Application of quantum-behaved particle swarm optimization to motor imagery EEG classification

In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of neural systems Ročník 23; číslo 6; s. 1350026
Hlavný autor: Hsu, Wei-Yen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Singapore 01.12.2013
Predmet:
ISSN:0129-0657, 1793-6462, 1793-6462
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.
AbstractList In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.
In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.
Author Hsu, Wei-Yen
Author_xml – sequence: 1
  givenname: Wei-Yen
  surname: Hsu
  fullname: Hsu, Wei-Yen
  organization: Department of Information Management, Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, No. 168, Sec. 1, University Rd., Min-Hsiung Township, Chia-yi County 621, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24156669$$D View this record in MEDLINE/PubMed
BookMark eNo1kEtPwzAQhC1URB_wA7ggH7kE_Ng4zbGqSkGqxIGeiVxnDUZxnMYJqPx6UrVII-1hPo12ZkpGdaiRkFvOHjgH8fjGuMiZSjMuU8aEkhdkwrNcJgqUGJHJ0U6O_phMY_xijEMG8ysyFsBTpVQ-Ie-Lpqmc0Z0LNQ2W7ntdd71Pdvipv7GkjW47Zyqk8Ue3noamc979nvAuUB-60FLn9Qe2B7parampdIzOniOvyaXVVcSb852R7dNqu3xONq_rl-VikxiQUiZYSpUzw6UEVhoAwDnYoaLRHAXTCmAHKKyFUmfaMCznYpBlyjJMtRYzcn-Kbdqw7zF2hXfRYFXpGkMfCw6Q5jxjGQzo3Rntdx7LommH79tD8T-J-AMlDmaN
CitedBy_id crossref_primary_10_1111_mice_12176
crossref_primary_10_3233_ICA_160517
crossref_primary_10_1016_j_future_2017_08_060
crossref_primary_10_1007_s00500_017_2930_y
crossref_primary_10_1016_j_tele_2016_01_003
crossref_primary_10_1109_JSEN_2020_3016402
crossref_primary_10_1016_j_jneumeth_2015_03_014
crossref_primary_10_3233_BME_151554
crossref_primary_10_1016_j_neucom_2017_08_065
crossref_primary_10_1111_mice_12156
crossref_primary_10_1111_mice_12113
crossref_primary_10_1007_s40473_024_00275_w
crossref_primary_10_3233_ICA_170545
crossref_primary_10_3389_fnbot_2017_00035
crossref_primary_10_3233_ICA_170573
crossref_primary_10_1016_j_tele_2017_09_001
crossref_primary_10_1016_j_neunet_2016_01_002
crossref_primary_10_3233_ICA_160533
crossref_primary_10_1177_1550059414538808
crossref_primary_10_3233_ICA_160536
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1142/S0129065713500263
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Computer Science
EISSN 1793-6462
ExternalDocumentID 24156669
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.DC
0R~
36B
4.4
53G
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CAG
CGR
COF
CS3
CUY
CVF
DU5
EBS
ECM
EIF
EJD
EMOBN
F5P
HZ~
NPM
O9-
P2P
P71
RWJ
WSC
7X8
ID FETCH-LOGICAL-c4333-ed3690c13340dc444e84f114ca1e20a644b4e2ff4da7ac0ed82d82f06f0e5aa2
IEDL.DBID 7X8
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326448400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0129-0657
1793-6462
IngestDate Fri Sep 05 08:23:03 EDT 2025
Thu Apr 03 07:01:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4333-ed3690c13340dc444e84f114ca1e20a644b4e2ff4da7ac0ed82d82f06f0e5aa2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24156669
PQID 1445917074
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1445917074
pubmed_primary_24156669
PublicationCentury 2000
PublicationDate 20131200
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131200
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of neural systems
PublicationTitleAlternate Int J Neural Syst
PublicationYear 2013
SSID ssj0014748
Score 2.1857302
Snippet In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1350026
SubjectTerms Algorithms
Brain-Computer Interfaces
Electroencephalography
Humans
Imagination - physiology
Quantum Theory
Signal Processing, Computer-Assisted
Somatosensory Cortex - physiology
Support Vector Machine
Title Application of quantum-behaved particle swarm optimization to motor imagery EEG classification
URI https://www.ncbi.nlm.nih.gov/pubmed/24156669
https://www.proquest.com/docview/1445917074
Volume 23
WOSCitedRecordID wos000326448400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qPHhxfju_iOA1rG2ytD3JkE0vjoE77GTJkhfwsHVbN8X_3pc0YydBEEpPKZSX915-7ys_Qh5SN8mTpYYluTFMaAlMiVwybniuEeDHAiJPNpEOBtl4nA9Dwq0KbZUbn-gdtSm1y5G3Efh3MLTAE-9xvmCONcpVVwOFxi5pcIQyzjDT8baKIFLPnuV0kEkhk1DVjEXSfvMJGNlxDHUuDuG_I0x_0vSb__3HI3IYMCbt1kpxTHZgdkKaG_4GGsz5lLx3t9VrWlq6WKOY11PmR_fB0HlQK1p9qeWUluhdpmFsk65KiptcLunH1N2C8U17vWeqHRR3vUd-zRkZ9XujpxcW-BaYFpxzBoZjrKwxahWR0UIIyIRFaWkVQxIpRE4TAYm1wqhU6QhMluBjI2kj6CiVnJO9WTmDS0IlaBCRBcgMrrZmksXaGsizmGuZ6qhF7jcCLFCdXY1CzaBcV8VWhC1yUe9CMa_v3SjqYFPmV3_4-pocJI64wjee3JCGRWOGW7KvP1cf1fLO6wm-B8PXH86HyWE
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+quantum-behaved+particle+swarm+optimization+to+motor+imagery+EEG+classification&rft.jtitle=International+journal+of+neural+systems&rft.au=Hsu%2C+Wei-Yen&rft.date=2013-12-01&rft.issn=1793-6462&rft.eissn=1793-6462&rft.volume=23&rft.issue=6&rft.spage=1350026&rft_id=info:doi/10.1142%2FS0129065713500263&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0129-0657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0129-0657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0129-0657&client=summon