proposed model is compared with methods such as the decision tree (DT), random forest (RF), support vector machine (SVM), hyperspectral image classification based on a convolutional neural network (HICCNN), and a characteristic selection classification method based on a convolutional neural network (CSCNN). The overall accuracy of the proposed method can reach 98.57%, which is 7.95%, 4.69%, 5.68%, 1.21%, and 1.10% higher than the above methods, respectively. The effectiveness of the proposed model was verified through experiments. Additionally, the model demonstrates a strong robustness when classifying based on new data. When extracting the crop area of the entire Yangling District, the errors for wheat and corn are only 9.6% and 6.3%, respectively, and the extraction results accurately reflect the actual planting situation of crops. |
|---|---|
| AbstractList | Neural network models play an important role in crop extraction based on remote sensing data. However, when dealing with high-dimensional remote sensing data, these models are susceptible to performance degradation. In order to address the challenges associated with multi-source Gaofen satellite data, a novel method is proposed for dimension reduction and crop classification. This method combines the benefits of the stacked autoencoder network for data dimensionality reduction, and the convolutional neural network for classification. By leveraging the advantages of multi-dimensional remote sensing information, and mitigating the impact of dimensionality on the classification accuracy, this method aims to improve the effectiveness of crop classification. The proposed method was applied to the extraction of crop-planting areas in the Yangling Agricultural Demonstration Zone, using multi-temporal spectral data collected from the Gaofen satellites. The results demonstrate that the fusion network, which extracts low-dimensional characteristics, offers advantages in classification accuracy. At the same time, the proposed model is compared with methods such as the decision tree (DT), random forest (RF), support vector machine (SVM), hyperspectral image classification based on a convolutional neural network (HICCNN), and a characteristic selection classification method based on a convolutional neural network (CSCNN). The overall accuracy of the proposed method can reach 98.57%, which is 7.95%, 4.69%, 5.68%, 1.21%, and 1.10% higher than the above methods, respectively. The effectiveness of the proposed model was verified through experiments. Additionally, the model demonstrates a strong robustness when classifying based on new data. When extracting the crop area of the entire Yangling District, the errors for wheat and corn are only 9.6% and 6.3%, respectively, and the extraction results accurately reflect the actual planting situation of crops. |
| Audience | Academic |
| Author | Guo, Jiao Geng, Hongsuo Wang, Hui Kuang, Xiaofei Bai, Jingyuan |
| Author_xml | – sequence: 1 givenname: Xiaofei surname: Kuang fullname: Kuang, Xiaofei – sequence: 2 givenname: Jiao surname: Guo fullname: Guo, Jiao – sequence: 3 givenname: Jingyuan surname: Bai fullname: Bai, Jingyuan – sequence: 4 givenname: Hongsuo surname: Geng fullname: Geng, Hongsuo – sequence: 5 givenname: Hui surname: Wang fullname: Wang, Hui |
| BookMark | eNptks1uEzEQx1eoSJTSC09giQtC2uL1xzrmFqVQIqVQKfTAaTVrjyNHGzvYDlLfgYfGIQhQhX2wPf79ZzQfz5uzEAM2zcuOXnGu6duUO9lJrjR70pwzqlgrmGZn_9yfNZc5b2ldnHeaivPmxyLFfXs3QSg-bMg8IZC7hNab4mMgLsUduT1MxbfreEgGyQ1Eh4GsoeA0-YJkuYMNZnKfj3ogn-J3nMg14p6sEFI4Wm-jxekdmZMFZCTrcrAPJDryFcJmOv5f-1xSjfiieepgynj5-7xo7j-8_7L42K4-3ywX81VrBOel5b2dMQujcNyMrLMCFaiatxMMpEJl6KikBYVARytphTWojo2z-rIUOb9olie_NsJ22Ce_g_QwRPDDL0NMmwFS8WbCwfSSW8kNF1IJORu1VcZJ3aleO8WQVl-vT772KX47YC7DzmdTawMB4yEPnAoquNBUVfTVI3RbaxpqpgObCd3VLslZpa5O1AZqfB9cLAlM3RZ33tSOO1_tc9XTvuulZlXw5iQwKeac0P3JqKPDcTCGv4NRYfoINr7Asdc1ip_-J_kJ6I67EA |
| CitedBy_id | crossref_primary_10_3390_app14010008 crossref_primary_10_3390_rs15174156 crossref_primary_10_3390_rs15235614 crossref_primary_10_3390_agriculture15010092 crossref_primary_10_3390_biomimetics8070535 crossref_primary_10_3390_land14020299 crossref_primary_10_3390_rs15235550 |
| Cites_doi | 10.3390/rs12193119 10.1080/15481603.2021.1987005 10.1038/nature14539 10.1016/j.isprsjprs.2021.12.001 10.1016/j.isprsjprs.2022.11.020 10.3390/rs14030498 10.1007/s11119-022-09896-1 10.1109/JIOT.2020.3007130 10.1016/j.rse.2011.11.020 10.1023/B:PRAG.0000040806.39604.aa 10.1007/s11707-020-0861-x 10.3390/app11094292 10.3390/rs10010075 10.1109/TIP.2021.3055613 10.1016/j.isprsjprs.2020.11.007 10.1109/CVPR.2017.195 10.1016/j.isprsjprs.2021.02.018 10.1155/2015/258619 10.1080/15481603.2019.1690780 10.1016/j.inffus.2017.10.007 10.1109/TIT.1968.1054102 10.1080/15481603.2019.1658960 10.1016/j.compag.2019.105164 10.1016/j.rse.2015.03.031 10.1080/10298436.2018.1485917 10.1080/10106049.2021.1920628 10.3390/rs13091629 10.3390/ijgi11070388 10.3390/s19092087 10.1007/s11119-021-09803-0 10.1007/s00521-021-05933-8 10.1080/15481603.2022.2156123 10.1007/s11119-020-09735-1 10.3390/rs12050832 10.3390/app10155075 10.3390/ijgi11040252 10.1109/IGARSS.2016.7729969 10.1080/01431161.2019.1699973 10.1007/s11119-021-09806-x 10.1109/JSTARS.2019.2950466 10.1016/j.compag.2020.105864 10.34133/2022/9769536 10.1126/science.1127647 10.1016/j.isprsjprs.2015.07.001 10.1016/j.compag.2021.106092 10.1038/nature16961 10.1080/15481603.2019.1628412 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs15153792 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Agriculture |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_c653d53c3457458b9d7cf591769f72e0 A760616592 10_3390_rs15153792 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
| ID | FETCH-LOGICAL-c433t-36d82dab4f3cb21d4e7a7537f42a57e7c0b75da7ea0bd50d829a712b8bd5d0e33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001045641000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 18:48:37 EDT 2025 Sun Nov 09 10:36:51 EST 2025 Sat Nov 01 15:11:50 EDT 2025 Tue Nov 04 18:10:21 EST 2025 Sat Nov 29 07:11:01 EST 2025 Tue Nov 18 21:49:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c433t-36d82dab4f3cb21d4e7a7537f42a57e7c0b75da7ea0bd50d829a712b8bd5d0e33 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/c653d53c3457458b9d7cf591769f72e0 |
| PQID | 2849107258 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c653d53c3457458b9d7cf591769f72e0 proquest_miscellaneous_3040434907 proquest_journals_2849107258 gale_infotracacademiconefile_A760616592 crossref_primary_10_3390_rs15153792 crossref_citationtrail_10_3390_rs15153792 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Yuan (ref_7) 2022; 106 Jayakumari (ref_13) 2021; 22 Tian (ref_47) 2015; 163 Lv (ref_42) 2020; 8 Yuan (ref_22) 2023; 195 Sun (ref_26) 2021; 30 ref_18 Yang (ref_27) 2021; 184 Lee (ref_1) 2021; 22 ref_25 Gumma (ref_17) 2020; 57 ref_24 ref_23 Martinez (ref_9) 2021; 171 ref_21 Duro (ref_16) 2012; 118 Chen (ref_5) 2022; 108 LeCun (ref_51) 2015; 521 Kyere (ref_36) 2020; 179 Shi (ref_44) 2019; 13 Hu (ref_30) 2015; 2015 Ji (ref_33) 2020; 41 Yan (ref_6) 2021; 103 Bongiovanni (ref_3) 2004; 5 Wang (ref_11) 2022; 59 Tian (ref_4) 2021; 15 ref_35 ref_34 ref_31 Conrad (ref_20) 2015; 108 Li (ref_28) 2020; 21 Maponya (ref_19) 2020; 169 Zhang (ref_32) 2022; 184 Saleem (ref_29) 2021; 22 ref_37 Hughes (ref_38) 1968; 14 Silver (ref_52) 2016; 529 Amorim (ref_8) 2022; 23 Zhou (ref_10) 2019; 56 Yan (ref_48) 2021; 60 ref_46 ref_45 Zhao (ref_14) 2020; 57 Yu (ref_40) 2022; 34 Elango (ref_15) 2022; 37 ref_49 Hinton (ref_39) 2006; 313 Adrian (ref_12) 2021; 175 Chen (ref_43) 2022; 2022 Liu (ref_41) 2018; 42 Qiu (ref_2) 2021; 58 |
| References_xml | – ident: ref_35 doi: 10.3390/rs12193119 – volume: 58 start-page: 1335 year: 2021 ident: ref_2 article-title: Phenology-pigment based automated peanut mapping using sentinel-2 images publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2021.1987005 – volume: 521 start-page: 436 year: 2015 ident: ref_51 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 184 start-page: 45 year: 2022 ident: ref_32 article-title: Seamless and automated rapeseed mapping for large cloudy regions using time-series optical satellite imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.12.001 – volume: 195 start-page: 222 year: 2023 ident: ref_22 article-title: Bridging optical and SAR satellite image time series via contrastive feature extraction for crop classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.11.020 – ident: ref_25 doi: 10.3390/rs14030498 – volume: 60 start-page: 21382349 year: 2021 ident: ref_48 article-title: Evaluation of the vegetation-index-based dimidiate pixel model for fractional vegetation cover estimation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 23 start-page: 1532 year: 2022 ident: ref_8 article-title: Impact of soil types on sugarcane development monitored over time by remote sensing publication-title: Precis. Agric. doi: 10.1007/s11119-022-09896-1 – volume: 103 start-page: 102485 year: 2021 ident: ref_6 article-title: Large-scale crop mapping from multi-source optical satellite imageries using machine learning with discrete grids publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 8 start-page: 9531 year: 2020 ident: ref_42 article-title: Deep-learning-enabled security issues in the internet of things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3007130 – volume: 118 start-page: 259 year: 2012 ident: ref_16 article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.020 – volume: 5 start-page: 359 year: 2004 ident: ref_3 article-title: Precision agriculture and sustainability publication-title: Precis. Agric. doi: 10.1023/B:PRAG.0000040806.39604.aa – volume: 15 start-page: 54 year: 2021 ident: ref_4 article-title: Machine learning-based crop recognition from aerial remote sensing imagery publication-title: Front. Earth Sci. doi: 10.1007/s11707-020-0861-x – ident: ref_24 doi: 10.3390/app11094292 – ident: ref_23 doi: 10.3390/rs10010075 – volume: 30 start-page: 2810 year: 2021 ident: ref_26 article-title: A supervised segmentation network for hyperspectral image classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3055613 – volume: 171 start-page: 188 year: 2021 ident: ref_9 article-title: Fully convolutional recurrent networks for multidate crop recognition from multitemporal image sequences publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.11.007 – ident: ref_49 doi: 10.1109/CVPR.2017.195 – volume: 175 start-page: 215 year: 2021 ident: ref_12 article-title: Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.02.018 – volume: 2015 start-page: 258619 year: 2015 ident: ref_30 article-title: Deep convolutional neural networks for hyperspectral image classification publication-title: J. Sens. doi: 10.1155/2015/258619 – volume: 57 start-page: 302 year: 2020 ident: ref_17 article-title: Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2019.1690780 – volume: 42 start-page: 158 year: 2018 ident: ref_41 article-title: Deep learning for pixel-level image fusion: Recent advances and future prospects publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.10.007 – volume: 14 start-page: 55 year: 1968 ident: ref_38 article-title: On the mean accuracy of statistical pattern recognizers publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1968.1054102 – volume: 57 start-page: 37 year: 2020 ident: ref_14 article-title: Mapping rice paddies in complex landscapes with convolutional neural networks and phenological metrics publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2019.1658960 – volume: 169 start-page: 105164 year: 2020 ident: ref_19 article-title: Pre-harvest classification of crop types using a Sentinel-2 time-series and machine learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105164 – volume: 163 start-page: 326 year: 2015 ident: ref_47 article-title: Evaluating temporal consistency of long-term global NDVI datasets for trend analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.03.031 – volume: 21 start-page: 457 year: 2020 ident: ref_28 article-title: Automatic classification of pavement crack using deep convolutional neural network publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2018.1485917 – volume: 37 start-page: 5307 year: 2022 ident: ref_15 article-title: Discrimination of maize crop in a mixed Kharif crop scenario with synergism of multiparametric SAR and optical data publication-title: Geocarto Int. doi: 10.1080/10106049.2021.1920628 – ident: ref_21 doi: 10.3390/rs13091629 – ident: ref_37 doi: 10.3390/ijgi11070388 – ident: ref_34 doi: 10.3390/s19092087 – volume: 22 start-page: 1617 year: 2021 ident: ref_13 article-title: Object-level classification of vegetable crops in 3D LiDAR point cloud using deep learning convolutional neural networks publication-title: Precis. Agric. doi: 10.1007/s11119-021-09803-0 – volume: 34 start-page: 2503 year: 2022 ident: ref_40 article-title: A model-based collaborate filtering algorithm based on stacked AutoEncoder publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05933-8 – volume: 59 start-page: 2247 year: 2022 ident: ref_11 article-title: Exploring the potential of multi-source unsupervised domain adaptation in crop mapping using Sentinel-2 images publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2022.2156123 – volume: 22 start-page: 179 year: 2021 ident: ref_1 article-title: A new color index for vegetation segmentation and classification publication-title: Precis. Agric. doi: 10.1007/s11119-020-09735-1 – ident: ref_31 doi: 10.3390/rs12050832 – ident: ref_50 doi: 10.3390/app10155075 – ident: ref_18 doi: 10.3390/ijgi11040252 – ident: ref_45 doi: 10.1109/IGARSS.2016.7729969 – volume: 41 start-page: 3162 year: 2020 ident: ref_33 article-title: Learning discriminative spatiotemporal features for precise crop classification from multi-temporal satellite images publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1699973 – volume: 22 start-page: 2053 year: 2021 ident: ref_29 article-title: Automation in agriculture by machine and deep learning techniques: A review of recent developments publication-title: Precis. Agric. doi: 10.1007/s11119-021-09806-x – volume: 13 start-page: 49 year: 2019 ident: ref_44 article-title: Mapping plastic greenhouses using spectral metrics derived from GaoFen-2 satellite data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2950466 – volume: 179 start-page: 105864 year: 2020 ident: ref_36 article-title: Agricultural crop discrimination in a heterogeneous low-mountain range region based on multi-temporal and multi-sensor satellite data publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105864 – volume: 2022 start-page: 9769536 year: 2022 ident: ref_43 article-title: An Introduction to the Chinese High-Resolution Earth Observation System: Gaofen-1~7 Civilian Satellites publication-title: J. Remote Sens. doi: 10.34133/2022/9769536 – volume: 108 start-page: 102762 year: 2022 ident: ref_5 article-title: A joint learning Im-BiLSTM model for incomplete time-series Sentinel-2A data imputation and crop classification publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 313 start-page: 504 year: 2006 ident: ref_39 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 108 start-page: 191 year: 2015 ident: ref_20 article-title: Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.07.001 – volume: 184 start-page: 106092 year: 2021 ident: ref_27 article-title: Estimation of corn yield based on hyperspectral imagery and convolutional neural network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106092 – ident: ref_46 – volume: 529 start-page: 484 year: 2016 ident: ref_52 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 56 start-page: 1170 year: 2019 ident: ref_10 article-title: Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2019.1628412 – volume: 106 start-page: 102651 year: 2022 ident: ref_7 article-title: SITS-Former: A pre-trained spatio-spectral-temporal representation model for Sentinel-2 time series classification publication-title: Int. J. Appl. Earth Obs. Geoinf. |
| SSID | ssj0000331904 |
| Score | 2.4088995 |
| Snippet | Neural network models play an important role in crop extraction based on remote sensing data. However, when dealing with high-dimensional remote sensing data,... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3792 |
| SubjectTerms | Accuracy Agriculture Artificial intelligence Artificial neural networks Calibration case studies characteristic dimensionality reduction Classification Comparative analysis corn crop-planting structure acquisition Crops Datasets decision support systems Decision trees Deep learning Distribution Effectiveness Greenhouses hyperspectral imagery Hyperspectral imaging Identification and classification image analysis Image classification Machine learning multi-source remote sensing multispectral Neural networks Performance degradation Planting precision agriculture prediction Reduction Remote sensing Satellite imagery Satellite imaging Satellites Support vector machines Technology application Wheat |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIFEOPEorAgUZgYQ4RPXGdpxwQcuWApdVpQWpnCy_siAtyZJsK_U_8KOZ8Xq3QgIuHBPbeWjGMx575vsIeaGCkTaIOvey4bkomEEi9yp3Am7aMlZzRrIJNZ1WZ2f1adpwG1Ja5cYmRkPtO4d75EdgRsGzqUJWb5Y_cmSNwtPVRKFxndxAlIRRTN2bbfdYGAcFY2KNSsohuj_qB3TgXNXFb34owvX_zShHT3Ny93-_8R65k9aYdLxWivvkWmj3yO3xvE84G2GP3Erk518vH5Cfk75b5shehCnQMCwYetrjAQ4KjWIBCo11uvks7vTT96ZrQktnJqJ5rgL9-B2s0kBj-gE1dNpdhAU9DmFJE3zrnCLn2uI1HdMJuE2K2YuXtGvoF4NlxNB-jAC-8MZ98vnk3afJhzyRNIA4OV_lvPRV4Y0VDXe2GHkRlIEQSDWiMFIF5ZhV0hvQCWa9ZNC5NmpU2AquPAucH5CdtmvDQ0IraWGx5ioYCUGOKa0wwTExMkWAMLX0GXm1EZl2CcEciTQWGiIZFK--Em9Gnm_7Lte4HX_s9RYlv-2BWNvxRtfPdZq62pWSe8kdF1IJWdnaK9dICHPLulFFYBl5iXqj0SLA5ziTChvgpxBbS48VBIkjPL7OyOFGb3QyFYO-UpqMPNs2wyTHkxvThu580JwhCJKomXr070c8JrsFrMLWGYqHZGfVn4cn5Ka7WH0b-qdxdvwCl-AYrQ priority: 102 providerName: ProQuest |
| Title | Crop-Planting Area Prediction from Multi-Source Gaofen Satellite Images Using a Novel Deep Learning Model: A Case Study of Yangling District |
| URI | https://www.proquest.com/docview/2849107258 https://www.proquest.com/docview/3040434907 https://doaj.org/article/c653d53c3457458b9d7cf591769f72e0 |
| Volume | 15 |
| WOSCitedRecordID | wos001045641000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Engineering Database (NC LIVE) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQQYJLxVOklJURSIhDVG9sxwm37XYLPbCKWJBaLpZfAaQlWWW3lXrhF_CjmXHSpUggLlwibTxRvJ6xx1888w0hL1Qw0gZRpl7WPBUZM1jIvUidgJs2j9mcsdiEms-L09OyulbqC2PCenrgfuAOXC65l9xxIZWQhS29crUEkJGXtcpCROtMldfAVFyDOZgWEz0fKQdcf9Ct0XVzVWa_eaBI1P-35Tj6mOO7ZHfYHNJJ36l75EZo7pPbQ53yL5cPyI9p165SLDSE0cogGAytOjxrwfGlmCtCY0ptuogf5ekb09ahoQsTiTc3gZ58gwVkTWOkADV03l6EJT0KYUUHptXPFMujLV_TCZ2Ch6MYaHhJ25qeGcz4hfYj5NqFNz4kH49nH6Zv06GeAow855uU577IvLGi5s5mYy-CMoBWVC0yI1VQjlklvQH1MeslA-HSqHFmC_jlWeD8Edlp2iY8JrSQFvZVroAnAY-Y3AoTHBNjkwVAlLlPyKurMdZuIBvHmhdLDaAD9aF_6SMhz7eyq55i449Sh6iqrQTSYscbYCx6MBb9L2NJyEtUtMbJC91xZshBgD-FNFh6ogDPjfGkOSH7V7agh1m91uDKYXelMlkk5Nm2GeYjHrKYJrTna80Z8hWJkqm9_9HjJ-QOFrjvQw73yc6mOw9PyS13sfm67kbk5uFsXr0fReMfYdzqAq_fZ3Ct5Cdor07eVWc_AYwyC4g |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEF1VLVLhgUsBESiwCBDiwepmL14bCaGQUBq1jSK1SO3Tdr27DkghDnZalH_gW_hGZhwnFRLw1gceY6_j2_HszM7MOYS80MGqLMg08ioXkeTMopB7EjkJG7O47uasxSb0YJCcnKTDNfJz2QuDZZVLm1gbal84XCPfATMKM5vmKnk3_RahahRmV5cSGgtY7If5dwjZqrf9Hrzfl5zvfjju7kWNqgCcX4hZJGKfcG8zmQuX8baXQVvw2XUuuVU6aMcyrbyFm2CZVwwGp1a3eZbAL88CLoCCyd-QCPZ1sjHsHw5PV6s6TACkmVzwoAqRsp2yQpdB6JT_NvPVAgF_mwbquW331v_2VG6Tm40XTTsL2N8ha2GyRW50RmXDJBK2yGYj7_55fpf86JbFNEJ9JizyhsOCpcMSU1QIS4otNrTuRI6O6lwG_WiLPEzoka35SmeB9r-C3a1oXWBBLR0UF2FMeyFMaUNQO6KoKjd-Qzu0C44BxfrMOS1yemqxURr295CiGM54j3y6kkdzn6xPikl4QGiiMnBHXQJHQhhn40za4JhsWx4gEI99i7xeQsS4hqMdpULGBmI1hJO5hFOLPF-NnS6YSf446j0ibTUC2cTrDUU5Mo1xMi5WwivhhFRaqiRLvXa5gkA-TnPNA2uRV4hTgzYPLsfZpnUDbgrZw0xHQxjcxgR9i2wvcWoaY1iZS5C2yLPVbjBjmJuyk1CcV0YwpHmSKdMP__0XT8nm3vHhgTnoD_YfkescfM5FPeY2WZ-V5-ExueYuZl-q8knzbVJydtXA_wV2IHjN |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEF1VBUF54FKoCBRYBAjxYGWzF6-NhFBICERFUaSC1PKyrHfXASnEwU6L8g98EV_HjOOkQgLe-sBj7LXjy_HszM7MOYQ81sGqLMg08ioXkeTMopB7EjkJG7O47uasxSb0aJQcHaXjLfJz3QuDZZVrm1gbal84XCNvgxmFmU1zlbTzpixi3B-8nH-LUEEKM61rOY0VRA7C8juEb9WLYR_e9RPOB6_f995GjcIAXIsQi0jEPuHeZjIXLuMdL4O24L_rXHKrdNCOZVp5CzfEMq8YDE6t7vAsgV-eBVwMBfN_QUOMieWEY_Vxs77DBICbyRUjqhApa5cVOg9Cp_y3ObCWCvjbhFDPcoNr__PzuU6uNr417a4-hhtkK8x2yZXupGz4RcIuudyIvn9e3iQ_emUxj1C1CUu_4bBg6bjExBWClWLjDa37k6PDOsNB39giDzN6aGsW00Wgw69gjStal11QS0fFaZjSfghz2tDWTihqzU2f0y7tgbtAsWpzSYucHltsn4b9fSQuhn-8RT6cy6PZI9uzYhZuE5qoDJxUl8CRENzZOJM2OCY7lgcIz2PfIs_WcDGuYW5HAZGpgQgOoWXOoNUijzZj5yu-kj-OeoWo24xAjvF6Q1FOTGOyjIuV8Eo4IZWWKslSr12uILyP01zzwFrkKWLWoCWEy3G2aeiAm0JOMdPVEBx3MG3fIvtrzJrGRFbmDLAt8nCzG4wbZqzsLBQnlREMyZ9kyvSdf5_iAbkEaDfvhqODu2SHgyO6KtLcJ9uL8iTcIxfd6eJLVd6vP1JKPp036n8B42OAMA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop-Planting+Area+Prediction+from+Multi-Source+Gaofen+Satellite+Images+Using+a+Novel+Deep+Learning+Model%3A+A+Case+Study+of+Yangling+District&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Kuang%2C+Xiaofei&rft.au=Guo%2C+Jiao&rft.au=Bai%2C+Jingyuan&rft.au=Geng%2C+Hongsuo&rft.date=2023-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=15&rft_id=info:doi/10.3390%2Frs15153792&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |