Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis

•We discuss different forms of supervision in medical image analysis.•Over 140 papers using semi-supervised, multi-instance or transfer learning are covered.•We discuss connections between these scenarios and further opportunities for research. [Display omitted] Machine learning (ML) algorithms have...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Medical image analysis Ročník 54; s. 280 - 296
Hlavní autoři: Cheplygina, Veronika, de Bruijne, Marleen, Pluim, Josien P.W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.05.2019
Elsevier BV
Témata:
ISSN:1361-8415, 1361-8423, 1361-8423
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•We discuss different forms of supervision in medical image analysis.•Over 140 papers using semi-supervised, multi-instance or transfer learning are covered.•We discuss connections between these scenarios and further opportunities for research. [Display omitted] Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a challenge for supervised ML algorithms that is frequently mentioned is the lack of annotated data. As a result, various methods that can learn with less/other types of supervision, have been proposed. We give an overview of semi-supervised, multiple instance, and transfer learning in medical imaging, both in diagnosis or segmentation tasks. We also discuss connections between these learning scenarios, and opportunities for future research. A dataset with the details of the surveyed papers is available via https://figshare.com/articles/Database_of_surveyed_literature_in_Not-so-supervised_a_survey_of_semi-supervised_multi-instance_and_transfer_learning_in_medical_image_analysis_/7479416.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:1361-8415
1361-8423
1361-8423
DOI:10.1016/j.media.2019.03.009