SI-ATRP grafting of polymers from polydopamine-modified cellulose nanocrystals
This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based...
Gespeichert in:
| Veröffentlicht in: | Carbohydrate polymers Jg. 341; S. 122346 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
01.10.2024
Elsevier |
| Schlagworte: | |
| ISSN: | 0144-8617, 1879-1344, 1879-1344 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based on i) the stepwise modification of the CNCs with dopamine (DA) and α-bromoisobutyryl bromide (BiBB) (Protocol 1) and ii) the one-step treatment of the CNCs with a mixture of DA and BiBB-modified DA (Protocol 2), were compared. Only the CNC particles treated according to Protocol 1 guaranteed efficient anchoring of the SI-ATRP initiating sites in our experimental conditions (with limited impact on the CNCs crystalline structure), the coated layer being leached out by certain solvents in the case of Protocol 2. The brominated particles displaying the best performances were subsequently tested as potential ATRP macroinitiators, using methyl methacrylate (MMA) and styrene (St) as model monomers. Polymer-grafted particles were successfully obtained, with a grafting density twice as high for Sty as for MMA, demonstrating the validity of this strategy.
[Display omitted] |
|---|---|
| AbstractList | This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based on i) the stepwise modification of the CNCs with dopamine (DA) and α-bromoisobutyryl bromide (BiBB) (Protocol 1) and ii) the one-step treatment of the CNCs with a mixture of DA and BiBB-modified DA (Protocol 2), were compared. Only the CNC particles treated according to Protocol 1 guaranteed efficient anchoring of the SI-ATRP initiating sites in our experimental conditions (with limited impact on the CNCs crystalline structure), the coated layer being leached out by certain solvents in the case of Protocol 2. The brominated particles displaying the best performances were subsequently tested as potential ATRP macroinitiators, using methyl methacrylate (MMA) and styrene (St) as model monomers. Polymer-grafted particles were successfully obtained, with a grafting density twice as high for Sty as for MMA, demonstrating the validity of this strategy.This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based on i) the stepwise modification of the CNCs with dopamine (DA) and α-bromoisobutyryl bromide (BiBB) (Protocol 1) and ii) the one-step treatment of the CNCs with a mixture of DA and BiBB-modified DA (Protocol 2), were compared. Only the CNC particles treated according to Protocol 1 guaranteed efficient anchoring of the SI-ATRP initiating sites in our experimental conditions (with limited impact on the CNCs crystalline structure), the coated layer being leached out by certain solvents in the case of Protocol 2. The brominated particles displaying the best performances were subsequently tested as potential ATRP macroinitiators, using methyl methacrylate (MMA) and styrene (St) as model monomers. Polymer-grafted particles were successfully obtained, with a grafting density twice as high for Sty as for MMA, demonstrating the validity of this strategy. This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based on i) the stepwise modification of the CNCs with dopamine (DA) and α-bromoisobutyryl bromide (BiBB) (Protocol 1) and ii) the one-step treatment of the CNCs with a mixture of DA and BiBB-modified DA (Protocol 2), were compared. Only the CNC particles treated according to Protocol 1 guaranteed efficient anchoring of the SI-ATRP initiating sites in our experimental conditions (with limited impact on the CNCs crystalline structure), the coated layer being leached out by certain solvents in the case of Protocol 2. The brominated particles displaying the best performances were subsequently tested as potential ATRP macroinitiators, using methyl methacrylate (MMA) and styrene (St) as model monomers. Polymer-grafted particles were successfully obtained, with a grafting density twice as high for Sty as for MMA, demonstrating the validity of this strategy. This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based on i) the stepwise modification of the CNCs with dopamine (DA) and α-bromoisobutyryl bromide (BiBB) (Protocol 1) and ii) the one-step treatment of the CNCs with a mixture of DA and BiBB-modified DA (Protocol 2), were compared. Only the CNC particles treated according to Protocol 1 guaranteed efficient anchoring of the SI-ATRP initiating sites in our experimental conditions (with limited impact on the CNCs crystalline structure), the coated layer being leached out by certain solvents in the case of Protocol 2. The brominated particles displaying the best performances were subsequently tested as potential ATRP macroinitiators, using methyl methacrylate (MMA) and styrene (St) as model monomers. Polymer-grafted particles were successfully obtained, with a grafting density twice as high for Sty as for MMA, demonstrating the validity of this strategy. [Display omitted] |
| ArticleNumber | 122346 |
| Author | Harrisson, Simon Sèbe, Gilles Hou, Yelin Zhang, Zhen |
| Author_xml | – sequence: 1 givenname: Yelin surname: Hou fullname: Hou, Yelin organization: Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France – sequence: 2 givenname: Zhen surname: Zhang fullname: Zhang, Zhen email: zhangzhen@m.scnu.edu.cn organization: SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China – sequence: 3 givenname: Simon surname: Harrisson fullname: Harrisson, Simon organization: Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France – sequence: 4 givenname: Gilles surname: Sèbe fullname: Sèbe, Gilles email: gilles.sebe@u-bordeaux.fr organization: Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38876716$$D View this record in MEDLINE/PubMed https://hal.science/hal-04649417$$DView record in HAL |
| BookMark | eNqFkUtvEzEUhS1URNPCTwDNki4m9WtsRyxQVFFaKaIVlLXlx53iaGYc7Eml_HucTsqim3hzZes7x1fnnKGTIQ6A0EeC5wQTcbmeO5PsJnZziimfE0oZF2_QjCi5qAnj_ATNMOG8VoLIU3SW8xqXIwh-h06ZUlJIImbox6_bevnw8756TKYdw_BYxbYqrrseUq7aFPvnm48b04cB6j760AbwlYOu23YxQzWYIbq0y6Pp8nv0ti0DPhzmOfp9_e3h6qZe3X2_vVquascZHWtQjjaOUsdbYQw47Kl0DZEYrGWNJwxz1irLfGMFtlYwZYQ0XggmG6KYZefoYvL9Yzq9SaE3aaejCfpmudL7N8wFX3Ain0hhP0_sJsW_W8ij7kPer28GiNusGS2pLBq2oMdRLJRsMG9YQT8d0K3twf9f4iXaAnyZAJdizgla7cJoxhCHMZnQaYL1vki91oci9b5IPRVZ1M0r9csHx3RfJx2U9J8CJJ1dgMGBDwncqH0MRxz-AVLsuO4 |
| CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2025_146354 crossref_primary_10_1002_eem2_70105 crossref_primary_10_1016_j_ijbiomac_2025_142482 crossref_primary_10_1016_j_reactfunctpolym_2024_106137 crossref_primary_10_1016_j_biomaterials_2025_123404 crossref_primary_10_1002_adma_202501542 crossref_primary_10_1080_09205063_2025_2457265 crossref_primary_10_1016_j_lwt_2025_117904 crossref_primary_10_1016_j_ijbiomac_2024_139379 crossref_primary_10_1021_acsapm_5c02861 crossref_primary_10_1016_j_carbpol_2025_123731 crossref_primary_10_1016_j_ijbiomac_2024_136497 |
| Cites_doi | 10.1021/acsmacrolett.6b00099 10.1002/pola.29310 10.1016/j.carbpol.2021.118405 10.1021/la204831b 10.1002/mren.201100024 10.1039/C9MH01197H 10.1021/ja00529a063 10.1016/j.cej.2016.02.057 10.1021/acs.chemrev.7b00627 10.1021/acs.biomac.1c01050 10.1021/acs.chemmater.7b04319 10.1021/acs.iecr.8b02373 10.1021/cr400407a 10.1177/004051755902901003 10.1016/j.fuel.2021.122678 10.1016/j.ijbiomac.2023.126734 10.1002/admi.201601192 10.1016/j.tca.2006.01.017 10.1016/j.colsurfb.2022.112554 10.1016/j.carbpol.2018.10.050 10.1016/j.cogsc.2020.100439 10.1016/j.desal.2021.115385 10.1039/c3py00181d 10.1002/app.51458 10.1126/science.1147241 10.1039/C5PY01858G 10.1016/j.carbpol.2017.03.077 10.1016/j.carbpol.2009.04.032 10.1021/bm201777j 10.1021/ma00149a010 10.1016/j.msec.2019.110157 10.1016/j.polymer.2011.03.027 10.1016/j.eurpolymj.2018.07.033 10.1021/acs.macromol.8b00733 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 1XC VOOES |
| DOI | 10.1016/j.carbpol.2024.122346 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1879-1344 |
| ExternalDocumentID | oai:HAL:hal-04649417v1 38876716 10_1016_j_carbpol_2024_122346 S0144861724005721 |
| Genre | Journal Article |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SAB SDF SDG SDP SES SEW SPC SPCBC SSA SSK SSU SSZ T5K Y6R ~G- ~KM 53G 9DU AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AGRDE AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLV HMS HVGLF HZ~ LW9 M24 M2Y M41 R2- SCB SMS SOC WUQ XPP ~HD AGCQF AGRNS BNPGV NPM SSH 7X8 7S9 L.6 1XC VOOES |
| ID | FETCH-LOGICAL-c432t-e8c25c22c4f6aaec0d27c5170ebb35d13043f8b3d5b60bb638a67ad66375183b3 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001263731600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0144-8617 1879-1344 |
| IngestDate | Mon Nov 24 06:20:44 EST 2025 Thu Oct 02 23:00:04 EDT 2025 Thu Oct 02 17:43:46 EDT 2025 Mon Jul 21 06:06:08 EDT 2025 Tue Nov 18 22:18:54 EST 2025 Sat Nov 29 02:45:27 EST 2025 Tue Jun 18 08:51:19 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Polydopamine Polystyrene Cellulose nanocrystals Polymethyl methacrylate SI-ATRP polymethyl methacrylate polydopamine polystyrene |
| Language | English |
| License | Copyright © 2024 Elsevier Ltd. All rights reserved. licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c432t-e8c25c22c4f6aaec0d27c5170ebb35d13043f8b3d5b60bb638a67ad66375183b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6267-2599 0000-0001-5057-1504 |
| OpenAccessLink | https://hal.science/hal-04649417 |
| PMID | 38876716 |
| PQID | 3068750453 |
| PQPubID | 23479 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04649417v1 proquest_miscellaneous_3206195392 proquest_miscellaneous_3068750453 pubmed_primary_38876716 crossref_citationtrail_10_1016_j_carbpol_2024_122346 crossref_primary_10_1016_j_carbpol_2024_122346 elsevier_sciencedirect_doi_10_1016_j_carbpol_2024_122346 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 2024-10-00 2024-Oct-01 20241001 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Carbohydrate polymers |
| PublicationTitleAlternate | Carbohydr Polym |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Sun, Xiao, Nie, Wang, Bai, Chen, Wei (bb0105) 2022; 216 Huang, Liu, Xu, Mao, Huang, Deng, Wei (bb0040) 2020; 106 Sebe, Ham-Pichavant, Ibarboure, Koffi, Tingaut (bb0090) 2012; 13 Chun-xiang, Huai-yu, Ming-hua, Shi-yu, Jia-jun (bb0020) 2009; 78 Atalla, Gast, Sindorf, Bartuska, Maciel (bb0005) 1980; 102 Song, Ye, Lu, Chen, Wang, Matyjaszewski (bb0100) 2016; 5 Kohri, Kohma, Shinoda, Yamauchi, Yagai, Kojima, Kishikawa (bb0050) 2013; 4 Li, Wang, Li, Zhu (bb0065) 2011; 5 Segal, Creely, Martin, Conrad (bb0095) 1959; 29 Zeng, Wen, Ye, Huo, Wu, Wang, Yan, Matyjaszewski, Lu, Chen (bb0145) 2017; 29 Brand, Pecastaings, Sèbe (bb0015) 2017; 169 Wang, Meng, Li, Sun, Zhan, Ge, Chen (bb0120) 2019; 57 Dreyer, Miller, Freeman, Paul, Bielawski (bb0030) 2012; 28 Hirata, Kashiwagi, Brown (bb0035) 1985; 18 Kobayashi, Nakajima (bb0045) 2021; 28 Wohlhauser, Rader, Weder (bb0130) 2022; 23 Lee, Dellatore, Miller, Messersmith (bb0060) 2007; 318 Liu, Ai, Lu (bb0070) 2014; 114 Qin, Liu, Cao, Lu, Nie, Cheng, Zhang, Liu, An (bb0085) 2023; 253 Yang, Zhang, Chen, Liu, Wang, Li (bb0140) 2020; 7 Yang, Liu, Zhang, Chen, Ye, Rahaman (bb0135) 2022; 521 Zheng, Clemons, Pilla (bb0165) 2021; 271 Zhang, Wang, Tam, Sebe (bb0160) 2019; 205 Meneghetti, Qutubuddin (bb0080) 2006; 442 Dong, Liu, Xiong, Sheng, Lin, Zhou, Yang (bb0025) 2018; 57 Barclay, Hegab, Clarke, Ginic-Markovic (bb0010) 2017; 4 Velvizhi, Goswami, Shetti, Ahmad, Kishore Pant, Aminabhavi (bb0115) 2022; 313 Wohlhauser, Delepierre, Labet, Morandi, Thielemans, Weder, Zoppe (bb0125) 2018; 51 Kopeć, Spanjers, Scavo, Ernens, Duvigneau, Julius Vancso (bb0055) 2018; 106 Luo, Zhao, Fei, Liu, Liu (bb0075) 2016; 293 Zhu, Edmondson (bb0170) 2011; 52 Zhang, Gieseler, Jordan (bb0150) 2016; 7 Zhang, Sèbe, Hou, Wang, Huang, Zhou (bb0155) 2021; 138 Thomas, Raj, Joy, Moores, Drisko, Sanchez (bb0110) 2018; 118 Luo (10.1016/j.carbpol.2024.122346_bb0075) 2016; 293 Li (10.1016/j.carbpol.2024.122346_bb0065) 2011; 5 Meneghetti (10.1016/j.carbpol.2024.122346_bb0080) 2006; 442 Sun (10.1016/j.carbpol.2024.122346_bb0105) 2022; 216 Qin (10.1016/j.carbpol.2024.122346_bb0085) 2023; 253 Song (10.1016/j.carbpol.2024.122346_bb0100) 2016; 5 Yang (10.1016/j.carbpol.2024.122346_bb0140) 2020; 7 Lee (10.1016/j.carbpol.2024.122346_bb0060) 2007; 318 Yang (10.1016/j.carbpol.2024.122346_bb0135) 2022; 521 Zhu (10.1016/j.carbpol.2024.122346_bb0170) 2011; 52 Sebe (10.1016/j.carbpol.2024.122346_bb0090) 2012; 13 Zhang (10.1016/j.carbpol.2024.122346_bb0155) 2021; 138 Kopeć (10.1016/j.carbpol.2024.122346_bb0055) 2018; 106 Dreyer (10.1016/j.carbpol.2024.122346_bb0030) 2012; 28 Thomas (10.1016/j.carbpol.2024.122346_bb0110) 2018; 118 Barclay (10.1016/j.carbpol.2024.122346_bb0010) 2017; 4 Kobayashi (10.1016/j.carbpol.2024.122346_bb0045) 2021; 28 Segal (10.1016/j.carbpol.2024.122346_bb0095) 1959; 29 Zheng (10.1016/j.carbpol.2024.122346_bb0165) 2021; 271 Dong (10.1016/j.carbpol.2024.122346_bb0025) 2018; 57 Zhang (10.1016/j.carbpol.2024.122346_bb0160) 2019; 205 Kohri (10.1016/j.carbpol.2024.122346_bb0050) 2013; 4 Hirata (10.1016/j.carbpol.2024.122346_bb0035) 1985; 18 Wohlhauser (10.1016/j.carbpol.2024.122346_bb0125) 2018; 51 Wohlhauser (10.1016/j.carbpol.2024.122346_bb0130) 2022; 23 Velvizhi (10.1016/j.carbpol.2024.122346_bb0115) 2022; 313 Wang (10.1016/j.carbpol.2024.122346_bb0120) 2019; 57 Chun-xiang (10.1016/j.carbpol.2024.122346_bb0020) 2009; 78 Brand (10.1016/j.carbpol.2024.122346_bb0015) 2017; 169 Zeng (10.1016/j.carbpol.2024.122346_bb0145) 2017; 29 Atalla (10.1016/j.carbpol.2024.122346_bb0005) 1980; 102 Liu (10.1016/j.carbpol.2024.122346_bb0070) 2014; 114 Huang (10.1016/j.carbpol.2024.122346_bb0040) 2020; 106 Zhang (10.1016/j.carbpol.2024.122346_bb0150) 2016; 7 |
| References_xml | – volume: 28 year: 2021 ident: bb0045 article-title: Sustainable development goals for advanced materials provided by industrial wastes and biomass sources publication-title: Current Opinion in Green and Sustainable Chemistry – volume: 29 start-page: 10212 year: 2017 end-page: 10219 ident: bb0145 article-title: Controlled architecture of hybrid polymer nanocapsules with tunable morphologies by manipulating surface-initiated ARGET ATRP from hydrothermally modified polydopamine publication-title: Chemistry of Materials – volume: 106 start-page: 291 year: 2018 end-page: 296 ident: bb0055 article-title: Surface-initiated ATRP from polydopamine-modified TiO publication-title: European Polymer Journal – volume: 5 start-page: 467 year: 2011 end-page: 478 ident: bb0065 article-title: Kinetics and modeling of solution ARGET ATRP of styrene, butyl acrylate, and methyl methacrylate publication-title: Macromolecular Reaction Engineering – volume: 7 start-page: 746 year: 2020 end-page: 761 ident: bb0140 article-title: Recent developments in polydopamine fluorescent nanomaterials publication-title: Materials Horizons – volume: 5 start-page: 382 year: 2016 end-page: 386 ident: bb0100 article-title: Surface-initiated ARGET ATRP of poly(glycidyl methacrylate) from carbon nanotubes via bioinspired catechol chemistry for efficient adsorption of uranium ions publication-title: ACS Macro Letters – volume: 313 year: 2022 ident: bb0115 article-title: Valorisation of lignocellulosic biomass to value-added products: Paving the pathway towards low-carbon footprint publication-title: Fuel – volume: 29 start-page: 786 year: 1959 end-page: 794 ident: bb0095 article-title: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer publication-title: Textile Research Journal – volume: 102 start-page: 3249 year: 1980 end-page: 3251 ident: bb0005 article-title: Carbon-13 NMR spectra of cellulose polymorphs publication-title: Journal of the American Chemical Society – volume: 138 year: 2021 ident: bb0155 article-title: Grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization publication-title: Journal of Applied Polymer Science – volume: 28 start-page: 6428 year: 2012 end-page: 6435 ident: bb0030 article-title: Elucidating the structure of poly(dopamine) publication-title: Langmuir – volume: 4 year: 2017 ident: bb0010 article-title: Versatile surface modification using polydopamine and related polycatecholamines: Chemistry, structure, and applications publication-title: Advanced Materials Interfaces – volume: 169 start-page: 189 year: 2017 end-page: 197 ident: bb0015 article-title: A versatile method for the surface tailoring of cellulose nanocrystal building blocks by acylation with functional vinyl esters publication-title: Carbohydrate Polymers – volume: 7 start-page: 775 year: 2016 end-page: 779 ident: bb0150 article-title: Lights on! A significant photoenhancement effect on ATRP by ambient laboratory light publication-title: Polymer Chemistry – volume: 253 year: 2023 ident: bb0085 article-title: Polydopamine modified cellulose nanocrystals (CNC) for efficient cellulase immobilization towards advanced bamboo fiber flexibility and tissue softness publication-title: International Journal of Biological Macromolecules – volume: 106 year: 2020 ident: bb0040 article-title: Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP publication-title: Materials Science and Engineering C – volume: 52 start-page: 2141 year: 2011 end-page: 2149 ident: bb0170 article-title: Polydopamine-melanin initiators for surface-initiated ATRP publication-title: Polymer – volume: 114 start-page: 5057 year: 2014 end-page: 5115 ident: bb0070 article-title: Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields publication-title: Chemical Reviews – volume: 78 start-page: 432 year: 2009 end-page: 438 ident: bb0020 article-title: Preparation of cellulose graft poly(methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid publication-title: Carbohydrate Polymers – volume: 216 year: 2022 ident: bb0105 article-title: Fabrication of Janus-type nanocomposites from cellulose nanocrystals for self-healing hydrogels’ flexible sensors publication-title: Colloids and Surfaces B: Biointerfaces – volume: 18 start-page: 1410 year: 1985 end-page: 1418 ident: bb0035 article-title: Thermal and oxidative degradation of poly(methyl methacrylate): Weight loss publication-title: Macromolecules – volume: 293 start-page: 171 year: 2016 end-page: 181 ident: bb0075 article-title: Mussel inspired preparation of polymer grafted graphene as a bridge between covalent and noncovalent methods publication-title: Chemical Engineering Journal – volume: 442 start-page: 74 year: 2006 end-page: 77 ident: bb0080 article-title: Synthesis, thermal properties and applications of polymer-clay nanocomposites publication-title: Thermochimica Acta – volume: 318 start-page: 426 year: 2007 end-page: 430 ident: bb0060 article-title: Mussel-inspired surface chemistry for multifunctional coatings publication-title: Science – volume: 205 start-page: 322 year: 2019 end-page: 329 ident: bb0160 article-title: A comparative study on grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization (ATRP) and activator re-generated by electron transfer ATRP publication-title: Carbohydrate Polymers – volume: 521 year: 2022 ident: bb0135 article-title: High performance nanocomposite nanofiltration membranes with polydopamine-modified cellulose nanocrystals for efficient dye/salt separation publication-title: Desalination – volume: 23 start-page: 699 year: 2022 end-page: 707 ident: bb0130 article-title: Facile method to determine the molecular weight of polymer grafts grown from cellulose nanocrystals publication-title: Biomacromolecules – volume: 271 year: 2021 ident: bb0165 article-title: Grafting PEG on cellulose nanocrystals via polydopamine chemistry and the effects of PEG graft length on the mechanical performance of composite film publication-title: Carbohydrate Polymers – volume: 57 start-page: 689 year: 2019 end-page: 698 ident: bb0120 article-title: Polymer brushes grafted from graphene via bioinspired polydopamine chemistry and activators regenerated by electron transfer atom transfer radical polymerization publication-title: Journal of Polymer Science, Part A: Polymer Chemistry – volume: 57 start-page: 12662 year: 2018 end-page: 12669 ident: bb0025 article-title: Preparation of UV-blocking poly(vinylidene fluoride) films through SI-AGET ATRP using a colorless polydopamine initiator layer publication-title: Industrial & Engineering Chemistry Research – volume: 4 start-page: 2696 year: 2013 end-page: 2702 ident: bb0050 article-title: A colorless functional polydopamine thin layer as a basis for polymer capsules publication-title: Polymer Chemistry – volume: 118 start-page: 11575 year: 2018 end-page: 11625 ident: bb0110 article-title: Nanocellulose, a versatile green platform: From biosources to materials and their applications publication-title: Chemical Reviews – volume: 51 start-page: 6157 year: 2018 end-page: 6189 ident: bb0125 article-title: Grafting polymers from cellulose nanocrystals: Synthesis, properties, and applications publication-title: Macromolecules – volume: 13 start-page: 570 year: 2012 end-page: 578 ident: bb0090 article-title: Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates publication-title: Biomacromolecules – volume: 5 start-page: 382 issue: 3 year: 2016 ident: 10.1016/j.carbpol.2024.122346_bb0100 article-title: Surface-initiated ARGET ATRP of poly(glycidyl methacrylate) from carbon nanotubes via bioinspired catechol chemistry for efficient adsorption of uranium ions publication-title: ACS Macro Letters doi: 10.1021/acsmacrolett.6b00099 – volume: 57 start-page: 689 issue: 6 year: 2019 ident: 10.1016/j.carbpol.2024.122346_bb0120 article-title: Polymer brushes grafted from graphene via bioinspired polydopamine chemistry and activators regenerated by electron transfer atom transfer radical polymerization publication-title: Journal of Polymer Science, Part A: Polymer Chemistry doi: 10.1002/pola.29310 – volume: 271 year: 2021 ident: 10.1016/j.carbpol.2024.122346_bb0165 article-title: Grafting PEG on cellulose nanocrystals via polydopamine chemistry and the effects of PEG graft length on the mechanical performance of composite film publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2021.118405 – volume: 28 start-page: 6428 issue: 15 year: 2012 ident: 10.1016/j.carbpol.2024.122346_bb0030 article-title: Elucidating the structure of poly(dopamine) publication-title: Langmuir doi: 10.1021/la204831b – volume: 5 start-page: 467 issue: 9–10 year: 2011 ident: 10.1016/j.carbpol.2024.122346_bb0065 article-title: Kinetics and modeling of solution ARGET ATRP of styrene, butyl acrylate, and methyl methacrylate publication-title: Macromolecular Reaction Engineering doi: 10.1002/mren.201100024 – volume: 7 start-page: 746 issue: 3 year: 2020 ident: 10.1016/j.carbpol.2024.122346_bb0140 article-title: Recent developments in polydopamine fluorescent nanomaterials publication-title: Materials Horizons doi: 10.1039/C9MH01197H – volume: 102 start-page: 3249 issue: 9 year: 1980 ident: 10.1016/j.carbpol.2024.122346_bb0005 article-title: Carbon-13 NMR spectra of cellulose polymorphs publication-title: Journal of the American Chemical Society doi: 10.1021/ja00529a063 – volume: 293 start-page: 171 year: 2016 ident: 10.1016/j.carbpol.2024.122346_bb0075 article-title: Mussel inspired preparation of polymer grafted graphene as a bridge between covalent and noncovalent methods publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2016.02.057 – volume: 118 start-page: 11575 issue: 24 year: 2018 ident: 10.1016/j.carbpol.2024.122346_bb0110 article-title: Nanocellulose, a versatile green platform: From biosources to materials and their applications publication-title: Chemical Reviews doi: 10.1021/acs.chemrev.7b00627 – volume: 23 start-page: 699 issue: 3 year: 2022 ident: 10.1016/j.carbpol.2024.122346_bb0130 article-title: Facile method to determine the molecular weight of polymer grafts grown from cellulose nanocrystals publication-title: Biomacromolecules doi: 10.1021/acs.biomac.1c01050 – volume: 29 start-page: 10212 issue: 23 year: 2017 ident: 10.1016/j.carbpol.2024.122346_bb0145 article-title: Controlled architecture of hybrid polymer nanocapsules with tunable morphologies by manipulating surface-initiated ARGET ATRP from hydrothermally modified polydopamine publication-title: Chemistry of Materials doi: 10.1021/acs.chemmater.7b04319 – volume: 57 start-page: 12662 issue: 38 year: 2018 ident: 10.1016/j.carbpol.2024.122346_bb0025 article-title: Preparation of UV-blocking poly(vinylidene fluoride) films through SI-AGET ATRP using a colorless polydopamine initiator layer publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.8b02373 – volume: 114 start-page: 5057 issue: 9 year: 2014 ident: 10.1016/j.carbpol.2024.122346_bb0070 article-title: Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields publication-title: Chemical Reviews doi: 10.1021/cr400407a – volume: 29 start-page: 786 issue: 10 year: 1959 ident: 10.1016/j.carbpol.2024.122346_bb0095 article-title: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer publication-title: Textile Research Journal doi: 10.1177/004051755902901003 – volume: 313 year: 2022 ident: 10.1016/j.carbpol.2024.122346_bb0115 article-title: Valorisation of lignocellulosic biomass to value-added products: Paving the pathway towards low-carbon footprint publication-title: Fuel doi: 10.1016/j.fuel.2021.122678 – volume: 253 year: 2023 ident: 10.1016/j.carbpol.2024.122346_bb0085 article-title: Polydopamine modified cellulose nanocrystals (CNC) for efficient cellulase immobilization towards advanced bamboo fiber flexibility and tissue softness publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2023.126734 – volume: 4 issue: 19 year: 2017 ident: 10.1016/j.carbpol.2024.122346_bb0010 article-title: Versatile surface modification using polydopamine and related polycatecholamines: Chemistry, structure, and applications publication-title: Advanced Materials Interfaces doi: 10.1002/admi.201601192 – volume: 442 start-page: 74 issue: 1–2 year: 2006 ident: 10.1016/j.carbpol.2024.122346_bb0080 article-title: Synthesis, thermal properties and applications of polymer-clay nanocomposites publication-title: Thermochimica Acta doi: 10.1016/j.tca.2006.01.017 – volume: 216 year: 2022 ident: 10.1016/j.carbpol.2024.122346_bb0105 article-title: Fabrication of Janus-type nanocomposites from cellulose nanocrystals for self-healing hydrogels’ flexible sensors publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2022.112554 – volume: 205 start-page: 322 year: 2019 ident: 10.1016/j.carbpol.2024.122346_bb0160 article-title: A comparative study on grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization (ATRP) and activator re-generated by electron transfer ATRP publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.10.050 – volume: 28 year: 2021 ident: 10.1016/j.carbpol.2024.122346_bb0045 article-title: Sustainable development goals for advanced materials provided by industrial wastes and biomass sources publication-title: Current Opinion in Green and Sustainable Chemistry doi: 10.1016/j.cogsc.2020.100439 – volume: 521 year: 2022 ident: 10.1016/j.carbpol.2024.122346_bb0135 article-title: High performance nanocomposite nanofiltration membranes with polydopamine-modified cellulose nanocrystals for efficient dye/salt separation publication-title: Desalination doi: 10.1016/j.desal.2021.115385 – volume: 4 start-page: 2696 issue: 9 year: 2013 ident: 10.1016/j.carbpol.2024.122346_bb0050 article-title: A colorless functional polydopamine thin layer as a basis for polymer capsules publication-title: Polymer Chemistry doi: 10.1039/c3py00181d – volume: 138 issue: 48 year: 2021 ident: 10.1016/j.carbpol.2024.122346_bb0155 article-title: Grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization publication-title: Journal of Applied Polymer Science doi: 10.1002/app.51458 – volume: 318 start-page: 426 issue: 5849 year: 2007 ident: 10.1016/j.carbpol.2024.122346_bb0060 article-title: Mussel-inspired surface chemistry for multifunctional coatings publication-title: Science doi: 10.1126/science.1147241 – volume: 7 start-page: 775 issue: 4 year: 2016 ident: 10.1016/j.carbpol.2024.122346_bb0150 article-title: Lights on! A significant photoenhancement effect on ATRP by ambient laboratory light publication-title: Polymer Chemistry doi: 10.1039/C5PY01858G – volume: 169 start-page: 189 year: 2017 ident: 10.1016/j.carbpol.2024.122346_bb0015 article-title: A versatile method for the surface tailoring of cellulose nanocrystal building blocks by acylation with functional vinyl esters publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.03.077 – volume: 78 start-page: 432 issue: 3 year: 2009 ident: 10.1016/j.carbpol.2024.122346_bb0020 article-title: Preparation of cellulose graft poly(methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2009.04.032 – volume: 13 start-page: 570 issue: 2 year: 2012 ident: 10.1016/j.carbpol.2024.122346_bb0090 article-title: Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates publication-title: Biomacromolecules doi: 10.1021/bm201777j – volume: 18 start-page: 1410 issue: 7 year: 1985 ident: 10.1016/j.carbpol.2024.122346_bb0035 article-title: Thermal and oxidative degradation of poly(methyl methacrylate): Weight loss publication-title: Macromolecules doi: 10.1021/ma00149a010 – volume: 106 year: 2020 ident: 10.1016/j.carbpol.2024.122346_bb0040 article-title: Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP publication-title: Materials Science and Engineering C doi: 10.1016/j.msec.2019.110157 – volume: 52 start-page: 2141 issue: 10 year: 2011 ident: 10.1016/j.carbpol.2024.122346_bb0170 article-title: Polydopamine-melanin initiators for surface-initiated ATRP publication-title: Polymer doi: 10.1016/j.polymer.2011.03.027 – volume: 106 start-page: 291 year: 2018 ident: 10.1016/j.carbpol.2024.122346_bb0055 article-title: Surface-initiated ATRP from polydopamine-modified TiO2 nanoparticles publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2018.07.033 – volume: 51 start-page: 6157 issue: 16 year: 2018 ident: 10.1016/j.carbpol.2024.122346_bb0125 article-title: Grafting polymers from cellulose nanocrystals: Synthesis, properties, and applications publication-title: Macromolecules doi: 10.1021/acs.macromol.8b00733 |
| SSID | ssj0000610 |
| Score | 2.5285907 |
| Snippet | This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals... |
| SourceID | hal proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 122346 |
| SubjectTerms | bromination cellulose Cellulose nanocrystals Chemical Sciences crystal structure dopamine nanocrystals Polydopamine polymerization Polymers Polymethyl methacrylate Polystyrene SI-ATRP styrene |
| Title | SI-ATRP grafting of polymers from polydopamine-modified cellulose nanocrystals |
| URI | https://dx.doi.org/10.1016/j.carbpol.2024.122346 https://www.ncbi.nlm.nih.gov/pubmed/38876716 https://www.proquest.com/docview/3068750453 https://www.proquest.com/docview/3206195392 https://hal.science/hal-04649417 |
| Volume | 341 |
| WOSCitedRecordID | wos001263731600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1344 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000610 issn: 0144-8617 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdYhwQvE990wBQQb8iliZ3YeayqQYdQNdEiVbxEsePQTm0ype20_vfcxUla2MYAiZeotRq78f1i_-58H4S8NaHkScJS2jWuplzHIVWhdGmqUk93ExP4vi02IYZDOZmEp5Xb2LIsJyCyTF5ehuf_VdTQBsLG0Nm_EHfTKTTAZxA6XEHscP0jwY9OaG_85fTd9yJOG5_mfL5BA7WNJsFvCSjLC2CYdJEnsxR5KJrw13N0X8_iLNfFBnjjfLlLXvtxofLpJsHsEk2XDS7ydbmcY3z7FWv0t-k24mwQF7CwVIFeo9li6wcwKk_tpSptrB8xSPEno4THG_e2ylJWR8tsXZOs8ZJTGdhYzY6xC64UIXWZzQFZr8jM5sK6srpbQ8MZaO6Fgqfs4MgdFwgO_yWbdrk_o98ax-HQTdYXmG1g3xN-KFtkv3dyPPm0s2OXWSua_7eN9Hp_7WA3cZi9KTrT3qSplIxl_IAcVKqG07MQeUjumOwRudevK_w9JsMKKk4NFSdPnVquDkLFuRYqTgMVZxcqT8jXD8fj_oBW9TWo5sxbUSO152vP0zwN4tjAq-kJ7buia5RifgLshrNUKpb4KugqBSt1HIg4AY6KZ3VMsaekleWZeU4c6AgDvlwJ2j-HTQNZL7AADzo1STdI24TXMxbpKvk81kCZR7WX4VlUTXSEEx3ZiW6TTnPbuc2-ctsNshZHVFFISw0jwNBtt74B8TXDYNr1Qe9zhG14_B9yV1y4bfK6lm4EwsLpjjOTr5cRqN4SSyX47De_8QBpoQ8qSZs8s9BoxmOw2wfCDQ7__QlekPvbd_Elaa2KtXlF7uqL1WxZHJE9MZFHFfR_AA1QxJA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SI-ATRP+grafting+of+polymers+from+polydopamine-modified+cellulose+nanocrystals&rft.jtitle=Carbohydrate+polymers&rft.au=Hou%2C+Yelin&rft.au=Zhang%2C+Zhen&rft.au=Harrisson%2C+Simon&rft.au=S%C3%A8be%2C+Gilles&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0144-8617&rft.eissn=1879-1344&rft.volume=341&rft_id=info:doi/10.1016%2Fj.carbpol.2024.122346&rft.externalDocID=S0144861724005721 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon |