Advances in Variational Inference

Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These models are usually intractable and thus require approximate inference. Variational inference (VI) lets us approximate a high-dimensional Bayesian posterior with a simpler variational...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 41; no. 8; pp. 2008 - 2026
Main Authors: Zhang, Cheng, Butepage, Judith, Kjellstrom, Hedvig, Mandt, Stephan
Format: Journal Article
Language:English
Published: United States IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These models are usually intractable and thus require approximate inference. Variational inference (VI) lets us approximate a high-dimensional Bayesian posterior with a simpler variational distribution by solving an optimization problem. This approach has been successfully applied to various models and large-scale applications. In this review, we give an overview of recent trends in variational inference. We first introduce standard mean field variational inference, then review recent advances focusing on the following aspects: (a) scalable VI, which includes stochastic approximations, (b) generic VI, which extends the applicability of VI to a large class of otherwise intractable models, such as non-conjugate models, (c) accurate VI, which includes variational models beyond the mean field approximation or with atypical divergences, and (d) amortized VI, which implements the inference over local latent variables with inference networks. Finally, we provide a summary of promising future research directions.
AbstractList Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These models are usually intractable and thus require approximate inference. Variational inference (VI) lets us approximate a high-dimensional Bayesian posterior with a simpler variational distribution by solving an optimization problem. This approach has been successfully applied to various models and large-scale applications. In this review, we give an overview of recent trends in variational inference. We first introduce standard mean field variational inference, then review recent advances focusing on the following aspects: (a) scalable VI, which includes stochastic approximations, (b) generic VI, which extends the applicability of VI to a large class of otherwise intractable models, such as non-conjugate models, (c) accurate VI, which includes variational models beyond the mean field approximation or with atypical divergences, and (d) amortized VI, which implements the inference over local latent variables with inference networks. Finally, we provide a summary of promising future research directions.Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These models are usually intractable and thus require approximate inference. Variational inference (VI) lets us approximate a high-dimensional Bayesian posterior with a simpler variational distribution by solving an optimization problem. This approach has been successfully applied to various models and large-scale applications. In this review, we give an overview of recent trends in variational inference. We first introduce standard mean field variational inference, then review recent advances focusing on the following aspects: (a) scalable VI, which includes stochastic approximations, (b) generic VI, which extends the applicability of VI to a large class of otherwise intractable models, such as non-conjugate models, (c) accurate VI, which includes variational models beyond the mean field approximation or with atypical divergences, and (d) amortized VI, which implements the inference over local latent variables with inference networks. Finally, we provide a summary of promising future research directions.
Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These models are usually intractable and thus require approximate inference. Variational inference (VI) lets us approximate a high-dimensional Bayesian posterior with a simpler variational distribution by solving an optimization problem. This approach has been successfully applied to various models and large-scale applications. In this review, we give an overview of recent trends in variational inference. We first introduce standard mean field variational inference, then review recent advances focusing on the following aspects: (a) scalable VI, which includes stochastic approximations, (b) generic VI, which extends the applicability of VI to a large class of otherwise intractable models, such as non-conjugate models, (c) accurate VI, which includes variational models beyond the mean field approximation or with atypical divergences, and (d) amortized VI, which implements the inference over local latent variables with inference networks. Finally, we provide a summary of promising future research directions.
Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These models are usually intractable and thus require approximate inference. Variational inference (VI) lets us approximate a high-dimensional Bayesian posterior with a simpler variational distribution by solving an optimization problem. This approach has been successfully applied to various models and large-scale applications. In this review, we give an overview of recent trends in variational inference. We first introduce standard mean field variational inference, then review recent advances focusing on the following aspects: (a) scalable VI, which includes stochastic approximations, (b) generic VI, which extends the applicability of VI to a large class of otherwise intractable models, such as non-conjugate models, mean field approximation or with atypical divergences, and (d) amortized VI, which implements the inference over local latent variables with inference networks. Finally, we provide a summary of promising future research directions.
Author Butepage, Judith
Mandt, Stephan
Zhang, Cheng
Kjellstrom, Hedvig
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0002-8640-9370
  surname: Zhang
  fullname: Zhang, Cheng
  email: cheng.zhang@microsoft.com
  organization: Microsoft Research, Cambridge, United Kingdom
– sequence: 2
  givenname: Judith
  orcidid: 0000-0001-5344-8042
  surname: Butepage
  fullname: Butepage, Judith
  email: butepage@kth.se
  organization: KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 3
  givenname: Hedvig
  surname: Kjellstrom
  fullname: Kjellstrom, Hedvig
  email: hedvig@kth.se
  organization: KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 4
  givenname: Stephan
  surname: Mandt
  fullname: Mandt, Stephan
  email: stephan.mandt@gmail.com
  organization: University of California, Irvine, Irvine, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30596568$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255405$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNp9kTtPwzAUhS0EgvL4AyChIhaWFD9je6x4VgLBULparnMDhjQpdgLi3-PS0oGB6Q73O_dxzi7arJsaEDokeEAI1ufjx-H9aEAxUQOqlJaSb6AeJTnONNV0E_UwyWmmFFU7aDfGV4wJF5htox2Ghc5FrnroZFh82NpB7Pu6P7HB29Y3ta36o7qEAKmzj7ZKW0U4WNU99HR9Nb64ze4ebkYXw7vMccbajOiyYLKUFrSe8pKAAMplydJ1hBHpWM6EZADE2TyHYkqZLDhhrlSWOweM7aFsOTd-wrybmnnwMxu-TGO9ufSToWnCs3lrXwwVgmOR-LMlPw_NewexNTMfHVSVraHpoklGUK45Jwv09A_62nQhfZkoKrAkC48SdbyiuukMivUBv2YlgC4BF5oYA5RrhGCzSMT8JGIWiZhVIkmk_oicb39MboP11f_So6XUA8B6lxJKMa3ZN6ZDlfc
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1145_3451528
crossref_primary_10_1109_TPAMI_2022_3185773
crossref_primary_10_3390_e23111475
crossref_primary_10_1007_s10994_022_06169_w
crossref_primary_10_3390_e22111263
crossref_primary_10_1007_s10182_024_00492_4
crossref_primary_10_1007_s41060_024_00580_3
crossref_primary_10_1109_ACCESS_2024_3466919
crossref_primary_10_1109_TSG_2019_2931160
crossref_primary_10_1371_journal_pone_0247795
crossref_primary_10_3390_math11214486
crossref_primary_10_1016_j_actamat_2024_119877
crossref_primary_10_3390_act12020070
crossref_primary_10_1016_j_jlp_2025_105768
crossref_primary_10_1016_j_energy_2023_127286
crossref_primary_10_1109_TSG_2020_2998080
crossref_primary_10_1088_1361_6420_ab15a3
crossref_primary_10_1109_JIOT_2025_3545739
crossref_primary_10_1016_j_ajhg_2023_03_009
crossref_primary_10_1109_TMI_2024_3364911
crossref_primary_10_1007_s44379_024_00011_x
crossref_primary_10_1016_j_sigpro_2025_109954
crossref_primary_10_1109_TIM_2023_3265101
crossref_primary_10_1109_TIP_2023_3295929
crossref_primary_10_1145_3371087
crossref_primary_10_1214_22_STS876
crossref_primary_10_1017_S0140525X21002351
crossref_primary_10_3390_e25081235
crossref_primary_10_1016_j_radphyschem_2024_112389
crossref_primary_10_1109_TNNLS_2021_3054407
crossref_primary_10_1109_TII_2022_3158615
crossref_primary_10_3390_info15060336
crossref_primary_10_1029_2022JB024098
crossref_primary_10_1080_03610926_2021_1921214
crossref_primary_10_1016_j_istruc_2025_109170
crossref_primary_10_1109_TSP_2023_3327845
crossref_primary_10_1007_s00477_025_02954_w
crossref_primary_10_1007_s42985_021_00102_x
crossref_primary_10_1109_TRS_2025_3586927
crossref_primary_10_1093_bib_bbaf283
crossref_primary_10_1016_j_ejor_2024_08_024
crossref_primary_10_1109_TWC_2024_3371703
crossref_primary_10_1214_22_STS875
crossref_primary_10_1016_j_rser_2021_110930
crossref_primary_10_1007_s11222_022_10172_5
crossref_primary_10_1137_19M130409X
crossref_primary_10_1016_j_sigpro_2022_108571
crossref_primary_10_1017_asb_2024_7
crossref_primary_10_3389_fenrg_2023_1162068
crossref_primary_10_1016_j_jcp_2022_111454
crossref_primary_10_1007_s11222_024_10531_4
crossref_primary_10_1016_j_istruc_2025_109063
crossref_primary_10_1016_j_apacoust_2023_109512
crossref_primary_10_1109_LSP_2021_3099972
crossref_primary_10_1007_s10479_025_06693_7
crossref_primary_10_1016_j_cmpb_2024_108060
crossref_primary_10_1007_s41060_021_00290_0
crossref_primary_10_1016_j_dsp_2024_104627
crossref_primary_10_1016_j_patcog_2023_110113
crossref_primary_10_1016_j_jpdc_2024_104916
crossref_primary_10_1016_j_sigpro_2023_108966
crossref_primary_10_1016_j_ijggc_2025_104433
crossref_primary_10_1007_s11134_022_09830_2
crossref_primary_10_1016_j_ins_2022_01_051
crossref_primary_10_1038_s41598_021_00144_6
crossref_primary_10_1007_s11135_022_01460_3
crossref_primary_10_1016_j_aca_2025_344308
crossref_primary_10_1039_D4AY02222J
crossref_primary_10_1007_s11222_023_10339_8
crossref_primary_10_1016_j_knosys_2023_111315
crossref_primary_10_1016_j_patcog_2025_112442
crossref_primary_10_1137_21M1440773
crossref_primary_10_1109_TSMC_2023_3312585
crossref_primary_10_1007_s11222_025_10654_2
crossref_primary_10_1016_j_ijforecast_2024_05_005
crossref_primary_10_1214_25_BA1542
crossref_primary_10_1109_TGRS_2023_3257865
crossref_primary_10_1186_s40537_024_01005_5
crossref_primary_10_1016_j_ymssp_2023_110796
crossref_primary_10_1007_s11336_022_09884_4
crossref_primary_10_1016_j_conbuildmat_2024_135466
crossref_primary_10_1145_3715876
crossref_primary_10_1007_s10928_024_09931_w
crossref_primary_10_1016_j_ymssp_2024_112113
crossref_primary_10_1371_journal_pcbi_1012608
crossref_primary_10_1109_TUFFC_2024_3466290
crossref_primary_10_1016_j_engappai_2021_104423
crossref_primary_10_1016_j_sigpro_2022_108826
crossref_primary_10_1109_TVT_2025_3534820
crossref_primary_10_1371_journal_pcbi_1011395
crossref_primary_10_1016_j_ecoinf_2024_102853
crossref_primary_10_1016_j_sigpro_2024_109478
crossref_primary_10_1080_10618600_2025_2510494
crossref_primary_10_1016_j_neucom_2023_126960
crossref_primary_10_1016_j_automatica_2021_109827
crossref_primary_10_1016_j_rineng_2025_105267
crossref_primary_10_1080_01621459_2023_2296704
crossref_primary_10_1002_pc_29998
crossref_primary_10_1109_TIP_2023_3326687
crossref_primary_10_1109_TPAMI_2022_3153225
crossref_primary_10_1109_TGRS_2024_3394462
crossref_primary_10_1016_j_ymssp_2024_112261
crossref_primary_10_1109_TNNLS_2023_3245329
crossref_primary_10_1145_3386252
crossref_primary_10_1016_j_trb_2022_01_005
crossref_primary_10_1016_j_eswa_2022_119380
crossref_primary_10_3390_pr13030861
crossref_primary_10_1007_s00180_023_01350_8
crossref_primary_10_1109_TIM_2022_3192054
crossref_primary_10_1016_j_ymssp_2024_112253
crossref_primary_10_1111_str_70008
crossref_primary_10_1007_s10489_021_03100_z
crossref_primary_10_3390_e23010117
crossref_primary_10_1109_TPAMI_2022_3140886
crossref_primary_10_1016_j_jfranklin_2025_107548
crossref_primary_10_1109_ACCESS_2023_3247947
crossref_primary_10_1016_j_compstruct_2024_118087
crossref_primary_10_1016_j_trc_2020_102622
crossref_primary_10_1002_rnc_5916
crossref_primary_10_1007_s10915_023_02328_w
crossref_primary_10_1098_rsif_2024_0880
crossref_primary_10_1109_TPAMI_2020_3001433
crossref_primary_10_1016_j_ress_2023_109547
crossref_primary_10_1098_rsta_2024_0324
crossref_primary_10_1007_s11222_022_10189_w
crossref_primary_10_1109_TKDE_2023_3327415
crossref_primary_10_1088_2634_4386_aca7de
crossref_primary_10_1109_JPROC_2023_3328920
crossref_primary_10_1109_TMM_2023_3268870
crossref_primary_10_1088_1361_6501_ad5905
crossref_primary_10_1016_j_net_2025_103679
crossref_primary_10_3390_e26020129
crossref_primary_10_1109_TSP_2025_3540018
crossref_primary_10_1080_10618600_2024_2402278
crossref_primary_10_1016_j_cma_2024_117359
crossref_primary_10_1109_TAES_2022_3184283
crossref_primary_10_1088_1475_7516_2023_07_065
crossref_primary_10_3390_electronics14101908
crossref_primary_10_1371_journal_pcbi_1011280
crossref_primary_10_26443_seismica_v3i1_1143
crossref_primary_10_1080_10618600_2022_2130927
crossref_primary_10_1121_10_0017064
crossref_primary_10_1007_s00158_023_03610_z
crossref_primary_10_1088_2632_2153_ace2aa
crossref_primary_10_1002_aic_17753
crossref_primary_10_1016_j_cma_2022_114712
crossref_primary_10_1007_s40435_025_01818_z
crossref_primary_10_1016_j_automatica_2024_112086
crossref_primary_10_1088_1742_5468_ab43d3
crossref_primary_10_1016_j_biopsycho_2024_108891
crossref_primary_10_1016_j_electacta_2024_144694
crossref_primary_10_1214_20_AOS2035
crossref_primary_10_1109_TSP_2022_3164200
crossref_primary_10_3389_frobt_2020_00047
crossref_primary_10_1109_TPAMI_2023_3316671
crossref_primary_10_1109_JSTSP_2021_3058019
crossref_primary_10_1190_geo2023_0035_1
crossref_primary_10_1016_j_sigpro_2021_108226
crossref_primary_10_1137_24M1642202
crossref_primary_10_1109_TNNLS_2023_3300977
crossref_primary_10_1016_j_engstruct_2025_119709
crossref_primary_10_1093_gji_ggaf239
crossref_primary_10_1016_j_adhoc_2025_103887
crossref_primary_10_1093_jrsssc_qlad029
crossref_primary_10_1109_JIOT_2021_3113679
crossref_primary_10_1016_j_media_2024_103228
crossref_primary_10_1109_ACCESS_2024_3452476
crossref_primary_10_1109_TII_2024_3507940
crossref_primary_10_1088_2632_2153_ad9a39
crossref_primary_10_1016_j_automatica_2023_111314
crossref_primary_10_1109_TWC_2023_3268463
crossref_primary_10_1016_j_neuroimage_2022_119595
crossref_primary_10_1090_mcom_4013
crossref_primary_10_1109_LRA_2021_3137503
crossref_primary_10_1186_s13059_020_02015_1
crossref_primary_10_4218_etrij_2024_0491
crossref_primary_10_3390_s20205966
crossref_primary_10_1109_LSP_2021_3113279
crossref_primary_10_1109_TCSVT_2023_3311039
crossref_primary_10_1109_TAES_2024_3491936
crossref_primary_10_3934_math_2025977
crossref_primary_10_1016_j_renene_2025_122892
crossref_primary_10_1007_s10489_024_06125_2
crossref_primary_10_1016_j_ijforecast_2023_05_002
crossref_primary_10_1109_TCCN_2024_3457525
crossref_primary_10_1007_s10712_024_09847_7
crossref_primary_10_3390_informatics12020038
crossref_primary_10_1016_j_jcp_2024_113117
crossref_primary_10_1109_ACCESS_2025_3533878
crossref_primary_10_1016_j_ipm_2025_104336
crossref_primary_10_1002_sim_10072
crossref_primary_10_3389_fninf_2024_1392661
crossref_primary_10_1109_TAI_2022_3215614
crossref_primary_10_1109_TMC_2024_3362912
crossref_primary_10_1080_10618600_2022_2134875
crossref_primary_10_1080_10618600_2021_1923516
crossref_primary_10_1109_TMC_2023_3325301
crossref_primary_10_1109_TSP_2021_3122296
crossref_primary_10_1016_j_trc_2025_105215
crossref_primary_10_1109_ACCESS_2021_3127448
crossref_primary_10_1016_j_knosys_2022_108827
crossref_primary_10_3390_en14144235
crossref_primary_10_1109_ACCESS_2020_3028185
crossref_primary_10_1016_j_knosys_2022_110043
crossref_primary_10_1145_3450963
crossref_primary_10_1145_3522762
crossref_primary_10_1088_1361_6501_ad27c6
crossref_primary_10_1016_j_patcog_2019_107156
crossref_primary_10_1016_j_neucom_2022_07_019
crossref_primary_10_1109_ACCESS_2020_2981948
crossref_primary_10_1016_j_jii_2024_100728
crossref_primary_10_1109_TNNLS_2022_3213315
crossref_primary_10_1039_D1SC07210B
crossref_primary_10_3847_1538_4357_ac6be9
crossref_primary_10_1109_TPAMI_2021_3133763
crossref_primary_10_12688_wellcomeopenres_15881_2
crossref_primary_10_1016_j_neunet_2024_106246
crossref_primary_10_12688_wellcomeopenres_15881_1
crossref_primary_10_1038_s41598_022_10966_7
crossref_primary_10_1016_j_automatica_2022_110374
crossref_primary_10_1016_j_patrec_2022_10_024
crossref_primary_10_1109_TIT_2022_3229765
crossref_primary_10_1109_TRO_2019_2959445
crossref_primary_10_1109_TAES_2023_3323629
crossref_primary_10_1038_s41467_025_60269_4
crossref_primary_10_1109_ACCESS_2022_3187839
crossref_primary_10_1137_19M1267246
crossref_primary_10_1109_TAES_2024_3392552
crossref_primary_10_1109_TNNLS_2021_3105570
crossref_primary_10_1109_TITS_2024_3454768
crossref_primary_10_1109_TIP_2022_3183835
crossref_primary_10_1090_mcom_3906
crossref_primary_10_1109_TSMC_2025_3564984
crossref_primary_10_3390_math12213319
crossref_primary_10_1016_j_epsr_2020_106253
crossref_primary_10_1080_10618600_2024_2374962
crossref_primary_10_1109_ACCESS_2024_3510927
crossref_primary_10_1016_j_trc_2022_103571
crossref_primary_10_1109_TAES_2025_3559523
crossref_primary_10_1109_TBME_2021_3103141
crossref_primary_10_1007_s11634_023_00569_z
crossref_primary_10_1016_j_rineng_2024_102773
crossref_primary_10_1109_TCE_2024_3507006
crossref_primary_10_1007_s11222_024_10488_4
crossref_primary_10_3390_robotics11020038
crossref_primary_10_1093_jrsssc_qlad102
crossref_primary_10_1016_j_sigpro_2021_108314
crossref_primary_10_1109_ACCESS_2023_3237990
crossref_primary_10_1109_TNNLS_2022_3149285
crossref_primary_10_1016_j_neucom_2024_128910
crossref_primary_10_1007_s41237_022_00164_0
crossref_primary_10_1145_3696412
crossref_primary_10_1002_wics_70005
crossref_primary_10_1016_j_ress_2025_110833
crossref_primary_10_3847_1538_4357_ac7a3c
crossref_primary_10_1109_ACCESS_2023_3335196
crossref_primary_10_1007_s11071_021_06626_6
crossref_primary_10_3390_math10060898
crossref_primary_10_1016_j_patcog_2023_110037
crossref_primary_10_1038_s44296_024_00011_1
crossref_primary_10_1145_3571243
crossref_primary_10_3847_1538_4357_ad063f
crossref_primary_10_3390_machines13030216
crossref_primary_10_1109_TPAMI_2019_2950025
crossref_primary_10_1109_TPAMI_2023_3243306
crossref_primary_10_1080_24725854_2024_2302368
crossref_primary_10_1007_s11336_021_09748_3
crossref_primary_10_1049_gtd2_12603
crossref_primary_10_1016_j_csda_2020_107012
crossref_primary_10_1016_j_neuroimage_2020_117366
crossref_primary_10_1109_TIM_2023_3291801
crossref_primary_10_1111_bmsp_12363
crossref_primary_10_1137_23M1618922
crossref_primary_10_1109_MSP_2022_3198201
crossref_primary_10_1007_s10994_024_06513_2
crossref_primary_10_1016_j_chemolab_2025_105378
crossref_primary_10_1140_epjds_s13688_025_00544_y
crossref_primary_10_1007_s12065_023_00900_9
crossref_primary_10_1016_j_cma_2024_117195
crossref_primary_10_1080_01621459_2025_2498088
crossref_primary_10_1016_j_phycom_2025_102692
crossref_primary_10_1007_s00477_025_02956_8
crossref_primary_10_1007_s10462_024_10859_3
crossref_primary_10_3390_e25101468
crossref_primary_10_1016_j_jobe_2021_102830
crossref_primary_10_1145_3477140
crossref_primary_10_1007_s11804_024_00415_4
crossref_primary_10_1016_j_neucom_2024_128934
crossref_primary_10_1093_bib_bbae689
crossref_primary_10_3389_fnbeh_2021_633872
crossref_primary_10_1016_j_chemolab_2024_105088
crossref_primary_10_1360_SSM_2024_0100
crossref_primary_10_1007_s10618_022_00849_w
crossref_primary_10_1109_TSP_2020_2975353
crossref_primary_10_1109_TCOMM_2025_3541076
crossref_primary_10_1007_s12046_022_01980_6
crossref_primary_10_1109_TPAMI_2023_3329339
Cites_doi 10.1214/aoms/1177729586
10.1201/b10905
10.1103/PhysRevLett.86.3695
10.1023/A:1007665907178
10.1613/jair.251
10.1162/089976698300017746
10.1214/aoms/1177729694
10.1080/01621459.2017.1285773
10.1214/13-BA858
10.1007/978-3-7908-2604-3_16
10.1162/089976601750265045
10.1145/1143844.1143859
10.1145/1401890.1401960
10.1109/TIT.2005.850091
10.1109/CVPR.2017.637
10.1007/978-1-4612-5056-2
10.1016/j.patcog.2011.10.004
10.1201/9781315366951
10.1080/14786437708235992
10.1016/0304-405X(77)90005-8
10.1007/s11222-015-9618-x
10.1023/A:1022672621406
10.1561/2200000052
10.1214/ss/1177013621
10.1016/S0959-440X(96)80056-X
10.1145/2187836.2187955
10.1111/j.2517-6161.1966.tb00626.x
10.2307/2287970
10.1162/089976600300015213
10.1162/neco.1995.7.5.889
10.1109/ICDMW.2007.33
10.1111/rssb.12185
10.1016/0167-8655(90)90010-Y
10.2307/1428011
10.1007/978-94-011-5014-9_6
10.1162/neco.2007.19.4.1112
10.1109/ICCVW.2013.41
10.1007/s10107-012-0572-5
10.1088/0305-4470/15/6/035
10.18653/v1/K16-1002
10.1109/TIT.2009.2030485
10.1561/2200000001
10.1137/110830629
10.7551/mitpress/1100.001.0001
10.1145/3064899.3064910
10.1109/TPAMI.2008.157
10.1038/nature14541
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1109/TPAMI.2018.2889774
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2026
ExternalDocumentID oai_DiVA_org_kth_255405
30596568
10_1109_TPAMI_2018_2889774
8588399
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
ESBDL
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c433t-19fd37f7ae99b4f1e5e247f30181317c363573ee1ca66edb237d413cf8a4cce33
IEDL.DBID RIE
ISICitedReferencesCount 428
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473598800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Tue Nov 04 16:42:57 EST 2025
Sat Sep 27 16:46:44 EDT 2025
Mon Jun 30 07:17:18 EDT 2025
Mon Jul 21 05:58:20 EDT 2025
Sat Nov 29 05:15:58 EST 2025
Tue Nov 18 21:45:11 EST 2025
Wed Aug 27 05:51:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-19fd37f7ae99b4f1e5e247f30181317c363573ee1ca66edb237d413cf8a4cce33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8640-9370
0000-0001-5344-8042
OpenAccessLink https://ieeexplore.ieee.org/document/8588399
PMID 30596568
PQID 2250718828
PQPubID 85458
PageCount 19
ParticipantIDs proquest_journals_2250718828
crossref_primary_10_1109_TPAMI_2018_2889774
ieee_primary_8588399
proquest_miscellaneous_2162494415
pubmed_primary_30596568
swepub_primary_oai_DiVA_org_kth_255405
crossref_citationtrail_10_1109_TPAMI_2018_2889774
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref204
jang (ref75) 2017
broderick (ref21) 2013
wang (ref209) 2011
mescheder (ref119) 2017
de (ref37) 2017
karaletsos (ref81) 2016
goodfellow (ref53) 2016
ref46
titsias (ref196) 0
ref219
wang (ref211) 2017
ref215
peterson (ref149) 1987; 1
ref44
tucker (ref203) 2017
ranganath (ref155) 2016
seeger (ref174) 2005
ref7
alemi (ref2) 2017
(ref148) 2017
ref3
snelson (ref177) 2006
ref6
ref5
ref222
johnson (ref78) 2013
titsias (ref197) 2011
mandt (ref115) 2016
rolfe (ref163) 2017
wang (ref210) 2016
ref36
dinh (ref41) 2017
foti (ref45) 2014
kurihara (ref94) 2007
csiba (ref32) 2018; 19
maddison (ref111) 2017
ref38
minka (ref126) 2014
schulman (ref173) 2015
murphy (ref131) 1999
zeiler (ref218) 2012
gal (ref49) 2014
minka (ref125) 2004
krishnan (ref91) 2015
ref26
honkela (ref69) 2010; 11
carpenter (ref28) 2016; 76
ref20
johnson (ref77) 2016
huszár (ref72) 2017
hensman (ref64) 2012
hensman (ref63) 2013
opper (ref144) 1996
le cam (ref27) 0
ref97
ranganath (ref157) 2013
ref96
tanaka (ref186) 1999
kucukelbir (ref92) 2015
wang (ref212) 2017
sutton (ref183) 1998; 1
roeder (ref162) 2017
liu (ref109) 2016
ref93
ref133
opper (ref142) 2013; 14
ruiz (ref167) 2016
duvenaud (ref43) 2016
ref130
li (ref100) 2018
bishop (ref14) 2006
honkela (ref70) 2007
ref135
han (ref60) 2016
wainwright (ref205) 2008; 1
raymond (ref158) 2014
paisley (ref146) 2012
damianou (ref35) 2013
zhao (ref227) 2017
ref145
ref143
ref140
tran (ref201) 2016; 1050
cremer (ref30) 2018
amari (ref4) 1985
ref79
brooks (ref22) 2011
teh (ref188) 2006
ref74
tran (ref200) 2016
theis (ref189) 2015
csiszár (ref33) 1964; 8
mescheder (ref118) 2017
rainforth (ref152) 2018
zhao (ref225) 2014
li (ref102) 2016
miao (ref122) 2016
bui (ref24) 2016; 18
ranganath (ref156) 2016
zhao (ref226) 2015
tieleman (ref191) 2012; 4
ref110
naesseth (ref132) 2017
king (ref83) 2006
mandt (ref113) 2016
sriperumbudur (ref179) 2009
gulrajani (ref57) 2017
liu (ref107) 2016
rainforth (ref153) 2018
yin (ref217) 2018
wang (ref208) 2013
gopalan (ref55) 2012
marino (ref116) 2018
li (ref101) 2015
wang (ref213) 2018
zhu (ref229) 1995
neal (ref136) 1993
ref170
opper (ref141) 2015
titsias (ref195) 2009
honkela (ref71) 2003
ref171
ref172
mandt (ref114) 2017; 18
saeedi (ref168) 0
gregor (ref56) 2015
dai (ref34) 2016
korattikara (ref90) 2015
balles (ref10) 2017
nowozin (ref139) 2018
liu (ref108) 2016
bamler (ref12) 2017
mandt (ref112) 2014
srivastava (ref180) 2017
ruiz (ref166) 2016
barber (ref13) 2003
ref187
ref184
ref182
gershman (ref51) 2012
salimans (ref169) 2015
hoffman (ref65) 2010
kingma (ref84) 2016
hogg (ref68) 1995
wang (ref206) 2009
johnson (ref76) 2014
tran (ref202) 0
blei (ref16) 2006
li (ref103) 2016
ghahramani (ref52) 2015; 521
levine (ref98) 0
ref151
bamler (ref11) 2017
ref150
dinh (ref40) 2015
cremer (ref31) 2017
hennig (ref62) 2011
welling (ref214) 2011
ahn (ref1) 2012
gershman (ref50) 2014; 36
gal (ref48) 2016
zhang (ref223) 2017
tanaka (ref185) 1998
ranganath (ref154) 2014
ref164
neiswanger (ref138) 2015
li (ref104) 2016
ref161
khan (ref82) 2015
ref15
azevedo-filho and (ref9) 1994
sønderby (ref178) 2016
ref17
ref19
ref18
burda (ref25) 2016
kingma (ref85) 2014
tishby (ref193) 2000
hoffman (ref67) 2013; 14
jaakkol (ref73) 1996
levine (ref99) 2013
lin (ref106) 2018
rezende (ref159) 2015
hoffman (ref66) 2015
zhang (ref221) 2017
neal (ref137) 2012; 118
li (ref105) 2017
parisi (ref147) 1988
rezende (ref160) 2014
minka (ref127) 2001
han (ref59) 2017
shah (ref175) 2015
knowles (ref89) 2015
stein (ref181) 1972
dieng (ref39) 2017
nalisnick (ref134) 2017
winn (ref216) 2005; 6
arenz (ref8) 2018
zhang (ref220) 2016
knowles (ref88) 2011
miller (ref123) 2017
buchholz (ref23) 2018
kappen (ref80) 2001
kingma (ref87) 2015
minka (ref128) 2005
duchi (ref42) 2011; 12
titsias (ref194) 2015
mohamed (ref129) 2016
mcinerney (ref117) 2015
khan (ref121) 0
ref192
mézard (ref120) 1990; 9
ref190
wang (ref207) 2013; 14
zhang (ref224) 0
ref198
fu (ref47) 2017
lacoste-julien (ref95) 2011
guo (ref58) 2016
shi (ref176) 2017
tran (ref199) 2015
zhe (ref228) 2016
chen (ref29) 2017
ross (ref165) 2006
heinrich (ref61) 2008
goodfellow (ref54) 2014
miller (ref124) 2017
kingma (ref86) 2014
References_xml – start-page: 354
  year: 2016
  ident: ref113
  article-title: A variational analysis of stochastic gradient algorithms
  publication-title: Proc 33rd Int Conf Mach Learn
– ident: ref161
  doi: 10.1214/aoms/1177729586
– start-page: 1727
  year: 2013
  ident: ref21
  article-title: Streaming variational bayes
  publication-title: Proc 26th Int Conf Neural Inf Process Syst
– start-page: 123
  year: 2012
  ident: ref1
  article-title: Bayesian posterior sampling via stochastic gradient fisher scoring
  publication-title: Proc 29th Int Conf Mach Learn
– start-page: 1511
  year: 2016
  ident: ref104
  article-title: Black-box alpha divergence minimization
  publication-title: Proc 33rd Int Conf Mach Learn
– volume: 118
  year: 2012
  ident: ref137
  publication-title: Bayesian learning for neural networks
– start-page: 362
  year: 2001
  ident: ref127
  article-title: Expectation propagation for approximate Bayesian inference
  publication-title: Proc 17th Int Conf Uncertainty Artif Intell
– start-page: 1
  year: 2015
  ident: ref226
  article-title: Stochastic optimization with importance sampling for regularized loss minimization
  publication-title: Proceedings of the 32nd Intl Conf on Machine Learning
– year: 2016
  ident: ref107
  article-title: Two methods for wild variational inference
  publication-title: arXiv 1612 00081
– year: 2011
  ident: ref22
  publication-title: Handbook of Markov Chain Monte Carlo
  doi: 10.1201/b10905
– start-page: 814
  year: 2014
  ident: ref154
  article-title: Black box variational inference
  publication-title: Proc 17th Int Conf Artif Intell Statist
– ident: ref145
  doi: 10.1103/PhysRevLett.86.3695
– start-page: ii-298
  year: 2013
  ident: ref157
  article-title: An adaptive learning rate for stochastic variational inference
  publication-title: Proc 30th Int Conf Mach Learn
– start-page: 752
  year: 2011
  ident: ref209
  article-title: Online variational inference for the hierarchical dirichlet process
  publication-title: Proc 14th Int Conf Artif Intell Statist
– year: 2016
  ident: ref102
  article-title: Wild variational approximations
  publication-title: Proc Conf Neural Inf Process Syst Workshops
– ident: ref79
  doi: 10.1023/A:1007665907178
– start-page: 234
  year: 2018
  ident: ref8
  article-title: Efficient gradient-free variational inference using policy search
  publication-title: Proc 35th Int Conf Mach Learn
– start-page: 1218
  year: 2015
  ident: ref169
  article-title: Markov Chain Monte Carlo and variational inference: Bridging the gap
  publication-title: Proceedings of the 32nd Intl Conf on Machine Learning
– year: 2000
  ident: ref193
  article-title: The information bottleneck method
  publication-title: Arxiv Preprint Physics/0004057
– ident: ref172
  doi: 10.1613/jair.251
– year: 2018
  ident: ref139
  article-title: Debiasing evidence approximations: On importance-weighted autoencoders and jackknife variational inference
  publication-title: Proc Int Conf Learn Representations
– start-page: 2378
  year: 2016
  ident: ref109
  article-title: Stein variational gradient descent: A general purpose Bayesian inference algorithm
  publication-title: Proc 30th Int Conf Neural Inf Process Syst
– year: 2014
  ident: ref126
  article-title: Infer.NET 2.6
– start-page: 225
  year: 1996
  ident: ref144
  article-title: A mean field algorithm for Bayes learning in large feed-forward neural networks
  publication-title: Proc 9th Int Conf Neural Inf Process
– start-page: 647
  year: 2016
  ident: ref167
  article-title: Overdispersed black-box variational inference
  publication-title: Proc Int Conf Uncertainty Artificial Intell
– start-page: 489
  year: 2017
  ident: ref132
  article-title: Reparameterization gradients through acceptance-rejection sampling algorithms
  publication-title: Proc Int Conf Artif Intell Statist
– start-page: 3402
  year: 2015
  ident: ref82
  article-title: Kullback-Leibler proximal variational inference
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– year: 1988
  ident: ref147
  publication-title: Statistical Field Theory
– start-page: 1070
  year: 2016
  ident: ref43
  article-title: Early stopping as nonparametric variational inference
  publication-title: Proc 19th Int Conf Artif Intell
– ident: ref5
  doi: 10.1162/089976698300017746
– year: 2017
  ident: ref111
  article-title: The concrete distribution: A continuous relaxation of discrete random variables
  publication-title: ICLRE
– ident: ref93
  doi: 10.1214/aoms/1177729694
– year: 2017
  ident: ref31
  article-title: Reinterpreting importance-weighted autoencoders
  publication-title: Proc Workshop Int Conf Learn Represent
– year: 2016
  ident: ref228
  article-title: Online spike-and-slab inference with stochastic expectation propagation
  publication-title: Proc 30th Conf Neural Inf Process Syst Workshops
– ident: ref15
  doi: 10.1080/01621459.2017.1285773
– ident: ref170
  doi: 10.1214/13-BA858
– ident: ref18
  doi: 10.1007/978-3-7908-2604-3_16
– ident: ref171
  doi: 10.1162/089976601750265045
– start-page: 2323
  year: 2015
  ident: ref101
  article-title: Stochastic expectation propagation
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– start-page: 467
  year: 1999
  ident: ref131
  article-title: Loopy belief propagation for approximate inference: An empirical study
  publication-title: Proc 15th Int Conf Uncertainty Artif Intell
– year: 2017
  ident: ref57
  article-title: PixelVAE: A latent variable model for natural images
  publication-title: ICLRE
– year: 2016
  ident: ref220
  article-title: Structured representation using latent variable models
– start-page: 1462
  year: 2015
  ident: ref56
  article-title: Draw: A recurrent neural network for image generation
  publication-title: Proceedings of the 32nd Intl Conf on Machine Learning
– ident: ref17
  doi: 10.1145/1143844.1143859
– ident: ref151
  doi: 10.1145/1401890.1401960
– start-page: 361
  year: 2015
  ident: ref66
  article-title: Structured stochastic variational inference
  publication-title: Proc Int Conf Artif Intell Statist
– year: 2017
  ident: ref75
  article-title: Categorical reparameterization with gumbel-softmax
  publication-title: Proc Int Conf Learn Representations
– year: 2014
  ident: ref86
  article-title: Stochastic gradient VB and the variational auto-encoder
  publication-title: Proc Int Conf Learn Representations
– ident: ref204
  doi: 10.1109/TIT.2005.850091
– start-page: 2438
  year: 2014
  ident: ref112
  article-title: Smoothed Gradients for stochastic variational inference
  publication-title: Proc 27th Int Conf Neural Inf Process Syst
– year: 2015
  ident: ref91
  article-title: Deep Kalman filters
  publication-title: Proc Conf Neural Inf Process Syst Workshops
– year: 2017
  ident: ref176
  article-title: ZhuSuan: A library for Bayesian deep learning
  publication-title: arXiv 1709 05870
– start-page: 829
  year: 2016
  ident: ref60
  article-title: Variational Gaussian copula inference
  publication-title: Proc 19th Int Conf Artif Intell
– start-page: 1889
  year: 2015
  ident: ref173
  article-title: Trust region policy optimization
  publication-title: Proc 31st Int Conf Mach Learn
– ident: ref38
  doi: 10.1109/CVPR.2017.637
– start-page: 1727
  year: 2016
  ident: ref122
  article-title: Neural variational inference for text processing
  publication-title: Proc 33rd Int Conf Mach Learn
– year: 2017
  ident: ref2
  article-title: Deep variational information bottleneck
  publication-title: Proc Int Conf Learn Representations
– volume: 76
  start-page: 1
  year: 2016
  ident: ref28
  article-title: Stan: A probabilistic programming language
  publication-title: J Statist Software
– year: 1985
  ident: ref4
  publication-title: Differential-Geometrical Methods in Statistics
  doi: 10.1007/978-1-4612-5056-2
– start-page: 3438
  year: 2015
  ident: ref90
  article-title: Bayesian dark knowledge
  publication-title: Adv Neural Info Process Syst
– year: 2016
  ident: ref129
  article-title: Learning in implicit generative models
  publication-title: arXiv 1610 03483
– volume: 14
  start-page: 1303
  year: 2013
  ident: ref67
  article-title: Stochastic variational inference
  publication-title: Journal of Machine Learning Research
– year: 2017
  ident: ref180
  article-title: Autoencoding variational inference for topic models
  publication-title: Proc Int Conf Learn Representations
– year: 2017
  ident: ref12
  article-title: Structured black box variational inference for latent time series models
  publication-title: Proc Int'l Conf Machine Learning Workshop
– start-page: 704
  year: 2016
  ident: ref115
  article-title: Variational Tempering
  publication-title: Proc 19th Int Conf Artif Intell
– start-page: 1530
  year: 2015
  ident: ref159
  article-title: Variational inference with normalizing flows
  publication-title: Proceedings of the 32nd Intl Conf on Machine Learning
– year: 1995
  ident: ref229
  article-title: Information geometric measurements of generalisation
– start-page: 567
  year: 2009
  ident: ref195
  article-title: Variational learning of inducing variables in sparse gaussian processes
  publication-title: Proc 12th Int Conf Artif Intell Statist
– year: 2016
  ident: ref58
  article-title: Boosting variational inference
  publication-title: NeurIPS WS Adv Approx Bayesian Inference
– ident: ref97
  doi: 10.1016/j.patcog.2011.10.004
– ident: ref110
  doi: 10.1201/9781315366951
– ident: ref190
  doi: 10.1080/14786437708235992
– start-page: 380
  year: 2017
  ident: ref11
  article-title: Dynamic word embeddings
  publication-title: Proc 34th Int Conf Mach Learn
– year: 2004
  ident: ref125
  article-title: Power EP
– start-page: 1257
  year: 2006
  ident: ref177
  article-title: Sparse Gaussian processes using pseudo-inputs
  publication-title: Proc 18th Int Conf Neural Inf Process Syst
– volume: 19
  start-page: 1
  year: 2018
  ident: ref32
  article-title: Importance sampling for minibatches
  publication-title: JMLR
– start-page: 856
  year: 2010
  ident: ref65
  article-title: Online learning for Latent Dirichlet Allocation
  publication-title: Proc 23rd Int Conf Neural Inf Process Syst
– year: 2015
  ident: ref87
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Representations
– start-page: 1363
  year: 2012
  ident: ref146
  article-title: Variational Bayesian inference with stochastic search
  publication-title: Proc 29th Int Conf Mach Learn
– year: 2016
  ident: ref53
  publication-title: Deep Learning
– ident: ref20
  doi: 10.1016/0304-405X(77)90005-8
– year: 2015
  ident: ref141
  article-title: Perturbation theory for variational inference
  publication-title: Proc Conf Neural Inf Process Syst Workshops
– ident: ref184
  doi: 10.1007/s11222-015-9618-x
– ident: ref215
  doi: 10.1023/A:1022672621406
– year: 2015
  ident: ref138
  article-title: Embarrassingly parallel variational inference in nonconjugate models
  publication-title: arXiv 1510 04163
– volume: 11
  start-page: 3235
  year: 2010
  ident: ref69
  article-title: Approximate Riemannian conjugate gradient learning for fixed-form variational bayes
  publication-title: Journal of Machine Learning Research
– volume: 14
  start-page: 2857
  year: 2013
  ident: ref142
  article-title: Perturbative corrections for approximate inference in gaussian latent variable models
  publication-title: Journal of Machine Learning Research
– year: 0
  ident: ref121
  article-title: Fast and scalable Bayesian deep learning by weight-perturbation in adam
  publication-title: arXiv 1806 04854
– ident: ref7
  doi: 10.1561/2200000052
– ident: ref96
  doi: 10.1214/ss/1177013621
– year: 2018
  ident: ref106
  article-title: Variational message passing with structured inference networks
  publication-title: arXiv 1803 05589
– year: 1993
  ident: ref136
  article-title: Probabilistic inference using Markov Chain Monte Carlo methods
– ident: ref44
  doi: 10.1016/S0959-440X(96)80056-X
– start-page: 201
  year: 2003
  ident: ref13
  article-title: The IM algorithm: A variational approach to information maximization
  publication-title: Proc 16th Int Conf Neural Inf Process Syst
– start-page: 1594
  year: 2015
  ident: ref175
  article-title: An empirical study of stochastic variational algorithms for the beta bernoulli process
  publication-title: Proceedings of the 32nd Intl Conf on Machine Learning
– start-page: 2249
  year: 2012
  ident: ref55
  article-title: Scalable inference of overlapping communities
  publication-title: Proc 25th Int Conf Neural Inf Process Syst
– volume: 36
  start-page: 517
  year: 2014
  ident: ref50
  article-title: Amortized inference in probabilistic reasoning
  publication-title: Proc 3rd Annu Meeting of the Cogn Sci Soc
– start-page: 270
  year: 2006
  ident: ref83
  article-title: Fast variational inference for Gaussian process models through KL-correction
  publication-title: Proc 17th Eur Conf Mach Learn
– start-page: 351
  year: 1999
  ident: ref186
  article-title: A theory of mean field approximation
  publication-title: Proc Int Conf Neural Inf Process
– year: 2017
  ident: ref41
  article-title: Density estimation using real NVP
  publication-title: Proc Int Conf Learn Representations
– start-page: 3564
  year: 2015
  ident: ref199
  article-title: Copula variational inference
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– start-page: 207
  year: 2013
  ident: ref99
  article-title: Variational policy search via trajectory optimization
  publication-title: Proc 26th Int Conf Neural Inf Process Syst
– year: 2012
  ident: ref218
  article-title: ADADELTA: An adaptive learning rate method
  publication-title: arXiv 1212 5701
– year: 2016
  ident: ref200
  article-title: Edward: A library for probabilistic modeling, inference, and criticism
  publication-title: arXiv 1610 09787
– ident: ref219
  doi: 10.1145/2187836.2187955
– year: 2014
  ident: ref85
  article-title: Auto-encoding variational Bayes
  publication-title: Proc Int Conf Learn Representations
– start-page: 3684
  year: 2017
  ident: ref211
  article-title: Variational policy for guiding point processes
  publication-title: Proc 34th Int Conf Mach Learn
– year: 2016
  ident: ref210
  article-title: Learning to draw samples: With application to amortized MLE for generative adversarial learning
  publication-title: arXiv 1611 01722
– start-page: 1353
  year: 2006
  ident: ref188
  article-title: A collapsed variational Bayesian inference algorithm for latent Dirichlet allocation
  publication-title: Proc 19th Int Conf Neural Inf Process Syst
– start-page: 272
  year: 2013
  ident: ref63
  article-title: Gaussian processes for big data
  publication-title: Proc Int Conf Uncertainty Artif Intell
– year: 0
  ident: ref27
  publication-title: Asymptotic Methods in Statistical Decision Theory
– ident: ref3
  doi: 10.1111/j.2517-6161.1966.tb00626.x
– start-page: 1
  year: 2018
  ident: ref213
  article-title: Frequentist consistency of variational bayes
  publication-title: JASA
– start-page: 2420
  year: 2017
  ident: ref124
  article-title: Variational boosting: Iteratively refining posterior approximations
  publication-title: Proc 34th Int Conf Mach Learn
– year: 2017
  ident: ref134
  article-title: Stick-breaking variational autoencoders
  publication-title: Proc Int Conf Learn Representations
– start-page: 803
  year: 2003
  ident: ref71
  article-title: Online variational Bayesian learning
  publication-title: ICA
– start-page: 6925
  year: 2017
  ident: ref162
  article-title: Sticking the landing: An asymptotically zero-variance gradient estimator for variational inference
  publication-title: Proc Int Conf Neural Inf Process
– year: 2016
  ident: ref34
  article-title: Variational auto-encoded deep Gaussian processes
  publication-title: Proc Int Conf Learn Representations
– start-page: 207
  year: 2013
  ident: ref35
  article-title: Deep Gaussian processes
  publication-title: Proc 16th Int Conf Artif Intell Statist
– start-page: 1701
  year: 2011
  ident: ref88
  article-title: Non-conjugate variational message passing for multinomial and binary regression
  publication-title: Proc 24th Int Conf Neural Inf Process Syst
– start-page: 496
  year: 2016
  ident: ref155
  article-title: Operator variational inference
  publication-title: Proc 30th Int Conf Neural Inf Process Syst
– year: 2011
  ident: ref62
  article-title: Approximate inference in graphical models
– volume: 4
  start-page: 26
  year: 2012
  ident: ref191
  article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
  publication-title: Neural Netw Mach Learning
– year: 2006
  ident: ref165
  publication-title: Simulation
– start-page: 554
  year: 1998
  ident: ref185
  article-title: Estimation of third-order correlations within mean field approximation
  publication-title: Proc 5th Int Conf Neural Inf Process Syst
– ident: ref192
  doi: 10.2307/2287970
– volume: 1
  year: 1998
  ident: ref183
  publication-title: Reinforcement Learning An Introduction
– start-page: 1081
  year: 2016
  ident: ref103
  article-title: Rényi divergence variational inference
  publication-title: Proc 30th Int Conf Neural Inf Process Syst
– year: 2005
  ident: ref174
  article-title: Expectation propagation for exponential families
– start-page: 668
  year: 2018
  ident: ref23
  article-title: Quasi-Monte Carlo Variational Inference
  publication-title: Proc 35th Int Conf Mach Learn
– start-page: 4277
  year: 2018
  ident: ref153
  article-title: Tighter variational bounds are not necessarily better
  publication-title: Proc 35th Int Conf Mach Learn
– start-page: 2627
  year: 2017
  ident: ref203
  article-title: REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– ident: ref187
  doi: 10.1162/089976600300015213
– year: 2016
  ident: ref25
  article-title: Importance weighted autoencoders
  publication-title: ICLRE
– start-page: 2946
  year: 2016
  ident: ref77
  article-title: Structured VAEs: Composing probabilistic graphical models and variational autoencoders
  publication-title: Proc Int Conf Neural Inf Process
– volume: 9
  year: 1990
  ident: ref120
  article-title: Spin glass theory and beyond
– ident: ref36
  doi: 10.1162/neco.1995.7.5.889
– start-page: 3257
  year: 2014
  ident: ref49
  article-title: Distributed variational inference in sparse gaussian process regression and latent variable models
  publication-title: Proc 27th Int Conf Neural Inf Process Syst
– start-page: 444
  year: 2015
  ident: ref92
  article-title: Population empirical Bayes
  publication-title: Proc Int Conf Uncertainty Artificial Intell
– start-page: 1903
  year: 2009
  ident: ref206
  article-title: Simultaneous image classification and annotation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 2796
  year: 2007
  ident: ref94
  article-title: Collapsed variational Dirichlet process mixture models
  publication-title: Proc 20th Int Joint Conf Artif Intell
– year: 2017
  ident: ref227
  article-title: Towards deeper understanding of variational autoencoding models
  publication-title: CoRR
– start-page: 869
  year: 2017
  ident: ref148
  article-title: Faster coordinate descent via adaptive importance sampling
  publication-title: Proc Int Conf Artif Intell Statist
– start-page: 181
  year: 2013
  ident: ref208
  article-title: Variance reduction for stochastic gradient optimization
  publication-title: Proc 26th Int Conf Neural Inf Process Syst
– start-page: 5660
  year: 2018
  ident: ref217
  article-title: Semi-implicit variational inference
  publication-title: Proc 35th Int Conf Mach Learn
– year: 2017
  ident: ref29
  article-title: Variational lossy autoencoder
  publication-title: Proc Int Conf Learn Representations
– start-page: 276
  year: 2016
  ident: ref108
  article-title: A kernelized stein discrepancy for goodness-of-fit tests
  publication-title: Proc 33rd Int Conf Mach Learn
– start-page: 1078
  year: 2018
  ident: ref30
  article-title: Inference suboptimality in variational autoencoders
  publication-title: Proc 29th Int Conf Mach Learn
– start-page: 1826
  year: 2017
  ident: ref119
  article-title: The numerics of GANs
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– start-page: 2888
  year: 2012
  ident: ref64
  article-title: Fast variational inference in the conjugate exponential family
  publication-title: Proc 25th Int Conf Neural Inf Process Syst
– volume: 12
  start-page: 2121
  year: 2011
  ident: ref42
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: Journal of Machine Learning Research
– start-page: 315
  year: 2013
  ident: ref78
  article-title: Accelerating stochastic gradient descent using predictive variance reduction
  publication-title: Proc 26th Int Conf Neural Inf Process Syst
– start-page: 147
  year: 2006
  ident: ref16
  article-title: Correlated topic models
  publication-title: Proc 18th Int Conf Neural Inf Process Syst
– start-page: 3708
  year: 2017
  ident: ref123
  article-title: Reducing reparameterization gradient variance
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– volume: 1050
  year: 2016
  ident: ref201
  article-title: The Variational Gaussian Process
  publication-title: Stat
– ident: ref135
  doi: 10.1109/ICDMW.2007.33
– volume: 18
  start-page: 1
  year: 2016
  ident: ref24
  article-title: A unifying framework for sparse gaussian process approximation using power expectation propagation
  publication-title: JMLR
– start-page: 2391
  year: 2017
  ident: ref118
  article-title: Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks
  publication-title: Proc 34th Int Conf Mach Learn
– start-page: ii-1854
  year: 2014
  ident: ref76
  article-title: Stochastic variational inference for Bayesian time series models
  publication-title: Proc 31st Int Conf Mach Learn
– start-page: 3646
  year: 2017
  ident: ref212
  article-title: Robust Probabilistic Modeling with Bayesian Data Reweighting
  publication-title: Proc 34th Int Conf Mach Learn
– start-page: 1309
  year: 0
  ident: ref168
  article-title: Multimodal prediction and personalization of photo edits with deep generative models
  publication-title: AISTATS
– start-page: 2568
  year: 2016
  ident: ref156
  article-title: Hierarchical variational models
  publication-title: Proc 33rd Int Conf Mach Learn
– start-page: 2732
  year: 2017
  ident: ref39
  article-title: Variational inference via chi-upper bound minimization
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref140
  doi: 10.1111/rssb.12185
– year: 2014
  ident: ref158
  article-title: Expectation propagation
  publication-title: arXiv 1409 6179
– ident: ref164
  doi: 10.1016/0167-8655(90)90010-Y
– year: 2015
  ident: ref89
  article-title: Stochastic gradient variational Bayes for gamma approximating distributions
  publication-title: ArXiv
– year: 0
  ident: ref202
  article-title: Hierarchical implicit models and likelihood-free variational inference
  publication-title: arXiv 1702 08896
– start-page: 3599
  year: 2014
  ident: ref45
  article-title: Stochastic variational inference for hidden Markov models
  publication-title: Proc 27th Int Conf Neural Inf Process Syst
– start-page: 681
  year: 2011
  ident: ref214
  article-title: Bayesian learning via stochastic gradient langevin dynamics
  publication-title: Proc 28th Int Conf Mach Learn
– start-page: 583
  year: 1972
  ident: ref181
  article-title: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables
  publication-title: Proc Berkeley Symp Math Statist Probability
– year: 2005
  ident: ref128
  article-title: Divergence measures and message passing
– year: 2017
  ident: ref223
  article-title: Determinantal point processes for mini-batch diversification
  publication-title: Proc Int Conf Uncertainty Artif Intell
– start-page: 2638
  year: 2015
  ident: ref194
  article-title: Local expectation gradients for black box variational inference
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– start-page: 718
  year: 2017
  ident: ref37
  article-title: Automated inference using adaptive batch sizes
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref130
  doi: 10.2307/1428011
– ident: ref74
  doi: 10.1007/978-94-011-5014-9_6
– ident: ref133
  doi: 10.1162/neco.2007.19.4.1112
– ident: ref222
  doi: 10.1109/ICCVW.2013.41
– year: 2017
  ident: ref59
  article-title: Stein variational adaptive importance sampling
  publication-title: Proc Int Conf Uncertainty Artif Intell
– ident: ref26
  doi: 10.1007/s10107-012-0572-5
– year: 0
  ident: ref196
  article-title: Learning model reparametrizations: Implicit variational inference by fitting MCMC distributions
  publication-title: arXiv 1708 01529
– volume: 1
  start-page: 995
  year: 1987
  ident: ref149
  article-title: A mean field theory learning algorithm for neural networks
  publication-title: Complex Syst
– volume: 18
  start-page: 4873
  year: 2017
  ident: ref114
  article-title: Stochastic gradient descent as approximate Bayesian inference
  publication-title: Journal of Machine Learning Research
– year: 2009
  ident: ref179
  article-title: On integral probability metrics,$\backslash$?phi-divergences and binary classification
  publication-title: arXiv preprint arXiv 0901 2698
– start-page: 28
  year: 1994
  ident: ref9
  article-title: Laplace's method approximations for probabilistic inferencein belief networks with continuous variables
  publication-title: Proc 10th Conf Uncertainty in Artif Intell
– year: 2016
  ident: ref178
  article-title: How to train deep variational autoencoders and probabilistic ladder networks
  publication-title: Proc 33rd Int Conf Mach Learn
– year: 2006
  ident: ref14
  publication-title: Pattern Recognition and Machine Learning
– ident: ref150
  doi: 10.1088/0305-4470/15/6/035
– start-page: 2672
  year: 2014
  ident: ref54
  article-title: Generative adversarial nets
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref19
  doi: 10.18653/v1/K16-1002
– start-page: 3403
  year: 2018
  ident: ref116
  article-title: Iterative amortized inference
  publication-title: Proc Int Conf Mach Learn
– volume: 6
  start-page: 661
  year: 2005
  ident: ref216
  article-title: Variational message passing
  publication-title: Journal of Machine Learning Research
– year: 2018
  ident: ref100
  article-title: Approximate inference: New visions
– year: 2017
  ident: ref72
  article-title: Variational inference using implicit distributions
  publication-title: arXiv 1702 08235
– year: 2008
  ident: ref61
  article-title: Parameter estimation for text analysis
– volume: 14
  start-page: 1005
  year: 2013
  ident: ref207
  article-title: Variational inference in non-conjugate models
  publication-title: Journal of Machine Learning Research
– volume: 8
  start-page: 95
  year: 1964
  ident: ref33
  article-title: Eine informationstheoretische ungleichung und ihre anwendung auf beweis der ergodizitaet von markoffschen ketten
  publication-title: Magyer Tud Akad Mat Kutato Int Koezl
– year: 2017
  ident: ref10
  article-title: Coupling adaptive batch sizes with learning rates
  publication-title: Proc Int Conf Uncertainty Artif Intell
– start-page: 416
  year: 2011
  ident: ref95
  article-title: Approximate inference for the loss-calibrated Bayesian
  publication-title: Proc 14th Int Conf Artif Intell Statist
– year: 2017
  ident: ref163
  article-title: Discrete variational autoencoders
  publication-title: Proc Int Conf Learn Representations
– year: 2014
  ident: ref225
  article-title: Accelerating minibatch stochastic gradient descent using stratified sampling
  publication-title: arXiv 1405 3080
– ident: ref6
  doi: 10.1109/TIT.2009.2030485
– year: 2016
  ident: ref81
  article-title: Adversarial message passing for graphical models
  publication-title: Proc 30th Conf Neural Inf Process Syst Workshops
– start-page: 663
  year: 2012
  ident: ref51
  article-title: Nonparametric variational inference
  publication-title: Proc 29th Int Conf Mach Learn
– year: 2017
  ident: ref105
  article-title: Approximate inference with amortised MCMC
  publication-title: arXiv 1702 08343
– start-page: 1153
  year: 2015
  ident: ref117
  article-title: The population posterior and Bayesian modeling on streams
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– start-page: ii-1278
  year: 2014
  ident: ref160
  article-title: Stochastic backpropagation and approximate inference in deep generative models
  publication-title: Proc 31st Int Conf Mach Learn
– start-page: 460
  year: 2016
  ident: ref166
  article-title: The generalized reparameterization gradient
  publication-title: Proc 30th Int Conf Neural Inf Process Syst
– volume: 1
  start-page: 1
  year: 2008
  ident: ref205
  article-title: Graphical models, exponential families, and variational inference
  publication-title: Foundations & Trends in Mach Learn
  doi: 10.1561/2200000001
– year: 2015
  ident: ref40
  article-title: NICE: Non-linear independent components estimation
  publication-title: ICLR-WS
– ident: ref46
  doi: 10.1137/110830629
– start-page: 841
  year: 2017
  ident: ref47
  article-title: CPSG-MCMC: Clustering-based preprocessing method for stochastic gradient MCMC
  publication-title: Proc Int Conf Artif Intell Statist
– start-page: 841
  year: 2011
  ident: ref197
  article-title: Variational heteroscedastic Gaussian process regression
  publication-title: Proc 28th Int Conf Mach Learn
– year: 0
  ident: ref98
  article-title: Reinforcement learning and control as probabilistic inference: Tutorial and review
  publication-title: arXiv 1805 00909
– start-page: 220
  year: 2001
  ident: ref80
  article-title: Second order approximations for probability models
  publication-title: Proc 13th Int Conf Neural Inf Process Syst
– ident: ref143
  doi: 10.7551/mitpress/1100.001.0001
– start-page: 4267
  year: 2018
  ident: ref152
  article-title: On Nesting Monte Carlo Estimators
  publication-title: Proc 35th Int Conf Mach Learn
– start-page: 305
  year: 2007
  ident: ref70
  article-title: Natural conjugate gradient in variational inference
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref198
  doi: 10.1145/3064899.3064910
– ident: ref182
  doi: 10.1109/TPAMI.2008.157
– year: 1995
  ident: ref68
  publication-title: Introduction to Mathematical Statistics
– start-page: 5079
  year: 2017
  ident: ref221
  article-title: Perturbative black box variational inference
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– year: 2016
  ident: ref48
  article-title: Uncertainty in deep learning
– start-page: 4743
  year: 2016
  ident: ref84
  article-title: Improving variational autoencoders with inverse autoregressive flow
  publication-title: Proc 30th Int Conf Neural Inf Process Syst
– volume: 521
  start-page: 452
  year: 2015
  ident: ref52
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: Nature
  doi: 10.1038/nature14541
– start-page: 528
  year: 1996
  ident: ref73
  article-title: Fast learning by bounding likelihoods in sigmoid type belief networks
  publication-title: Proc 8th Int Conf Neural Inf Process Syst
– start-page: 2503
  year: 2015
  ident: ref189
  article-title: A trust-region method for stochastic variational inference with applications to streaming data
  publication-title: Proceedings of the 32nd Intl Conf on Machine Learning
– year: 0
  ident: ref224
  article-title: Active mini-batch sampling using repulsive point processes
  publication-title: arXiv 1804 02772
SSID ssj0014503
Score 2.7182212
Snippet Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These models are usually intractable and thus...
SourceID swepub
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2008
SubjectTerms Algorithms
approximate Bayesian inference
Bayes methods
Bayesian analysis
Computational modeling
Hidden Markov models
Inference
inference networks
Machine learning
Optimization
Probabilistic logic
Probabilistic models
reparameterization gradients
scalable inference
Stochastic processes
structured variational approximations
Variational inference
Title Advances in Variational Inference
URI https://ieeexplore.ieee.org/document/8588399
https://www.ncbi.nlm.nih.gov/pubmed/30596568
https://www.proquest.com/docview/2250718828
https://www.proquest.com/docview/2162494415
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255405
Volume 41
WOSCitedRecordID wos000473598800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5URPTg-ra-qCBetNom6SY5Lj5QUPGgy95Cm6S4KF1xd_39TtIHIiJ4K01a0nwznZkk8w3AUa4zg2ZJR0YQFqE95pHMSRbpwpiYWJMnnkynf8cfHsRgIB9n4LTNhbHW-sNn9sxd-r18M9JTt1R2LlKB9lzOwiznvMrVancMWOqrIKMHgxqOYUSTIBPL86fH3v2tO8UlzogQzuFZhAXq6s6kjmH1mz3yBVZ-8zV_EIl643Pd-d-wV2C5djLDXiUVqzBjyzXoNAUcwlqf12DpGxvhOhz2qvMA43BYhn2Moet1wvC2SQrcgOfrq6eLm6iuoBBpRukkSmRhKC94ZqXMWZHY1BLGC-pYuhxC1LHRUWsTnXW7CAyh3KBV04XImNaW0k2YK0el3YZQG11IxkjMMsFMWuTCGJLlkuDt2CQ2gKSZR6VrenFX5eJN-TAjlsrDoBwMqoYhgJP2mfeKXOPP3utubtue9bQGsNfApWr9Gyv8S6Hv5OQggMO2GTXHbYdkpR1NsQ-KCpMungxgq4K5fXcjHQEcV7i3LY6O-3LY7ymEWL1OXhTGZOj07vw-uF1YxE-Q1YnBPZibfEztPszrz8lw_HGAcjwQB16OvwAcQetv
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8BQ3w8DAYbhLGRSogXCCS2Q-zHaBtqRan60FW8WYntaBVTimi6v39n50MVQpP2FsVO5Ph3l7uzz78DOM9VptEsqUBzwgK0x0kgcpIFqtA6JEbnkSPTmQ6T0Yg_PorxGlx1Z2GMMS75zFzbS7eXr-dqaZfKbnjM0Z6LdXgXM0ai-rRWt2fAYlcHGX0Y1HEMJNojMqG4mYzTh4HN4-LXhHPr8uzAFrWVZ2LLsbpikVyJlbe8zVdUos783O3938D34X3jZvppLRcfYM2UB7DXlnDwG40-gN0VPsJD6KV1RsDCn5X-FKPoZqXQH7THAj_Cz7sfk2_9oKmhEChGaRVEotA0KZLMCJGzIjKxISwpqOXpshhRy0dHjYlUdnuL0BCaaLRrquAZU8pQ-gk2ynlpjsFXWhUC5z1kGWc6LnKuNclyQfB2qCPjQdTOo1QNwbitc_FbukAjFNLBIC0MsoHBg8vumeeaXuOfvQ_t3HY9m2n14LSFSzYauJD4n0LvycqBB72uGXXHbohkpZkvsQ-KChM2ovTgqIa5e3crHR5c1Lh3LZaQ-_tsmkqEWD5VvyRGZej2nrw9uDPY7k8ehnI4GN1_hh38HFHnD57CRvWyNF9gU_2pZouXr06a_wL1lO3O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Variational+Inference&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhang%2C+Cheng&rft.au=Butepage%2C+Judith&rft.au=Kjellstrom%2C+Hedvig&rft.au=Mandt%2C+Stephan&rft.date=2019-08-01&rft.eissn=1939-3539&rft.volume=41&rft.issue=8&rft.spage=2008&rft_id=info:doi/10.1109%2FTPAMI.2018.2889774&rft_id=info%3Apmid%2F30596568&rft.externalDocID=30596568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon