SI-ATRP grafting of polymers from polydopamine-modified cellulose nanocrystals

This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers Jg. 341; S. 122346
Hauptverfasser: Hou, Yelin, Zhang, Zhen, Harrisson, Simon, Sèbe, Gilles
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 01.10.2024
Elsevier
Schlagworte:
ISSN:0144-8617, 1879-1344, 1879-1344
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based on i) the stepwise modification of the CNCs with dopamine (DA) and α-bromoisobutyryl bromide (BiBB) (Protocol 1) and ii) the one-step treatment of the CNCs with a mixture of DA and BiBB-modified DA (Protocol 2), were compared. Only the CNC particles treated according to Protocol 1 guaranteed efficient anchoring of the SI-ATRP initiating sites in our experimental conditions (with limited impact on the CNCs crystalline structure), the coated layer being leached out by certain solvents in the case of Protocol 2. The brominated particles displaying the best performances were subsequently tested as potential ATRP macroinitiators, using methyl methacrylate (MMA) and styrene (St) as model monomers. Polymer-grafted particles were successfully obtained, with a grafting density twice as high for Sty as for MMA, demonstrating the validity of this strategy. [Display omitted]
AbstractList This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based on i) the stepwise modification of the CNCs with dopamine (DA) and α-bromoisobutyryl bromide (BiBB) (Protocol 1) and ii) the one-step treatment of the CNCs with a mixture of DA and BiBB-modified DA (Protocol 2), were compared. Only the CNC particles treated according to Protocol 1 guaranteed efficient anchoring of the SI-ATRP initiating sites in our experimental conditions (with limited impact on the CNCs crystalline structure), the coated layer being leached out by certain solvents in the case of Protocol 2. The brominated particles displaying the best performances were subsequently tested as potential ATRP macroinitiators, using methyl methacrylate (MMA) and styrene (St) as model monomers. Polymer-grafted particles were successfully obtained, with a grafting density twice as high for Sty as for MMA, demonstrating the validity of this strategy.This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based on i) the stepwise modification of the CNCs with dopamine (DA) and α-bromoisobutyryl bromide (BiBB) (Protocol 1) and ii) the one-step treatment of the CNCs with a mixture of DA and BiBB-modified DA (Protocol 2), were compared. Only the CNC particles treated according to Protocol 1 guaranteed efficient anchoring of the SI-ATRP initiating sites in our experimental conditions (with limited impact on the CNCs crystalline structure), the coated layer being leached out by certain solvents in the case of Protocol 2. The brominated particles displaying the best performances were subsequently tested as potential ATRP macroinitiators, using methyl methacrylate (MMA) and styrene (St) as model monomers. Polymer-grafted particles were successfully obtained, with a grafting density twice as high for Sty as for MMA, demonstrating the validity of this strategy.
This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based on i) the stepwise modification of the CNCs with dopamine (DA) and α-bromoisobutyryl bromide (BiBB) (Protocol 1) and ii) the one-step treatment of the CNCs with a mixture of DA and BiBB-modified DA (Protocol 2), were compared. Only the CNC particles treated according to Protocol 1 guaranteed efficient anchoring of the SI-ATRP initiating sites in our experimental conditions (with limited impact on the CNCs crystalline structure), the coated layer being leached out by certain solvents in the case of Protocol 2. The brominated particles displaying the best performances were subsequently tested as potential ATRP macroinitiators, using methyl methacrylate (MMA) and styrene (St) as model monomers. Polymer-grafted particles were successfully obtained, with a grafting density twice as high for Sty as for MMA, demonstrating the validity of this strategy.
This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based on i) the stepwise modification of the CNCs with dopamine (DA) and α-bromoisobutyryl bromide (BiBB) (Protocol 1) and ii) the one-step treatment of the CNCs with a mixture of DA and BiBB-modified DA (Protocol 2), were compared. Only the CNC particles treated according to Protocol 1 guaranteed efficient anchoring of the SI-ATRP initiating sites in our experimental conditions (with limited impact on the CNCs crystalline structure), the coated layer being leached out by certain solvents in the case of Protocol 2. The brominated particles displaying the best performances were subsequently tested as potential ATRP macroinitiators, using methyl methacrylate (MMA) and styrene (St) as model monomers. Polymer-grafted particles were successfully obtained, with a grafting density twice as high for Sty as for MMA, demonstrating the validity of this strategy. [Display omitted]
ArticleNumber 122346
Author Harrisson, Simon
Sèbe, Gilles
Hou, Yelin
Zhang, Zhen
Author_xml – sequence: 1
  givenname: Yelin
  surname: Hou
  fullname: Hou, Yelin
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
– sequence: 2
  givenname: Zhen
  surname: Zhang
  fullname: Zhang, Zhen
  email: zhangzhen@m.scnu.edu.cn
  organization: SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
– sequence: 3
  givenname: Simon
  surname: Harrisson
  fullname: Harrisson, Simon
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
– sequence: 4
  givenname: Gilles
  surname: Sèbe
  fullname: Sèbe, Gilles
  email: gilles.sebe@u-bordeaux.fr
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38876716$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04649417$$DView record in HAL
BookMark eNqFkUtvEzEUhS1URNPCTwDNki4m9WtsRyxQVFFaKaIVlLXlx53iaGYc7Eml_HucTsqim3hzZes7x1fnnKGTIQ6A0EeC5wQTcbmeO5PsJnZziimfE0oZF2_QjCi5qAnj_ATNMOG8VoLIU3SW8xqXIwh-h06ZUlJIImbox6_bevnw8756TKYdw_BYxbYqrrseUq7aFPvnm48b04cB6j760AbwlYOu23YxQzWYIbq0y6Pp8nv0ti0DPhzmOfp9_e3h6qZe3X2_vVquascZHWtQjjaOUsdbYQw47Kl0DZEYrGWNJwxz1irLfGMFtlYwZYQ0XggmG6KYZefoYvL9Yzq9SaE3aaejCfpmudL7N8wFX3Ain0hhP0_sJsW_W8ij7kPer28GiNusGS2pLBq2oMdRLJRsMG9YQT8d0K3twf9f4iXaAnyZAJdizgla7cJoxhCHMZnQaYL1vki91oci9b5IPRVZ1M0r9csHx3RfJx2U9J8CJJ1dgMGBDwncqH0MRxz-AVLsuO4
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2025_146354
crossref_primary_10_1002_eem2_70105
crossref_primary_10_1016_j_ijbiomac_2025_142482
crossref_primary_10_1016_j_reactfunctpolym_2024_106137
crossref_primary_10_1016_j_biomaterials_2025_123404
crossref_primary_10_1002_adma_202501542
crossref_primary_10_1080_09205063_2025_2457265
crossref_primary_10_1016_j_lwt_2025_117904
crossref_primary_10_1016_j_ijbiomac_2024_139379
crossref_primary_10_1021_acsapm_5c02861
crossref_primary_10_1016_j_carbpol_2025_123731
crossref_primary_10_1016_j_ijbiomac_2024_136497
Cites_doi 10.1021/acsmacrolett.6b00099
10.1002/pola.29310
10.1016/j.carbpol.2021.118405
10.1021/la204831b
10.1002/mren.201100024
10.1039/C9MH01197H
10.1021/ja00529a063
10.1016/j.cej.2016.02.057
10.1021/acs.chemrev.7b00627
10.1021/acs.biomac.1c01050
10.1021/acs.chemmater.7b04319
10.1021/acs.iecr.8b02373
10.1021/cr400407a
10.1177/004051755902901003
10.1016/j.fuel.2021.122678
10.1016/j.ijbiomac.2023.126734
10.1002/admi.201601192
10.1016/j.tca.2006.01.017
10.1016/j.colsurfb.2022.112554
10.1016/j.carbpol.2018.10.050
10.1016/j.cogsc.2020.100439
10.1016/j.desal.2021.115385
10.1039/c3py00181d
10.1002/app.51458
10.1126/science.1147241
10.1039/C5PY01858G
10.1016/j.carbpol.2017.03.077
10.1016/j.carbpol.2009.04.032
10.1021/bm201777j
10.1021/ma00149a010
10.1016/j.msec.2019.110157
10.1016/j.polymer.2011.03.027
10.1016/j.eurpolymj.2018.07.033
10.1021/acs.macromol.8b00733
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
1XC
VOOES
DOI 10.1016/j.carbpol.2024.122346
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-1344
ExternalDocumentID oai:HAL:hal-04649417v1
38876716
10_1016_j_carbpol_2024_122346
S0144861724005721
Genre Journal Article
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
Y6R
~G-
~KM
53G
9DU
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLV
HMS
HVGLF
HZ~
LW9
M24
M2Y
M41
R2-
SCB
SMS
SOC
WUQ
XPP
~HD
AGCQF
AGRNS
BNPGV
NPM
SSH
7X8
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c432t-e8c25c22c4f6aaec0d27c5170ebb35d13043f8b3d5b60bb638a67ad66375183b3
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001263731600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0144-8617
1879-1344
IngestDate Mon Nov 24 06:20:44 EST 2025
Thu Oct 02 23:00:04 EDT 2025
Thu Oct 02 17:43:46 EDT 2025
Mon Jul 21 06:06:08 EDT 2025
Tue Nov 18 22:18:54 EST 2025
Sat Nov 29 02:45:27 EST 2025
Tue Jun 18 08:51:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Polydopamine
Polystyrene
Cellulose nanocrystals
Polymethyl methacrylate
SI-ATRP
polymethyl methacrylate
polydopamine
polystyrene
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c432t-e8c25c22c4f6aaec0d27c5170ebb35d13043f8b3d5b60bb638a67ad66375183b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6267-2599
0000-0001-5057-1504
OpenAccessLink https://hal.science/hal-04649417
PMID 38876716
PQID 3068750453
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_04649417v1
proquest_miscellaneous_3206195392
proquest_miscellaneous_3068750453
pubmed_primary_38876716
crossref_citationtrail_10_1016_j_carbpol_2024_122346
crossref_primary_10_1016_j_carbpol_2024_122346
elsevier_sciencedirect_doi_10_1016_j_carbpol_2024_122346
PublicationCentury 2000
PublicationDate 2024-10-01
2024-10-00
2024-Oct-01
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Carbohydrate polymers
PublicationTitleAlternate Carbohydr Polym
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sun, Xiao, Nie, Wang, Bai, Chen, Wei (bb0105) 2022; 216
Huang, Liu, Xu, Mao, Huang, Deng, Wei (bb0040) 2020; 106
Sebe, Ham-Pichavant, Ibarboure, Koffi, Tingaut (bb0090) 2012; 13
Chun-xiang, Huai-yu, Ming-hua, Shi-yu, Jia-jun (bb0020) 2009; 78
Atalla, Gast, Sindorf, Bartuska, Maciel (bb0005) 1980; 102
Song, Ye, Lu, Chen, Wang, Matyjaszewski (bb0100) 2016; 5
Kohri, Kohma, Shinoda, Yamauchi, Yagai, Kojima, Kishikawa (bb0050) 2013; 4
Li, Wang, Li, Zhu (bb0065) 2011; 5
Segal, Creely, Martin, Conrad (bb0095) 1959; 29
Zeng, Wen, Ye, Huo, Wu, Wang, Yan, Matyjaszewski, Lu, Chen (bb0145) 2017; 29
Brand, Pecastaings, Sèbe (bb0015) 2017; 169
Wang, Meng, Li, Sun, Zhan, Ge, Chen (bb0120) 2019; 57
Dreyer, Miller, Freeman, Paul, Bielawski (bb0030) 2012; 28
Hirata, Kashiwagi, Brown (bb0035) 1985; 18
Kobayashi, Nakajima (bb0045) 2021; 28
Wohlhauser, Rader, Weder (bb0130) 2022; 23
Lee, Dellatore, Miller, Messersmith (bb0060) 2007; 318
Liu, Ai, Lu (bb0070) 2014; 114
Qin, Liu, Cao, Lu, Nie, Cheng, Zhang, Liu, An (bb0085) 2023; 253
Yang, Zhang, Chen, Liu, Wang, Li (bb0140) 2020; 7
Yang, Liu, Zhang, Chen, Ye, Rahaman (bb0135) 2022; 521
Zheng, Clemons, Pilla (bb0165) 2021; 271
Zhang, Wang, Tam, Sebe (bb0160) 2019; 205
Meneghetti, Qutubuddin (bb0080) 2006; 442
Dong, Liu, Xiong, Sheng, Lin, Zhou, Yang (bb0025) 2018; 57
Barclay, Hegab, Clarke, Ginic-Markovic (bb0010) 2017; 4
Velvizhi, Goswami, Shetti, Ahmad, Kishore Pant, Aminabhavi (bb0115) 2022; 313
Wohlhauser, Delepierre, Labet, Morandi, Thielemans, Weder, Zoppe (bb0125) 2018; 51
Kopeć, Spanjers, Scavo, Ernens, Duvigneau, Julius Vancso (bb0055) 2018; 106
Luo, Zhao, Fei, Liu, Liu (bb0075) 2016; 293
Zhu, Edmondson (bb0170) 2011; 52
Zhang, Gieseler, Jordan (bb0150) 2016; 7
Zhang, Sèbe, Hou, Wang, Huang, Zhou (bb0155) 2021; 138
Thomas, Raj, Joy, Moores, Drisko, Sanchez (bb0110) 2018; 118
Luo (10.1016/j.carbpol.2024.122346_bb0075) 2016; 293
Li (10.1016/j.carbpol.2024.122346_bb0065) 2011; 5
Meneghetti (10.1016/j.carbpol.2024.122346_bb0080) 2006; 442
Sun (10.1016/j.carbpol.2024.122346_bb0105) 2022; 216
Qin (10.1016/j.carbpol.2024.122346_bb0085) 2023; 253
Song (10.1016/j.carbpol.2024.122346_bb0100) 2016; 5
Yang (10.1016/j.carbpol.2024.122346_bb0140) 2020; 7
Lee (10.1016/j.carbpol.2024.122346_bb0060) 2007; 318
Yang (10.1016/j.carbpol.2024.122346_bb0135) 2022; 521
Zhu (10.1016/j.carbpol.2024.122346_bb0170) 2011; 52
Sebe (10.1016/j.carbpol.2024.122346_bb0090) 2012; 13
Zhang (10.1016/j.carbpol.2024.122346_bb0155) 2021; 138
Kopeć (10.1016/j.carbpol.2024.122346_bb0055) 2018; 106
Dreyer (10.1016/j.carbpol.2024.122346_bb0030) 2012; 28
Thomas (10.1016/j.carbpol.2024.122346_bb0110) 2018; 118
Barclay (10.1016/j.carbpol.2024.122346_bb0010) 2017; 4
Kobayashi (10.1016/j.carbpol.2024.122346_bb0045) 2021; 28
Segal (10.1016/j.carbpol.2024.122346_bb0095) 1959; 29
Zheng (10.1016/j.carbpol.2024.122346_bb0165) 2021; 271
Dong (10.1016/j.carbpol.2024.122346_bb0025) 2018; 57
Zhang (10.1016/j.carbpol.2024.122346_bb0160) 2019; 205
Kohri (10.1016/j.carbpol.2024.122346_bb0050) 2013; 4
Hirata (10.1016/j.carbpol.2024.122346_bb0035) 1985; 18
Wohlhauser (10.1016/j.carbpol.2024.122346_bb0125) 2018; 51
Wohlhauser (10.1016/j.carbpol.2024.122346_bb0130) 2022; 23
Velvizhi (10.1016/j.carbpol.2024.122346_bb0115) 2022; 313
Wang (10.1016/j.carbpol.2024.122346_bb0120) 2019; 57
Chun-xiang (10.1016/j.carbpol.2024.122346_bb0020) 2009; 78
Brand (10.1016/j.carbpol.2024.122346_bb0015) 2017; 169
Zeng (10.1016/j.carbpol.2024.122346_bb0145) 2017; 29
Atalla (10.1016/j.carbpol.2024.122346_bb0005) 1980; 102
Liu (10.1016/j.carbpol.2024.122346_bb0070) 2014; 114
Huang (10.1016/j.carbpol.2024.122346_bb0040) 2020; 106
Zhang (10.1016/j.carbpol.2024.122346_bb0150) 2016; 7
References_xml – volume: 28
  year: 2021
  ident: bb0045
  article-title: Sustainable development goals for advanced materials provided by industrial wastes and biomass sources
  publication-title: Current Opinion in Green and Sustainable Chemistry
– volume: 29
  start-page: 10212
  year: 2017
  end-page: 10219
  ident: bb0145
  article-title: Controlled architecture of hybrid polymer nanocapsules with tunable morphologies by manipulating surface-initiated ARGET ATRP from hydrothermally modified polydopamine
  publication-title: Chemistry of Materials
– volume: 106
  start-page: 291
  year: 2018
  end-page: 296
  ident: bb0055
  article-title: Surface-initiated ATRP from polydopamine-modified TiO
  publication-title: European Polymer Journal
– volume: 5
  start-page: 467
  year: 2011
  end-page: 478
  ident: bb0065
  article-title: Kinetics and modeling of solution ARGET ATRP of styrene, butyl acrylate, and methyl methacrylate
  publication-title: Macromolecular Reaction Engineering
– volume: 7
  start-page: 746
  year: 2020
  end-page: 761
  ident: bb0140
  article-title: Recent developments in polydopamine fluorescent nanomaterials
  publication-title: Materials Horizons
– volume: 5
  start-page: 382
  year: 2016
  end-page: 386
  ident: bb0100
  article-title: Surface-initiated ARGET ATRP of poly(glycidyl methacrylate) from carbon nanotubes via bioinspired catechol chemistry for efficient adsorption of uranium ions
  publication-title: ACS Macro Letters
– volume: 313
  year: 2022
  ident: bb0115
  article-title: Valorisation of lignocellulosic biomass to value-added products: Paving the pathway towards low-carbon footprint
  publication-title: Fuel
– volume: 29
  start-page: 786
  year: 1959
  end-page: 794
  ident: bb0095
  article-title: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer
  publication-title: Textile Research Journal
– volume: 102
  start-page: 3249
  year: 1980
  end-page: 3251
  ident: bb0005
  article-title: Carbon-13 NMR spectra of cellulose polymorphs
  publication-title: Journal of the American Chemical Society
– volume: 138
  year: 2021
  ident: bb0155
  article-title: Grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization
  publication-title: Journal of Applied Polymer Science
– volume: 28
  start-page: 6428
  year: 2012
  end-page: 6435
  ident: bb0030
  article-title: Elucidating the structure of poly(dopamine)
  publication-title: Langmuir
– volume: 4
  year: 2017
  ident: bb0010
  article-title: Versatile surface modification using polydopamine and related polycatecholamines: Chemistry, structure, and applications
  publication-title: Advanced Materials Interfaces
– volume: 169
  start-page: 189
  year: 2017
  end-page: 197
  ident: bb0015
  article-title: A versatile method for the surface tailoring of cellulose nanocrystal building blocks by acylation with functional vinyl esters
  publication-title: Carbohydrate Polymers
– volume: 7
  start-page: 775
  year: 2016
  end-page: 779
  ident: bb0150
  article-title: Lights on! A significant photoenhancement effect on ATRP by ambient laboratory light
  publication-title: Polymer Chemistry
– volume: 253
  year: 2023
  ident: bb0085
  article-title: Polydopamine modified cellulose nanocrystals (CNC) for efficient cellulase immobilization towards advanced bamboo fiber flexibility and tissue softness
  publication-title: International Journal of Biological Macromolecules
– volume: 106
  year: 2020
  ident: bb0040
  article-title: Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP
  publication-title: Materials Science and Engineering C
– volume: 52
  start-page: 2141
  year: 2011
  end-page: 2149
  ident: bb0170
  article-title: Polydopamine-melanin initiators for surface-initiated ATRP
  publication-title: Polymer
– volume: 114
  start-page: 5057
  year: 2014
  end-page: 5115
  ident: bb0070
  article-title: Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields
  publication-title: Chemical Reviews
– volume: 78
  start-page: 432
  year: 2009
  end-page: 438
  ident: bb0020
  article-title: Preparation of cellulose graft poly(methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid
  publication-title: Carbohydrate Polymers
– volume: 216
  year: 2022
  ident: bb0105
  article-title: Fabrication of Janus-type nanocomposites from cellulose nanocrystals for self-healing hydrogels’ flexible sensors
  publication-title: Colloids and Surfaces B: Biointerfaces
– volume: 18
  start-page: 1410
  year: 1985
  end-page: 1418
  ident: bb0035
  article-title: Thermal and oxidative degradation of poly(methyl methacrylate): Weight loss
  publication-title: Macromolecules
– volume: 293
  start-page: 171
  year: 2016
  end-page: 181
  ident: bb0075
  article-title: Mussel inspired preparation of polymer grafted graphene as a bridge between covalent and noncovalent methods
  publication-title: Chemical Engineering Journal
– volume: 442
  start-page: 74
  year: 2006
  end-page: 77
  ident: bb0080
  article-title: Synthesis, thermal properties and applications of polymer-clay nanocomposites
  publication-title: Thermochimica Acta
– volume: 318
  start-page: 426
  year: 2007
  end-page: 430
  ident: bb0060
  article-title: Mussel-inspired surface chemistry for multifunctional coatings
  publication-title: Science
– volume: 205
  start-page: 322
  year: 2019
  end-page: 329
  ident: bb0160
  article-title: A comparative study on grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization (ATRP) and activator re-generated by electron transfer ATRP
  publication-title: Carbohydrate Polymers
– volume: 521
  year: 2022
  ident: bb0135
  article-title: High performance nanocomposite nanofiltration membranes with polydopamine-modified cellulose nanocrystals for efficient dye/salt separation
  publication-title: Desalination
– volume: 23
  start-page: 699
  year: 2022
  end-page: 707
  ident: bb0130
  article-title: Facile method to determine the molecular weight of polymer grafts grown from cellulose nanocrystals
  publication-title: Biomacromolecules
– volume: 271
  year: 2021
  ident: bb0165
  article-title: Grafting PEG on cellulose nanocrystals via polydopamine chemistry and the effects of PEG graft length on the mechanical performance of composite film
  publication-title: Carbohydrate Polymers
– volume: 57
  start-page: 689
  year: 2019
  end-page: 698
  ident: bb0120
  article-title: Polymer brushes grafted from graphene via bioinspired polydopamine chemistry and activators regenerated by electron transfer atom transfer radical polymerization
  publication-title: Journal of Polymer Science, Part A: Polymer Chemistry
– volume: 57
  start-page: 12662
  year: 2018
  end-page: 12669
  ident: bb0025
  article-title: Preparation of UV-blocking poly(vinylidene fluoride) films through SI-AGET ATRP using a colorless polydopamine initiator layer
  publication-title: Industrial & Engineering Chemistry Research
– volume: 4
  start-page: 2696
  year: 2013
  end-page: 2702
  ident: bb0050
  article-title: A colorless functional polydopamine thin layer as a basis for polymer capsules
  publication-title: Polymer Chemistry
– volume: 118
  start-page: 11575
  year: 2018
  end-page: 11625
  ident: bb0110
  article-title: Nanocellulose, a versatile green platform: From biosources to materials and their applications
  publication-title: Chemical Reviews
– volume: 51
  start-page: 6157
  year: 2018
  end-page: 6189
  ident: bb0125
  article-title: Grafting polymers from cellulose nanocrystals: Synthesis, properties, and applications
  publication-title: Macromolecules
– volume: 13
  start-page: 570
  year: 2012
  end-page: 578
  ident: bb0090
  article-title: Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates
  publication-title: Biomacromolecules
– volume: 5
  start-page: 382
  issue: 3
  year: 2016
  ident: 10.1016/j.carbpol.2024.122346_bb0100
  article-title: Surface-initiated ARGET ATRP of poly(glycidyl methacrylate) from carbon nanotubes via bioinspired catechol chemistry for efficient adsorption of uranium ions
  publication-title: ACS Macro Letters
  doi: 10.1021/acsmacrolett.6b00099
– volume: 57
  start-page: 689
  issue: 6
  year: 2019
  ident: 10.1016/j.carbpol.2024.122346_bb0120
  article-title: Polymer brushes grafted from graphene via bioinspired polydopamine chemistry and activators regenerated by electron transfer atom transfer radical polymerization
  publication-title: Journal of Polymer Science, Part A: Polymer Chemistry
  doi: 10.1002/pola.29310
– volume: 271
  year: 2021
  ident: 10.1016/j.carbpol.2024.122346_bb0165
  article-title: Grafting PEG on cellulose nanocrystals via polydopamine chemistry and the effects of PEG graft length on the mechanical performance of composite film
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2021.118405
– volume: 28
  start-page: 6428
  issue: 15
  year: 2012
  ident: 10.1016/j.carbpol.2024.122346_bb0030
  article-title: Elucidating the structure of poly(dopamine)
  publication-title: Langmuir
  doi: 10.1021/la204831b
– volume: 5
  start-page: 467
  issue: 9–10
  year: 2011
  ident: 10.1016/j.carbpol.2024.122346_bb0065
  article-title: Kinetics and modeling of solution ARGET ATRP of styrene, butyl acrylate, and methyl methacrylate
  publication-title: Macromolecular Reaction Engineering
  doi: 10.1002/mren.201100024
– volume: 7
  start-page: 746
  issue: 3
  year: 2020
  ident: 10.1016/j.carbpol.2024.122346_bb0140
  article-title: Recent developments in polydopamine fluorescent nanomaterials
  publication-title: Materials Horizons
  doi: 10.1039/C9MH01197H
– volume: 102
  start-page: 3249
  issue: 9
  year: 1980
  ident: 10.1016/j.carbpol.2024.122346_bb0005
  article-title: Carbon-13 NMR spectra of cellulose polymorphs
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja00529a063
– volume: 293
  start-page: 171
  year: 2016
  ident: 10.1016/j.carbpol.2024.122346_bb0075
  article-title: Mussel inspired preparation of polymer grafted graphene as a bridge between covalent and noncovalent methods
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2016.02.057
– volume: 118
  start-page: 11575
  issue: 24
  year: 2018
  ident: 10.1016/j.carbpol.2024.122346_bb0110
  article-title: Nanocellulose, a versatile green platform: From biosources to materials and their applications
  publication-title: Chemical Reviews
  doi: 10.1021/acs.chemrev.7b00627
– volume: 23
  start-page: 699
  issue: 3
  year: 2022
  ident: 10.1016/j.carbpol.2024.122346_bb0130
  article-title: Facile method to determine the molecular weight of polymer grafts grown from cellulose nanocrystals
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.1c01050
– volume: 29
  start-page: 10212
  issue: 23
  year: 2017
  ident: 10.1016/j.carbpol.2024.122346_bb0145
  article-title: Controlled architecture of hybrid polymer nanocapsules with tunable morphologies by manipulating surface-initiated ARGET ATRP from hydrothermally modified polydopamine
  publication-title: Chemistry of Materials
  doi: 10.1021/acs.chemmater.7b04319
– volume: 57
  start-page: 12662
  issue: 38
  year: 2018
  ident: 10.1016/j.carbpol.2024.122346_bb0025
  article-title: Preparation of UV-blocking poly(vinylidene fluoride) films through SI-AGET ATRP using a colorless polydopamine initiator layer
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.8b02373
– volume: 114
  start-page: 5057
  issue: 9
  year: 2014
  ident: 10.1016/j.carbpol.2024.122346_bb0070
  article-title: Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields
  publication-title: Chemical Reviews
  doi: 10.1021/cr400407a
– volume: 29
  start-page: 786
  issue: 10
  year: 1959
  ident: 10.1016/j.carbpol.2024.122346_bb0095
  article-title: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer
  publication-title: Textile Research Journal
  doi: 10.1177/004051755902901003
– volume: 313
  year: 2022
  ident: 10.1016/j.carbpol.2024.122346_bb0115
  article-title: Valorisation of lignocellulosic biomass to value-added products: Paving the pathway towards low-carbon footprint
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122678
– volume: 253
  year: 2023
  ident: 10.1016/j.carbpol.2024.122346_bb0085
  article-title: Polydopamine modified cellulose nanocrystals (CNC) for efficient cellulase immobilization towards advanced bamboo fiber flexibility and tissue softness
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2023.126734
– volume: 4
  issue: 19
  year: 2017
  ident: 10.1016/j.carbpol.2024.122346_bb0010
  article-title: Versatile surface modification using polydopamine and related polycatecholamines: Chemistry, structure, and applications
  publication-title: Advanced Materials Interfaces
  doi: 10.1002/admi.201601192
– volume: 442
  start-page: 74
  issue: 1–2
  year: 2006
  ident: 10.1016/j.carbpol.2024.122346_bb0080
  article-title: Synthesis, thermal properties and applications of polymer-clay nanocomposites
  publication-title: Thermochimica Acta
  doi: 10.1016/j.tca.2006.01.017
– volume: 216
  year: 2022
  ident: 10.1016/j.carbpol.2024.122346_bb0105
  article-title: Fabrication of Janus-type nanocomposites from cellulose nanocrystals for self-healing hydrogels’ flexible sensors
  publication-title: Colloids and Surfaces B: Biointerfaces
  doi: 10.1016/j.colsurfb.2022.112554
– volume: 205
  start-page: 322
  year: 2019
  ident: 10.1016/j.carbpol.2024.122346_bb0160
  article-title: A comparative study on grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization (ATRP) and activator re-generated by electron transfer ATRP
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.10.050
– volume: 28
  year: 2021
  ident: 10.1016/j.carbpol.2024.122346_bb0045
  article-title: Sustainable development goals for advanced materials provided by industrial wastes and biomass sources
  publication-title: Current Opinion in Green and Sustainable Chemistry
  doi: 10.1016/j.cogsc.2020.100439
– volume: 521
  year: 2022
  ident: 10.1016/j.carbpol.2024.122346_bb0135
  article-title: High performance nanocomposite nanofiltration membranes with polydopamine-modified cellulose nanocrystals for efficient dye/salt separation
  publication-title: Desalination
  doi: 10.1016/j.desal.2021.115385
– volume: 4
  start-page: 2696
  issue: 9
  year: 2013
  ident: 10.1016/j.carbpol.2024.122346_bb0050
  article-title: A colorless functional polydopamine thin layer as a basis for polymer capsules
  publication-title: Polymer Chemistry
  doi: 10.1039/c3py00181d
– volume: 138
  issue: 48
  year: 2021
  ident: 10.1016/j.carbpol.2024.122346_bb0155
  article-title: Grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization
  publication-title: Journal of Applied Polymer Science
  doi: 10.1002/app.51458
– volume: 318
  start-page: 426
  issue: 5849
  year: 2007
  ident: 10.1016/j.carbpol.2024.122346_bb0060
  article-title: Mussel-inspired surface chemistry for multifunctional coatings
  publication-title: Science
  doi: 10.1126/science.1147241
– volume: 7
  start-page: 775
  issue: 4
  year: 2016
  ident: 10.1016/j.carbpol.2024.122346_bb0150
  article-title: Lights on! A significant photoenhancement effect on ATRP by ambient laboratory light
  publication-title: Polymer Chemistry
  doi: 10.1039/C5PY01858G
– volume: 169
  start-page: 189
  year: 2017
  ident: 10.1016/j.carbpol.2024.122346_bb0015
  article-title: A versatile method for the surface tailoring of cellulose nanocrystal building blocks by acylation with functional vinyl esters
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2017.03.077
– volume: 78
  start-page: 432
  issue: 3
  year: 2009
  ident: 10.1016/j.carbpol.2024.122346_bb0020
  article-title: Preparation of cellulose graft poly(methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2009.04.032
– volume: 13
  start-page: 570
  issue: 2
  year: 2012
  ident: 10.1016/j.carbpol.2024.122346_bb0090
  article-title: Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates
  publication-title: Biomacromolecules
  doi: 10.1021/bm201777j
– volume: 18
  start-page: 1410
  issue: 7
  year: 1985
  ident: 10.1016/j.carbpol.2024.122346_bb0035
  article-title: Thermal and oxidative degradation of poly(methyl methacrylate): Weight loss
  publication-title: Macromolecules
  doi: 10.1021/ma00149a010
– volume: 106
  year: 2020
  ident: 10.1016/j.carbpol.2024.122346_bb0040
  article-title: Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP
  publication-title: Materials Science and Engineering C
  doi: 10.1016/j.msec.2019.110157
– volume: 52
  start-page: 2141
  issue: 10
  year: 2011
  ident: 10.1016/j.carbpol.2024.122346_bb0170
  article-title: Polydopamine-melanin initiators for surface-initiated ATRP
  publication-title: Polymer
  doi: 10.1016/j.polymer.2011.03.027
– volume: 106
  start-page: 291
  year: 2018
  ident: 10.1016/j.carbpol.2024.122346_bb0055
  article-title: Surface-initiated ATRP from polydopamine-modified TiO2 nanoparticles
  publication-title: European Polymer Journal
  doi: 10.1016/j.eurpolymj.2018.07.033
– volume: 51
  start-page: 6157
  issue: 16
  year: 2018
  ident: 10.1016/j.carbpol.2024.122346_bb0125
  article-title: Grafting polymers from cellulose nanocrystals: Synthesis, properties, and applications
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b00733
SSID ssj0000610
Score 2.5285907
Snippet This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122346
SubjectTerms bromination
cellulose
Cellulose nanocrystals
Chemical Sciences
crystal structure
dopamine
nanocrystals
Polydopamine
polymerization
Polymers
Polymethyl methacrylate
Polystyrene
SI-ATRP
styrene
Title SI-ATRP grafting of polymers from polydopamine-modified cellulose nanocrystals
URI https://dx.doi.org/10.1016/j.carbpol.2024.122346
https://www.ncbi.nlm.nih.gov/pubmed/38876716
https://www.proquest.com/docview/3068750453
https://www.proquest.com/docview/3206195392
https://hal.science/hal-04649417
Volume 341
WOSCitedRecordID wos001263731600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000610
  issn: 0144-8617
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdYhwQvE990wBQQb8iliZ3YeayqQYdQNdEiVbxEsePQTm0ype20_vfcxUla2MYAiZeotRq78f1i_-58H4S8NaHkScJS2jWuplzHIVWhdGmqUk93ExP4vi02IYZDOZmEp5Xb2LIsJyCyTF5ehuf_VdTQBsLG0Nm_EHfTKTTAZxA6XEHscP0jwY9OaG_85fTd9yJOG5_mfL5BA7WNJsFvCSjLC2CYdJEnsxR5KJrw13N0X8_iLNfFBnjjfLlLXvtxofLpJsHsEk2XDS7ydbmcY3z7FWv0t-k24mwQF7CwVIFeo9li6wcwKk_tpSptrB8xSPEno4THG_e2ylJWR8tsXZOs8ZJTGdhYzY6xC64UIXWZzQFZr8jM5sK6srpbQ8MZaO6Fgqfs4MgdFwgO_yWbdrk_o98ax-HQTdYXmG1g3xN-KFtkv3dyPPm0s2OXWSua_7eN9Hp_7WA3cZi9KTrT3qSplIxl_IAcVKqG07MQeUjumOwRudevK_w9JsMKKk4NFSdPnVquDkLFuRYqTgMVZxcqT8jXD8fj_oBW9TWo5sxbUSO152vP0zwN4tjAq-kJ7buia5RifgLshrNUKpb4KugqBSt1HIg4AY6KZ3VMsaekleWZeU4c6AgDvlwJ2j-HTQNZL7AADzo1STdI24TXMxbpKvk81kCZR7WX4VlUTXSEEx3ZiW6TTnPbuc2-ctsNshZHVFFISw0jwNBtt74B8TXDYNr1Qe9zhG14_B9yV1y4bfK6lm4EwsLpjjOTr5cRqN4SSyX47De_8QBpoQ8qSZs8s9BoxmOw2wfCDQ7__QlekPvbd_Elaa2KtXlF7uqL1WxZHJE9MZFHFfR_AA1QxJA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SI-ATRP+grafting+of+polymers+from+polydopamine-modified+cellulose+nanocrystals&rft.jtitle=Carbohydrate+polymers&rft.au=Hou%2C+Yelin&rft.au=Zhang%2C+Zhen&rft.au=Harrisson%2C+Simon&rft.au=S%C3%A8be%2C+Gilles&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0144-8617&rft.eissn=1879-1344&rft.volume=341&rft_id=info:doi/10.1016%2Fj.carbpol.2024.122346&rft.externalDocID=S0144861724005721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon