User Association for Load Balancing in Heterogeneous Cellular Networks

For small cell technology to significantly increase the capacity of tower-based cellular networks, mobile users will need to be actively pushed onto the more lightly loaded tiers (corresponding to, e.g., pico and femtocells), even if they offer a lower instantaneous SINR than the macrocell base stat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 12; no. 6; pp. 2706 - 2716
Main Authors: Qiaoyang Ye, Beiyu Rong, Yudong Chen, Al-Shalash, M., Caramanis, C., Andrews, J. G.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.06.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For small cell technology to significantly increase the capacity of tower-based cellular networks, mobile users will need to be actively pushed onto the more lightly loaded tiers (corresponding to, e.g., pico and femtocells), even if they offer a lower instantaneous SINR than the macrocell base station (BS). Optimizing a function of the long-term rate for each user requires (in general) a massive utility maximization problem over all the SINRs and BS loads. On the other hand, an actual implementation will likely resort to a simple biasing approach where a BS in tier j is treated as having its SINR multiplied by a factor A j ≥ 1, which makes it appear more attractive than the heavily-loaded macrocell. This paper bridges the gap between these approaches through several physical relaxations of the network-wide association problem, whose solution is NP hard. We provide a low-complexity distributed algorithm that converges to a near-optimal solution with a theoretical performance guarantee, and we observe that simple per-tier biasing loses surprisingly little, if the bias values A j are chosen carefully. Numerical results show a large (3.5x) throughput gain for cell-edge users and a 2x rate gain for median users relative to a maximizing received power association.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2013.040413.120676