Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis
•We discuss different forms of supervision in medical image analysis.•Over 140 papers using semi-supervised, multi-instance or transfer learning are covered.•We discuss connections between these scenarios and further opportunities for research. [Display omitted] Machine learning (ML) algorithms have...
Uloženo v:
| Vydáno v: | Medical image analysis Ročník 54; s. 280 - 296 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.05.2019
Elsevier BV |
| Témata: | |
| ISSN: | 1361-8415, 1361-8423, 1361-8423 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •We discuss different forms of supervision in medical image analysis.•Over 140 papers using semi-supervised, multi-instance or transfer learning are covered.•We discuss connections between these scenarios and further opportunities for research.
[Display omitted]
Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a challenge for supervised ML algorithms that is frequently mentioned is the lack of annotated data. As a result, various methods that can learn with less/other types of supervision, have been proposed. We give an overview of semi-supervised, multiple instance, and transfer learning in medical imaging, both in diagnosis or segmentation tasks. We also discuss connections between these learning scenarios, and opportunities for future research. A dataset with the details of the surveyed papers is available via https://figshare.com/articles/Database_of_surveyed_literature_in_Not-so-supervised_a_survey_of_semi-supervised_multi-instance_and_transfer_learning_in_medical_image_analysis_/7479416. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ISSN: | 1361-8415 1361-8423 1361-8423 |
| DOI: | 10.1016/j.media.2019.03.009 |