Generalizing Study Results: A Potential Outcomes Perspective

Great care is taken in epidemiologic studies to ensure the internal validity of causal effect estimates; however, external validity has received considerably less attention. When the study sample is not a random sample of the target population, the sample average treatment effect, even if internally...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Epidemiology (Cambridge, Mass.) Ročník 28; číslo 4; s. 553
Hlavní autoři: Lesko, Catherine R, Buchanan, Ashley L, Westreich, Daniel, Edwards, Jessie K, Hudgens, Michael G, Cole, Stephen R
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.07.2017
Témata:
ISSN:1531-5487, 1531-5487
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Great care is taken in epidemiologic studies to ensure the internal validity of causal effect estimates; however, external validity has received considerably less attention. When the study sample is not a random sample of the target population, the sample average treatment effect, even if internally valid, cannot usually be expected to equal the average treatment effect in the target population. The utility of an effect estimate for planning purposes and decision making will depend on the degree of departure from the true causal effect in the target population due to problems with both internal and external validity. Herein, we review concepts from recent literature on generalizability, one facet of external validity, using the potential outcomes framework. Identification conditions sufficient for external validity closely parallel identification conditions for internal validity, namely conditional exchangeability; positivity; the same distributions of the versions of treatment; no interference; and no measurement error. We also require correct model specification. Under these conditions, we discuss how a version of direct standardization (the g-formula, adjustment formula, or transport formula) or inverse probability weighting can be used to generalize a causal effect from a study sample to a well-defined target population, and demonstrate their application in an illustrative example.
AbstractList Great care is taken in epidemiologic studies to ensure the internal validity of causal effect estimates; however, external validity has received considerably less attention. When the study sample is not a random sample of the target population, the sample average treatment effect, even if internally valid, cannot usually be expected to equal the average treatment effect in the target population. The utility of an effect estimate for planning purposes and decision making will depend on the degree of departure from the true causal effect in the target population due to problems with both internal and external validity. Herein, we review concepts from recent literature on generalizability, one facet of external validity, using the potential outcomes framework. Identification conditions sufficient for external validity closely parallel identification conditions for internal validity, namely conditional exchangeability; positivity; the same distributions of the versions of treatment; no interference; and no measurement error. We also require correct model specification. Under these conditions, we discuss how a version of direct standardization (the g-formula, adjustment formula, or transport formula) or inverse probability weighting can be used to generalize a causal effect from a study sample to a well-defined target population, and demonstrate their application in an illustrative example.
Great care is taken in epidemiologic studies to ensure the internal validity of causal effect estimates; however, external validity has received considerably less attention. When the study sample is not a random sample of the target population, the sample average treatment effect, even if internally valid, cannot usually be expected to equal the average treatment effect in the target population. The utility of an effect estimate for planning purposes and decision making will depend on the degree of departure from the true causal effect in the target population due to problems with both internal and external validity. Herein, we review concepts from recent literature on generalizability, one facet of external validity, using the potential outcomes framework. Identification conditions sufficient for external validity closely parallel identification conditions for internal validity, namely conditional exchangeability; positivity; the same distributions of the versions of treatment; no interference; and no measurement error. We also require correct model specification. Under these conditions, we discuss how a version of direct standardization (the g-formula, adjustment formula, or transport formula) or inverse probability weighting can be used to generalize a causal effect from a study sample to a well-defined target population, and demonstrate their application in an illustrative example.Great care is taken in epidemiologic studies to ensure the internal validity of causal effect estimates; however, external validity has received considerably less attention. When the study sample is not a random sample of the target population, the sample average treatment effect, even if internally valid, cannot usually be expected to equal the average treatment effect in the target population. The utility of an effect estimate for planning purposes and decision making will depend on the degree of departure from the true causal effect in the target population due to problems with both internal and external validity. Herein, we review concepts from recent literature on generalizability, one facet of external validity, using the potential outcomes framework. Identification conditions sufficient for external validity closely parallel identification conditions for internal validity, namely conditional exchangeability; positivity; the same distributions of the versions of treatment; no interference; and no measurement error. We also require correct model specification. Under these conditions, we discuss how a version of direct standardization (the g-formula, adjustment formula, or transport formula) or inverse probability weighting can be used to generalize a causal effect from a study sample to a well-defined target population, and demonstrate their application in an illustrative example.
Author Cole, Stephen R
Lesko, Catherine R
Buchanan, Ashley L
Westreich, Daniel
Hudgens, Michael G
Edwards, Jessie K
Author_xml – sequence: 1
  givenname: Catherine R
  surname: Lesko
  fullname: Lesko, Catherine R
  organization: From the aDepartment of Epidemiology, University of North Carolina, Chapel Hill, NC; bDepartment of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; cDepartment of Biostatistics, University of North Carolina, Chapel Hill, NC; and dDepartment of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
– sequence: 2
  givenname: Ashley L
  surname: Buchanan
  fullname: Buchanan, Ashley L
– sequence: 3
  givenname: Daniel
  surname: Westreich
  fullname: Westreich, Daniel
– sequence: 4
  givenname: Jessie K
  surname: Edwards
  fullname: Edwards, Jessie K
– sequence: 5
  givenname: Michael G
  surname: Hudgens
  fullname: Hudgens, Michael G
– sequence: 6
  givenname: Stephen R
  surname: Cole
  fullname: Cole, Stephen R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28346267$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLAzEYRYNU7EP_gcgs3UzNc5KIm1LHKhRafKyHZPKNROZRJxmh_noFK_Ruzl0cLtwpGrVdCwhdEjwnWMub_D6f4-NkGT9BEyIYSQVXcnTUx2gawgfGRDIiztCYKsYzmskJultBC72p_bdv35OXOLh98gxhqGO4TRbJtovQRm_qZDPEsmsgJFvoww7K6L_gHJ1Wpg5wceAMvT3kr8vHdL1ZPS0X67TkjPG0dKWQnHJlmdPCZpQZUVU646Cd1sJgxZhwzFqoCFGOU4e10ZpYYStNMKYzdP23u-u7zwFCLBofSqhr00I3hIIoRaSkWopf9eqgDrYBV-x635h-X_w_pj-pIlmA
CitedBy_id crossref_primary_10_1177_25152459251359623
crossref_primary_10_1007_s40471_020_00241_6
crossref_primary_10_1093_eurheartj_ehz200
crossref_primary_10_1177_00469580231220476
crossref_primary_10_1186_s13034_022_00442_5
crossref_primary_10_1093_aje_kwab045
crossref_primary_10_1097_EDE_0000000000000966
crossref_primary_10_1146_annurev_polisci_041719_102556
crossref_primary_10_2217_fon_2022_0099
crossref_primary_10_1002_sim_10212
crossref_primary_10_1093_cid_ciy588
crossref_primary_10_1097_EDE_0000000000001097
crossref_primary_10_1016_j_wombi_2020_12_004
crossref_primary_10_1093_ije_dyaa211
crossref_primary_10_1093_ije_dyaf109
crossref_primary_10_3233_JAD_240247
crossref_primary_10_3390_genes14030716
crossref_primary_10_1080_09602011_2023_2181191
crossref_primary_10_1093_aje_kwae153
crossref_primary_10_1093_aje_kwz060
crossref_primary_10_1186_s12874_021_01416_5
crossref_primary_10_1093_aje_kwab040
crossref_primary_10_1186_s12889_020_10004_z
crossref_primary_10_1097_EDE_0000000000000972
crossref_primary_10_1186_s12913_019_4075_4
crossref_primary_10_1097_EDE_0000000000001701
crossref_primary_10_1093_aje_kwaa124
crossref_primary_10_1002_csr_70137
crossref_primary_10_1097_EDE_0000000000001702
crossref_primary_10_1111_aogs_13268
crossref_primary_10_1080_00913847_2020_1824986
crossref_primary_10_1093_aje_kwy262
crossref_primary_10_1016_S0140_6736_18_33067_8
crossref_primary_10_1097_EDE_0000000000001780
crossref_primary_10_1080_00952990_2022_2116712
crossref_primary_10_1177_1740774518806311
crossref_primary_10_1371_journal_pone_0253969
crossref_primary_10_1093_cid_ciz603
crossref_primary_10_1007_s40471_018_0153_0
crossref_primary_10_1093_ehjqcco_qcab070
crossref_primary_10_1214_23_STS889
crossref_primary_10_1093_ije_dyy138
crossref_primary_10_1002_pds_5873
crossref_primary_10_1097_MLR_0000000000001958
crossref_primary_10_1016_j_vhri_2022_01_006
crossref_primary_10_1186_s12874_023_02053_w
crossref_primary_10_1093_ije_dyx283
crossref_primary_10_1016_j_ebiom_2025_105774
crossref_primary_10_1515_jci_2022_0081
crossref_primary_10_1016_j_vaccine_2020_04_031
crossref_primary_10_7759_cureus_34566
crossref_primary_10_1093_aje_kwac115
crossref_primary_10_1097_EDE_0000000000001316
crossref_primary_10_1111_ppe_70044
crossref_primary_10_1007_s10389_019_01095_z
crossref_primary_10_1016_j_jclinepi_2020_11_016
crossref_primary_10_1093_aje_kwz085
crossref_primary_10_1017_ehs_2022_25
crossref_primary_10_1080_01621459_2024_2435656
crossref_primary_10_1007_s40471_024_00355_1
crossref_primary_10_1093_ije_dyab205
crossref_primary_10_1016_j_annepidem_2025_01_002
crossref_primary_10_1177_02646196231212826
crossref_primary_10_1016_j_apmr_2025_01_002
crossref_primary_10_1093_ije_dyaf003
crossref_primary_10_1002_pds_5148
crossref_primary_10_1007_s40471_023_00325_z
crossref_primary_10_1093_aje_kwz080
crossref_primary_10_1214_22_STS859
crossref_primary_10_1097_EDE_0000000000000906
crossref_primary_10_1002_sim_9286
crossref_primary_10_1016_j_jhin_2024_01_001
crossref_primary_10_1016_j_jclinepi_2018_04_005
crossref_primary_10_1080_19466315_2021_1942975
crossref_primary_10_1001_jamanetworkopen_2020_2551
crossref_primary_10_1056_NEJMe2114944
crossref_primary_10_1097_EDE_0000000000001329
crossref_primary_10_1177_00491241251314037
crossref_primary_10_1093_aje_kwaa185
crossref_primary_10_1146_annurev_publhealth_052220_093319
crossref_primary_10_1097_GOX_0000000000002841
crossref_primary_10_1016_j_jclinepi_2020_11_006
crossref_primary_10_1038_s41523_019_0129_3
crossref_primary_10_1016_j_jgo_2021_08_009
crossref_primary_10_1093_aje_kwz013
crossref_primary_10_3390_jcm11216270
crossref_primary_10_1186_s12889_022_14589_5
crossref_primary_10_1371_journal_pone_0196346
crossref_primary_10_1002_wics_70027
crossref_primary_10_1093_aje_kwaa159
crossref_primary_10_1007_s10654_019_00533_2
crossref_primary_10_1016_j_annepidem_2021_07_003
crossref_primary_10_1002_ajp_23466
crossref_primary_10_1080_13548506_2020_1810716
crossref_primary_10_1016_j_ssmph_2025_101764
crossref_primary_10_1007_s10742_022_00291_x
crossref_primary_10_1093_aje_kwac056
crossref_primary_10_1093_aje_kwab242
crossref_primary_10_1016_j_jclinepi_2021_01_022
crossref_primary_10_1097_EDE_0000000000001572
crossref_primary_10_1111_ppe_12856
crossref_primary_10_3390_pathogens12020326
crossref_primary_10_1093_epirev_mxab013
crossref_primary_10_1097_EDE_0000000000001694
crossref_primary_10_1093_ije_dyab061
crossref_primary_10_1136_jech_2017_209976
crossref_primary_10_1097_EDE_0000000000001061
crossref_primary_10_1097_EDE_0000000000000926
crossref_primary_10_1007_s40471_019_0179_y
crossref_primary_10_1093_aje_kwaa030
crossref_primary_10_1093_aje_kwaa270
crossref_primary_10_1097_QAI_0000000000002202
crossref_primary_10_1093_aje_kwab136
crossref_primary_10_1097_EDE_0000000000001469
crossref_primary_10_1016_j_addbeh_2018_10_033
crossref_primary_10_1093_aje_kwy228
crossref_primary_10_1007_s10803_023_06179_0
crossref_primary_10_1097_EDE_0000000000001867
crossref_primary_10_1136_bmjopen_2024_089218
crossref_primary_10_1016_j_cjca_2024_12_022
crossref_primary_10_1093_aje_kwac067
crossref_primary_10_1002_gepi_22324
crossref_primary_10_1093_aje_kwz030
crossref_primary_10_1002_aepp_13091
crossref_primary_10_1007_s10549_022_06695_0
crossref_primary_10_1093_aje_kwae367
crossref_primary_10_1186_s13047_020_0376_4
crossref_primary_10_1177_1403494819890784
crossref_primary_10_1097_EDE_0000000000000770
crossref_primary_10_1177_27550311241249137
crossref_primary_10_1016_j_childyouth_2021_106086
crossref_primary_10_1146_annurev_statistics_031017_100127
crossref_primary_10_5688_ajpe8537
crossref_primary_10_1093_ije_dyy179
crossref_primary_10_1007_s40471_025_00359_5
crossref_primary_10_1016_j_ajcnut_2023_05_006
crossref_primary_10_1093_aje_kwad031
crossref_primary_10_1097_COH_0000000000000768
crossref_primary_10_1097_EDE_0000000000000939
crossref_primary_10_1097_QAI_0000000000002037
crossref_primary_10_1016_j_dhjo_2019_100841
crossref_primary_10_1186_s12874_022_01675_w
crossref_primary_10_1093_aje_kwad008
crossref_primary_10_1097_EDE_0000000000000665
crossref_primary_10_1097_EDE_0000000000001633
crossref_primary_10_1007_s10654_019_00571_w
crossref_primary_10_1016_j_jclinepi_2022_11_011
crossref_primary_10_5812_ijem_95415
crossref_primary_10_1007_s10654_019_00532_3
crossref_primary_10_1098_rsos_220638
crossref_primary_10_1097_EDE_0000000000001516
crossref_primary_10_1093_ije_dyaa156
crossref_primary_10_1097_EDE_0000000000001230
crossref_primary_10_1097_EDE_0000000000001233
crossref_primary_10_1007_s00134_021_06370_w
crossref_primary_10_1016_j_jclinepi_2019_05_005
crossref_primary_10_1093_jrsssa_qnad068
crossref_primary_10_1097_EDE_0000000000000783
crossref_primary_10_1093_humrep_deaf045
crossref_primary_10_1002_dad2_12450
crossref_primary_10_1002_wics_1581
crossref_primary_10_1002_sim_9523
crossref_primary_10_1002_sim_70216
crossref_primary_10_1136_jech_2018_211829
crossref_primary_10_1002_acr_24865
crossref_primary_10_1136_bmjmed_2022_000399
crossref_primary_10_1002_cpt_1854
crossref_primary_10_1007_s10461_018_2269_0
crossref_primary_10_1080_1743727X_2021_1882416
crossref_primary_10_1093_aje_kwac200
crossref_primary_10_1093_aje_kwz217
crossref_primary_10_1089_aid_2020_0222
crossref_primary_10_1016_j_jclinepi_2018_12_011
crossref_primary_10_1097_EDE_0000000000001761
crossref_primary_10_1016_j_jth_2019_100661
crossref_primary_10_1007_s40471_020_00239_0
crossref_primary_10_1097_GOX_0000000000005907
crossref_primary_10_1093_aje_kwae182
crossref_primary_10_1186_s13104_024_06684_0
crossref_primary_10_1002_alz_12522
crossref_primary_10_1177_26320843211061298
crossref_primary_10_1002_sim_8963
crossref_primary_10_1002_pds_4403
crossref_primary_10_1097_EDE_0000000000001409
crossref_primary_10_1177_17407745221087465
crossref_primary_10_1007_s40471_018_0148_x
crossref_primary_10_1146_annurev_statistics_042522_103837
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1097/EDE.0000000000000664
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Public Health
EISSN 1531-5487
ExternalDocumentID 28346267
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R24 AI067039
– fundername: NIAID NIH HHS
  grantid: U01 AI103390
– fundername: NIAAA NIH HHS
  grantid: U01 AA020793
– fundername: NHLBI NIH HHS
  grantid: U01 HL146194
– fundername: NIAID NIH HHS
  grantid: P30 AI050410
– fundername: NICHD NIH HHS
  grantid: DP2 HD084070
– fundername: NHLBI NIH HHS
  grantid: U01 HL121812
– fundername: NIAID NIH HHS
  grantid: R01 AI100654
GroupedDBID ---
.-D
.55
.Z2
01R
0R~
1J1
40H
4Q1
4Q2
4Q3
53G
5GY
5VS
71W
77Y
7O~
8L-
AAAAV
AAAXR
AACGO
AAGIX
AAHPQ
AAIKC
AAIQE
AAMNW
AAMOA
AAMTA
AANCE
AAQKA
AARTV
AASCR
AASOK
AAXQO
AAYEP
ABASU
ABBHK
ABBUW
ABDIG
ABJNI
ABPLY
ABTLG
ABVCZ
ABXSQ
ABXVJ
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACHIC
ACHQT
ACIJW
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADFPA
ADGGA
ADHPY
ADNKB
ADQXQ
ADULT
AE3
AE6
AEETU
AENEX
AEUPB
AEXZC
AFBFQ
AFDTB
AFFNX
AFUWQ
AGINI
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
ANHSF
AOHHW
AOQMC
AQVQM
BOYCO
BQLVK
BS7
BYPQX
C45
CGR
CS3
CUY
CVF
DCCCD
DIWNM
DU5
DUNZO
E.X
EBS
ECM
EEVPB
EIF
EJD
ERAAH
EX3
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
H0~
HGD
HLJTE
HQ3
HTVGU
HZ~
IKREB
IKYAY
IN~
IPNFZ
IPSME
JAAYA
JBMMH
JENOY
JF9
JG8
JHFFW
JK3
JK8
JKQEH
JLS
JLXEF
JPM
JSG
JST
K8S
KD2
L-C
N9A
NPM
N~7
N~B
N~M
O9-
OAG
OAH
OCUKA
ODA
OLG
OLH
OLU
OLY
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
R58
RIG
RLZ
S4R
S4S
SA0
T8P
TEORI
TSPGW
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YCJ
YOC
ZFV
ZGI
ZZMQN
7X8
AAFWJ
ABPXF
ACBKD
ADKSD
ADSXY
ID FETCH-LOGICAL-c4334-cdc574248b3d95b623a5ff964e9d995a08335d3bbef118d42d09a991b5bf91002
IEDL.DBID 7X8
ISICitedReferencesCount 201
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402541400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1531-5487
IngestDate Sun Nov 09 09:04:58 EST 2025
Thu Apr 03 07:05:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4334-cdc574248b3d95b623a5ff964e9d995a08335d3bbef118d42d09a991b5bf91002
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 28346267
PQID 1881772975
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1881772975
pubmed_primary_28346267
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Epidemiology (Cambridge, Mass.)
PublicationTitleAlternate Epidemiology
PublicationYear 2017
References 29384787 - Epidemiology. 2018 Mar;29(2):e16
29023239 - Epidemiology. 2018 Mar;29(2):e13-e14
30721164 - Epidemiology. 2019 Mar;30(2):186-188
28346266 - Epidemiology. 2017 Jul;28(4):562-566
29023242 - Epidemiology. 2018 Mar;29(2):e14-e15
References_xml – reference: 29384787 - Epidemiology. 2018 Mar;29(2):e16
– reference: 28346266 - Epidemiology. 2017 Jul;28(4):562-566
– reference: 29023239 - Epidemiology. 2018 Mar;29(2):e13-e14
– reference: 29023242 - Epidemiology. 2018 Mar;29(2):e14-e15
– reference: 30721164 - Epidemiology. 2019 Mar;30(2):186-188
SSID ssj0017315
Score 2.615685
SecondaryResourceType review_article
Snippet Great care is taken in epidemiologic studies to ensure the internal validity of causal effect estimates; however, external validity has received considerably...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 553
SubjectTerms Bias
Causality
Epidemiologic Methods
Female
Humans
Male
Predictive Value of Tests
Reproducibility of Results
Statistics as Topic
United States
Title Generalizing Study Results: A Potential Outcomes Perspective
URI https://www.ncbi.nlm.nih.gov/pubmed/28346267
https://www.proquest.com/docview/1881772975
Volume 28
WOSCitedRecordID wos000402541400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6o80EQ75d5I4KvZb0uiQgydMMHnUUU9laSJoHBaKftBP31nvTCngTBPuShpW04nCTfd64AV0q4rkDyY7kJDoxKR3IEctKT0qeuJ31Vlcx_pOMxm0x43Bjciiasst0Tq41a5am1kfc8xjyLBGl0O393bNco611tWmisQidAKGO1mk6WXgRadzDARe05Fpm3qXOc9ob3w7p0YXv1bc2B30BmddiMtv87zR3YamAmGdR6sQsrOtuDzdpGR-rUo324aWpOT7_x_CI2ovCLvOhiMSuLazIgcV7aUCL8zPOixL_rgsTL1MwDeBsNX-8enKabgpOGQRA6qUoj5MEhk4HikUTYIyJjeD_UXHEeCdemX6lASm2QdKjQVy4XiB5lJA23hVoPYS3LM30MhCGFxftuYJC9MUUFc6VQHlVGc3xmunDZCidBbbUuCJHpfFEkS_F04aiWcDKvy2okCHRCpFf05A9vn8KGb8_XKm72DDoG16o-h_X0s5wWHxeVGuA4jp9-AE40ucs
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalizing+Study+Results%3A+A+Potential+Outcomes+Perspective&rft.jtitle=Epidemiology+%28Cambridge%2C+Mass.%29&rft.au=Lesko%2C+Catherine+R&rft.au=Buchanan%2C+Ashley+L&rft.au=Westreich%2C+Daniel&rft.au=Edwards%2C+Jessie+K&rft.date=2017-07-01&rft.issn=1531-5487&rft.eissn=1531-5487&rft.volume=28&rft.issue=4&rft.spage=553&rft_id=info:doi/10.1097%2FEDE.0000000000000664&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-5487&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-5487&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-5487&client=summon