Generalizing Study Results: A Potential Outcomes Perspective
Great care is taken in epidemiologic studies to ensure the internal validity of causal effect estimates; however, external validity has received considerably less attention. When the study sample is not a random sample of the target population, the sample average treatment effect, even if internally...
Uloženo v:
| Vydáno v: | Epidemiology (Cambridge, Mass.) Ročník 28; číslo 4; s. 553 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.07.2017
|
| Témata: | |
| ISSN: | 1531-5487, 1531-5487 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Great care is taken in epidemiologic studies to ensure the internal validity of causal effect estimates; however, external validity has received considerably less attention. When the study sample is not a random sample of the target population, the sample average treatment effect, even if internally valid, cannot usually be expected to equal the average treatment effect in the target population. The utility of an effect estimate for planning purposes and decision making will depend on the degree of departure from the true causal effect in the target population due to problems with both internal and external validity. Herein, we review concepts from recent literature on generalizability, one facet of external validity, using the potential outcomes framework. Identification conditions sufficient for external validity closely parallel identification conditions for internal validity, namely conditional exchangeability; positivity; the same distributions of the versions of treatment; no interference; and no measurement error. We also require correct model specification. Under these conditions, we discuss how a version of direct standardization (the g-formula, adjustment formula, or transport formula) or inverse probability weighting can be used to generalize a causal effect from a study sample to a well-defined target population, and demonstrate their application in an illustrative example. |
|---|---|
| AbstractList | Great care is taken in epidemiologic studies to ensure the internal validity of causal effect estimates; however, external validity has received considerably less attention. When the study sample is not a random sample of the target population, the sample average treatment effect, even if internally valid, cannot usually be expected to equal the average treatment effect in the target population. The utility of an effect estimate for planning purposes and decision making will depend on the degree of departure from the true causal effect in the target population due to problems with both internal and external validity. Herein, we review concepts from recent literature on generalizability, one facet of external validity, using the potential outcomes framework. Identification conditions sufficient for external validity closely parallel identification conditions for internal validity, namely conditional exchangeability; positivity; the same distributions of the versions of treatment; no interference; and no measurement error. We also require correct model specification. Under these conditions, we discuss how a version of direct standardization (the g-formula, adjustment formula, or transport formula) or inverse probability weighting can be used to generalize a causal effect from a study sample to a well-defined target population, and demonstrate their application in an illustrative example. Great care is taken in epidemiologic studies to ensure the internal validity of causal effect estimates; however, external validity has received considerably less attention. When the study sample is not a random sample of the target population, the sample average treatment effect, even if internally valid, cannot usually be expected to equal the average treatment effect in the target population. The utility of an effect estimate for planning purposes and decision making will depend on the degree of departure from the true causal effect in the target population due to problems with both internal and external validity. Herein, we review concepts from recent literature on generalizability, one facet of external validity, using the potential outcomes framework. Identification conditions sufficient for external validity closely parallel identification conditions for internal validity, namely conditional exchangeability; positivity; the same distributions of the versions of treatment; no interference; and no measurement error. We also require correct model specification. Under these conditions, we discuss how a version of direct standardization (the g-formula, adjustment formula, or transport formula) or inverse probability weighting can be used to generalize a causal effect from a study sample to a well-defined target population, and demonstrate their application in an illustrative example.Great care is taken in epidemiologic studies to ensure the internal validity of causal effect estimates; however, external validity has received considerably less attention. When the study sample is not a random sample of the target population, the sample average treatment effect, even if internally valid, cannot usually be expected to equal the average treatment effect in the target population. The utility of an effect estimate for planning purposes and decision making will depend on the degree of departure from the true causal effect in the target population due to problems with both internal and external validity. Herein, we review concepts from recent literature on generalizability, one facet of external validity, using the potential outcomes framework. Identification conditions sufficient for external validity closely parallel identification conditions for internal validity, namely conditional exchangeability; positivity; the same distributions of the versions of treatment; no interference; and no measurement error. We also require correct model specification. Under these conditions, we discuss how a version of direct standardization (the g-formula, adjustment formula, or transport formula) or inverse probability weighting can be used to generalize a causal effect from a study sample to a well-defined target population, and demonstrate their application in an illustrative example. |
| Author | Cole, Stephen R Lesko, Catherine R Buchanan, Ashley L Westreich, Daniel Hudgens, Michael G Edwards, Jessie K |
| Author_xml | – sequence: 1 givenname: Catherine R surname: Lesko fullname: Lesko, Catherine R organization: From the aDepartment of Epidemiology, University of North Carolina, Chapel Hill, NC; bDepartment of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; cDepartment of Biostatistics, University of North Carolina, Chapel Hill, NC; and dDepartment of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA – sequence: 2 givenname: Ashley L surname: Buchanan fullname: Buchanan, Ashley L – sequence: 3 givenname: Daniel surname: Westreich fullname: Westreich, Daniel – sequence: 4 givenname: Jessie K surname: Edwards fullname: Edwards, Jessie K – sequence: 5 givenname: Michael G surname: Hudgens fullname: Hudgens, Michael G – sequence: 6 givenname: Stephen R surname: Cole fullname: Cole, Stephen R |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28346267$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLAzEYRYNU7EP_gcgs3UzNc5KIm1LHKhRafKyHZPKNROZRJxmh_noFK_Ruzl0cLtwpGrVdCwhdEjwnWMub_D6f4-NkGT9BEyIYSQVXcnTUx2gawgfGRDIiztCYKsYzmskJultBC72p_bdv35OXOLh98gxhqGO4TRbJtovQRm_qZDPEsmsgJFvoww7K6L_gHJ1Wpg5wceAMvT3kr8vHdL1ZPS0X67TkjPG0dKWQnHJlmdPCZpQZUVU646Cd1sJgxZhwzFqoCFGOU4e10ZpYYStNMKYzdP23u-u7zwFCLBofSqhr00I3hIIoRaSkWopf9eqgDrYBV-x635h-X_w_pj-pIlmA |
| CitedBy_id | crossref_primary_10_1177_25152459251359623 crossref_primary_10_1007_s40471_020_00241_6 crossref_primary_10_1093_eurheartj_ehz200 crossref_primary_10_1177_00469580231220476 crossref_primary_10_1186_s13034_022_00442_5 crossref_primary_10_1093_aje_kwab045 crossref_primary_10_1097_EDE_0000000000000966 crossref_primary_10_1146_annurev_polisci_041719_102556 crossref_primary_10_2217_fon_2022_0099 crossref_primary_10_1002_sim_10212 crossref_primary_10_1093_cid_ciy588 crossref_primary_10_1097_EDE_0000000000001097 crossref_primary_10_1016_j_wombi_2020_12_004 crossref_primary_10_1093_ije_dyaa211 crossref_primary_10_1093_ije_dyaf109 crossref_primary_10_3233_JAD_240247 crossref_primary_10_3390_genes14030716 crossref_primary_10_1080_09602011_2023_2181191 crossref_primary_10_1093_aje_kwae153 crossref_primary_10_1093_aje_kwz060 crossref_primary_10_1186_s12874_021_01416_5 crossref_primary_10_1093_aje_kwab040 crossref_primary_10_1186_s12889_020_10004_z crossref_primary_10_1097_EDE_0000000000000972 crossref_primary_10_1186_s12913_019_4075_4 crossref_primary_10_1097_EDE_0000000000001701 crossref_primary_10_1093_aje_kwaa124 crossref_primary_10_1002_csr_70137 crossref_primary_10_1097_EDE_0000000000001702 crossref_primary_10_1111_aogs_13268 crossref_primary_10_1080_00913847_2020_1824986 crossref_primary_10_1093_aje_kwy262 crossref_primary_10_1016_S0140_6736_18_33067_8 crossref_primary_10_1097_EDE_0000000000001780 crossref_primary_10_1080_00952990_2022_2116712 crossref_primary_10_1177_1740774518806311 crossref_primary_10_1371_journal_pone_0253969 crossref_primary_10_1093_cid_ciz603 crossref_primary_10_1007_s40471_018_0153_0 crossref_primary_10_1093_ehjqcco_qcab070 crossref_primary_10_1214_23_STS889 crossref_primary_10_1093_ije_dyy138 crossref_primary_10_1002_pds_5873 crossref_primary_10_1097_MLR_0000000000001958 crossref_primary_10_1016_j_vhri_2022_01_006 crossref_primary_10_1186_s12874_023_02053_w crossref_primary_10_1093_ije_dyx283 crossref_primary_10_1016_j_ebiom_2025_105774 crossref_primary_10_1515_jci_2022_0081 crossref_primary_10_1016_j_vaccine_2020_04_031 crossref_primary_10_7759_cureus_34566 crossref_primary_10_1093_aje_kwac115 crossref_primary_10_1097_EDE_0000000000001316 crossref_primary_10_1111_ppe_70044 crossref_primary_10_1007_s10389_019_01095_z crossref_primary_10_1016_j_jclinepi_2020_11_016 crossref_primary_10_1093_aje_kwz085 crossref_primary_10_1017_ehs_2022_25 crossref_primary_10_1080_01621459_2024_2435656 crossref_primary_10_1007_s40471_024_00355_1 crossref_primary_10_1093_ije_dyab205 crossref_primary_10_1016_j_annepidem_2025_01_002 crossref_primary_10_1177_02646196231212826 crossref_primary_10_1016_j_apmr_2025_01_002 crossref_primary_10_1093_ije_dyaf003 crossref_primary_10_1002_pds_5148 crossref_primary_10_1007_s40471_023_00325_z crossref_primary_10_1093_aje_kwz080 crossref_primary_10_1214_22_STS859 crossref_primary_10_1097_EDE_0000000000000906 crossref_primary_10_1002_sim_9286 crossref_primary_10_1016_j_jhin_2024_01_001 crossref_primary_10_1016_j_jclinepi_2018_04_005 crossref_primary_10_1080_19466315_2021_1942975 crossref_primary_10_1001_jamanetworkopen_2020_2551 crossref_primary_10_1056_NEJMe2114944 crossref_primary_10_1097_EDE_0000000000001329 crossref_primary_10_1177_00491241251314037 crossref_primary_10_1093_aje_kwaa185 crossref_primary_10_1146_annurev_publhealth_052220_093319 crossref_primary_10_1097_GOX_0000000000002841 crossref_primary_10_1016_j_jclinepi_2020_11_006 crossref_primary_10_1038_s41523_019_0129_3 crossref_primary_10_1016_j_jgo_2021_08_009 crossref_primary_10_1093_aje_kwz013 crossref_primary_10_3390_jcm11216270 crossref_primary_10_1186_s12889_022_14589_5 crossref_primary_10_1371_journal_pone_0196346 crossref_primary_10_1002_wics_70027 crossref_primary_10_1093_aje_kwaa159 crossref_primary_10_1007_s10654_019_00533_2 crossref_primary_10_1016_j_annepidem_2021_07_003 crossref_primary_10_1002_ajp_23466 crossref_primary_10_1080_13548506_2020_1810716 crossref_primary_10_1016_j_ssmph_2025_101764 crossref_primary_10_1007_s10742_022_00291_x crossref_primary_10_1093_aje_kwac056 crossref_primary_10_1093_aje_kwab242 crossref_primary_10_1016_j_jclinepi_2021_01_022 crossref_primary_10_1097_EDE_0000000000001572 crossref_primary_10_1111_ppe_12856 crossref_primary_10_3390_pathogens12020326 crossref_primary_10_1093_epirev_mxab013 crossref_primary_10_1097_EDE_0000000000001694 crossref_primary_10_1093_ije_dyab061 crossref_primary_10_1136_jech_2017_209976 crossref_primary_10_1097_EDE_0000000000001061 crossref_primary_10_1097_EDE_0000000000000926 crossref_primary_10_1007_s40471_019_0179_y crossref_primary_10_1093_aje_kwaa030 crossref_primary_10_1093_aje_kwaa270 crossref_primary_10_1097_QAI_0000000000002202 crossref_primary_10_1093_aje_kwab136 crossref_primary_10_1097_EDE_0000000000001469 crossref_primary_10_1016_j_addbeh_2018_10_033 crossref_primary_10_1093_aje_kwy228 crossref_primary_10_1007_s10803_023_06179_0 crossref_primary_10_1097_EDE_0000000000001867 crossref_primary_10_1136_bmjopen_2024_089218 crossref_primary_10_1016_j_cjca_2024_12_022 crossref_primary_10_1093_aje_kwac067 crossref_primary_10_1002_gepi_22324 crossref_primary_10_1093_aje_kwz030 crossref_primary_10_1002_aepp_13091 crossref_primary_10_1007_s10549_022_06695_0 crossref_primary_10_1093_aje_kwae367 crossref_primary_10_1186_s13047_020_0376_4 crossref_primary_10_1177_1403494819890784 crossref_primary_10_1097_EDE_0000000000000770 crossref_primary_10_1177_27550311241249137 crossref_primary_10_1016_j_childyouth_2021_106086 crossref_primary_10_1146_annurev_statistics_031017_100127 crossref_primary_10_5688_ajpe8537 crossref_primary_10_1093_ije_dyy179 crossref_primary_10_1007_s40471_025_00359_5 crossref_primary_10_1016_j_ajcnut_2023_05_006 crossref_primary_10_1093_aje_kwad031 crossref_primary_10_1097_COH_0000000000000768 crossref_primary_10_1097_EDE_0000000000000939 crossref_primary_10_1097_QAI_0000000000002037 crossref_primary_10_1016_j_dhjo_2019_100841 crossref_primary_10_1186_s12874_022_01675_w crossref_primary_10_1093_aje_kwad008 crossref_primary_10_1097_EDE_0000000000000665 crossref_primary_10_1097_EDE_0000000000001633 crossref_primary_10_1007_s10654_019_00571_w crossref_primary_10_1016_j_jclinepi_2022_11_011 crossref_primary_10_5812_ijem_95415 crossref_primary_10_1007_s10654_019_00532_3 crossref_primary_10_1098_rsos_220638 crossref_primary_10_1097_EDE_0000000000001516 crossref_primary_10_1093_ije_dyaa156 crossref_primary_10_1097_EDE_0000000000001230 crossref_primary_10_1097_EDE_0000000000001233 crossref_primary_10_1007_s00134_021_06370_w crossref_primary_10_1016_j_jclinepi_2019_05_005 crossref_primary_10_1093_jrsssa_qnad068 crossref_primary_10_1097_EDE_0000000000000783 crossref_primary_10_1093_humrep_deaf045 crossref_primary_10_1002_dad2_12450 crossref_primary_10_1002_wics_1581 crossref_primary_10_1002_sim_9523 crossref_primary_10_1002_sim_70216 crossref_primary_10_1136_jech_2018_211829 crossref_primary_10_1002_acr_24865 crossref_primary_10_1136_bmjmed_2022_000399 crossref_primary_10_1002_cpt_1854 crossref_primary_10_1007_s10461_018_2269_0 crossref_primary_10_1080_1743727X_2021_1882416 crossref_primary_10_1093_aje_kwac200 crossref_primary_10_1093_aje_kwz217 crossref_primary_10_1089_aid_2020_0222 crossref_primary_10_1016_j_jclinepi_2018_12_011 crossref_primary_10_1097_EDE_0000000000001761 crossref_primary_10_1016_j_jth_2019_100661 crossref_primary_10_1007_s40471_020_00239_0 crossref_primary_10_1097_GOX_0000000000005907 crossref_primary_10_1093_aje_kwae182 crossref_primary_10_1186_s13104_024_06684_0 crossref_primary_10_1002_alz_12522 crossref_primary_10_1177_26320843211061298 crossref_primary_10_1002_sim_8963 crossref_primary_10_1002_pds_4403 crossref_primary_10_1097_EDE_0000000000001409 crossref_primary_10_1177_17407745221087465 crossref_primary_10_1007_s40471_018_0148_x crossref_primary_10_1146_annurev_statistics_042522_103837 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1097/EDE.0000000000000664 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 1531-5487 |
| ExternalDocumentID | 28346267 |
| Genre | Journal Article Review Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R24 AI067039 – fundername: NIAID NIH HHS grantid: U01 AI103390 – fundername: NIAAA NIH HHS grantid: U01 AA020793 – fundername: NHLBI NIH HHS grantid: U01 HL146194 – fundername: NIAID NIH HHS grantid: P30 AI050410 – fundername: NICHD NIH HHS grantid: DP2 HD084070 – fundername: NHLBI NIH HHS grantid: U01 HL121812 – fundername: NIAID NIH HHS grantid: R01 AI100654 |
| GroupedDBID | --- .-D .55 .Z2 01R 0R~ 1J1 40H 4Q1 4Q2 4Q3 53G 5GY 5VS 71W 77Y 7O~ 8L- AAAAV AAAXR AACGO AAGIX AAHPQ AAIKC AAIQE AAMNW AAMOA AAMTA AANCE AAQKA AARTV AASCR AASOK AAXQO AAYEP ABASU ABBHK ABBUW ABDIG ABJNI ABPLY ABTLG ABVCZ ABXSQ ABXVJ ABZAD ABZZY ACCJW ACDDN ACEWG ACGFO ACGFS ACHIC ACHQT ACIJW ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ACZKN ADFPA ADGGA ADHPY ADNKB ADQXQ ADULT AE3 AE6 AEETU AENEX AEUPB AEXZC AFBFQ AFDTB AFFNX AFUWQ AGINI AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI ANHSF AOHHW AOQMC AQVQM BOYCO BQLVK BS7 BYPQX C45 CGR CS3 CUY CVF DCCCD DIWNM DU5 DUNZO E.X EBS ECM EEVPB EIF EJD ERAAH EX3 F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL H0~ HGD HLJTE HQ3 HTVGU HZ~ IKREB IKYAY IN~ IPNFZ IPSME JAAYA JBMMH JENOY JF9 JG8 JHFFW JK3 JK8 JKQEH JLS JLXEF JPM JSG JST K8S KD2 L-C N9A NPM N~7 N~B N~M O9- OAG OAH OCUKA ODA OLG OLH OLU OLY OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P R58 RIG RLZ S4R S4S SA0 T8P TEORI TSPGW V2I VVN W3M WOQ WOW X3V X3W X7M XXN XYM YCJ YOC ZFV ZGI ZZMQN 7X8 AAFWJ ABPXF ACBKD ADKSD ADSXY |
| ID | FETCH-LOGICAL-c4334-cdc574248b3d95b623a5ff964e9d995a08335d3bbef118d42d09a991b5bf91002 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 201 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402541400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1531-5487 |
| IngestDate | Sun Nov 09 09:04:58 EST 2025 Thu Apr 03 07:05:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4334-cdc574248b3d95b623a5ff964e9d995a08335d3bbef118d42d09a991b5bf91002 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 28346267 |
| PQID | 1881772975 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1881772975 pubmed_primary_28346267 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-01 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Epidemiology (Cambridge, Mass.) |
| PublicationTitleAlternate | Epidemiology |
| PublicationYear | 2017 |
| References | 29384787 - Epidemiology. 2018 Mar;29(2):e16 29023239 - Epidemiology. 2018 Mar;29(2):e13-e14 30721164 - Epidemiology. 2019 Mar;30(2):186-188 28346266 - Epidemiology. 2017 Jul;28(4):562-566 29023242 - Epidemiology. 2018 Mar;29(2):e14-e15 |
| References_xml | – reference: 29384787 - Epidemiology. 2018 Mar;29(2):e16 – reference: 28346266 - Epidemiology. 2017 Jul;28(4):562-566 – reference: 29023239 - Epidemiology. 2018 Mar;29(2):e13-e14 – reference: 29023242 - Epidemiology. 2018 Mar;29(2):e14-e15 – reference: 30721164 - Epidemiology. 2019 Mar;30(2):186-188 |
| SSID | ssj0017315 |
| Score | 2.615685 |
| SecondaryResourceType | review_article |
| Snippet | Great care is taken in epidemiologic studies to ensure the internal validity of causal effect estimates; however, external validity has received considerably... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 553 |
| SubjectTerms | Bias Causality Epidemiologic Methods Female Humans Male Predictive Value of Tests Reproducibility of Results Statistics as Topic United States |
| Title | Generalizing Study Results: A Potential Outcomes Perspective |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28346267 https://www.proquest.com/docview/1881772975 |
| Volume | 28 |
| WOSCitedRecordID | wos000402541400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6o80EQ75d5I4KvZb0uiQgydMMHnUUU9laSJoHBaKftBP31nvTCngTBPuShpW04nCTfd64AV0q4rkDyY7kJDoxKR3IEctKT0qeuJ31Vlcx_pOMxm0x43Bjciiasst0Tq41a5am1kfc8xjyLBGl0O393bNco611tWmisQidAKGO1mk6WXgRadzDARe05Fpm3qXOc9ob3w7p0YXv1bc2B30BmddiMtv87zR3YamAmGdR6sQsrOtuDzdpGR-rUo324aWpOT7_x_CI2ovCLvOhiMSuLazIgcV7aUCL8zPOixL_rgsTL1MwDeBsNX-8enKabgpOGQRA6qUoj5MEhk4HikUTYIyJjeD_UXHEeCdemX6lASm2QdKjQVy4XiB5lJA23hVoPYS3LM30MhCGFxftuYJC9MUUFc6VQHlVGc3xmunDZCidBbbUuCJHpfFEkS_F04aiWcDKvy2okCHRCpFf05A9vn8KGb8_XKm72DDoG16o-h_X0s5wWHxeVGuA4jp9-AE40ucs |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalizing+Study+Results%3A+A+Potential+Outcomes+Perspective&rft.jtitle=Epidemiology+%28Cambridge%2C+Mass.%29&rft.au=Lesko%2C+Catherine+R&rft.au=Buchanan%2C+Ashley+L&rft.au=Westreich%2C+Daniel&rft.au=Edwards%2C+Jessie+K&rft.date=2017-07-01&rft.issn=1531-5487&rft.eissn=1531-5487&rft.volume=28&rft.issue=4&rft.spage=553&rft_id=info:doi/10.1097%2FEDE.0000000000000664&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-5487&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-5487&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-5487&client=summon |