Application of quantum-behaved particle swarm optimization to motor imagery EEG classification
In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction...
Uložené v:
| Vydané v: | International journal of neural systems Ročník 23; číslo 6; s. 1350026 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Singapore
01.12.2013
|
| Predmet: | |
| ISSN: | 0129-0657, 1793-6462, 1793-6462 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications. |
|---|---|
| AbstractList | In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications. In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications. |
| Author | Hsu, Wei-Yen |
| Author_xml | – sequence: 1 givenname: Wei-Yen surname: Hsu fullname: Hsu, Wei-Yen organization: Department of Information Management, Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, No. 168, Sec. 1, University Rd., Min-Hsiung Township, Chia-yi County 621, Taiwan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24156669$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kEtPwzAQhC1URB_wA7ggH7kE_Ng4zbGqSkGqxIGeiVxnDUZxnMYJqPx6UrVII-1hPo12ZkpGdaiRkFvOHjgH8fjGuMiZSjMuU8aEkhdkwrNcJgqUGJHJ0U6O_phMY_xijEMG8ysyFsBTpVQ-Ie-Lpqmc0Z0LNQ2W7ntdd71Pdvipv7GkjW47Zyqk8Ue3noamc979nvAuUB-60FLn9Qe2B7parampdIzOniOvyaXVVcSb852R7dNqu3xONq_rl-VikxiQUiZYSpUzw6UEVhoAwDnYoaLRHAXTCmAHKKyFUmfaMCznYpBlyjJMtRYzcn-Kbdqw7zF2hXfRYFXpGkMfCw6Q5jxjGQzo3Rntdx7LommH79tD8T-J-AMlDmaN |
| CitedBy_id | crossref_primary_10_1111_mice_12176 crossref_primary_10_3233_ICA_160517 crossref_primary_10_1016_j_future_2017_08_060 crossref_primary_10_1007_s00500_017_2930_y crossref_primary_10_1016_j_tele_2016_01_003 crossref_primary_10_1109_JSEN_2020_3016402 crossref_primary_10_1016_j_jneumeth_2015_03_014 crossref_primary_10_3233_BME_151554 crossref_primary_10_1016_j_neucom_2017_08_065 crossref_primary_10_1111_mice_12156 crossref_primary_10_1111_mice_12113 crossref_primary_10_1007_s40473_024_00275_w crossref_primary_10_3233_ICA_170545 crossref_primary_10_3389_fnbot_2017_00035 crossref_primary_10_3233_ICA_170573 crossref_primary_10_1016_j_tele_2017_09_001 crossref_primary_10_1016_j_neunet_2016_01_002 crossref_primary_10_3233_ICA_160533 crossref_primary_10_1177_1550059414538808 crossref_primary_10_3233_ICA_160536 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1142/S0129065713500263 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1793-6462 |
| ExternalDocumentID | 24156669 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- .DC 0R~ 36B 4.4 53G 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG CGR COF CS3 CUY CVF DU5 EBS ECM EIF EJD EMOBN F5P HZ~ NPM O9- P2P P71 RWJ WSC 7X8 |
| ID | FETCH-LOGICAL-c4333-ed3690c13340dc444e84f114ca1e20a644b4e2ff4da7ac0ed82d82f06f0e5aa2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326448400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0129-0657 1793-6462 |
| IngestDate | Fri Sep 05 08:23:03 EDT 2025 Thu Apr 03 07:01:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4333-ed3690c13340dc444e84f114ca1e20a644b4e2ff4da7ac0ed82d82f06f0e5aa2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 24156669 |
| PQID | 1445917074 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1445917074 pubmed_primary_24156669 |
| PublicationCentury | 2000 |
| PublicationDate | 20131200 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 20131200 |
| PublicationDecade | 2010 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | International journal of neural systems |
| PublicationTitleAlternate | Int J Neural Syst |
| PublicationYear | 2013 |
| SSID | ssj0014748 |
| Score | 2.1857302 |
| Snippet | In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1350026 |
| SubjectTerms | Algorithms Brain-Computer Interfaces Electroencephalography Humans Imagination - physiology Quantum Theory Signal Processing, Computer-Assisted Somatosensory Cortex - physiology Support Vector Machine |
| Title | Application of quantum-behaved particle swarm optimization to motor imagery EEG classification |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24156669 https://www.proquest.com/docview/1445917074 |
| Volume | 23 |
| WOSCitedRecordID | wos000326448400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qPHhxfju_iOA1rG2ytD3JkE0vjoE77GTJkhfwsHVbN8X_3pc0YydBEEpPKZSX915-7ys_Qh5SN8mTpYYluTFMaAlMiVwybniuEeDHAiJPNpEOBtl4nA9Dwq0KbZUbn-gdtSm1y5G3Efh3MLTAE-9xvmCONcpVVwOFxi5pcIQyzjDT8baKIFLPnuV0kEkhk1DVjEXSfvMJGNlxDHUuDuG_I0x_0vSb__3HI3IYMCbt1kpxTHZgdkKaG_4GGsz5lLx3t9VrWlq6WKOY11PmR_fB0HlQK1p9qeWUluhdpmFsk65KiptcLunH1N2C8U17vWeqHRR3vUd-zRkZ9XujpxcW-BaYFpxzBoZjrKwxahWR0UIIyIRFaWkVQxIpRE4TAYm1wqhU6QhMluBjI2kj6CiVnJO9WTmDS0IlaBCRBcgMrrZmksXaGsizmGuZ6qhF7jcCLFCdXY1CzaBcV8VWhC1yUe9CMa_v3SjqYFPmV3_4-pocJI64wjee3JCGRWOGW7KvP1cf1fLO6wm-B8PXH86HyWE |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+quantum-behaved+particle+swarm+optimization+to+motor+imagery+EEG+classification&rft.jtitle=International+journal+of+neural+systems&rft.au=Hsu%2C+Wei-Yen&rft.date=2013-12-01&rft.issn=1793-6462&rft.eissn=1793-6462&rft.volume=23&rft.issue=6&rft.spage=1350026&rft_id=info:doi/10.1142%2FS0129065713500263&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0129-0657&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0129-0657&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0129-0657&client=summon |