Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis

•We discuss different forms of supervision in medical image analysis.•Over 140 papers using semi-supervised, multi-instance or transfer learning are covered.•We discuss connections between these scenarios and further opportunities for research. [Display omitted] Machine learning (ML) algorithms have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis Jg. 54; S. 280 - 296
Hauptverfasser: Cheplygina, Veronika, de Bruijne, Marleen, Pluim, Josien P.W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.05.2019
Elsevier BV
Schlagworte:
ISSN:1361-8415, 1361-8423, 1361-8423
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We discuss different forms of supervision in medical image analysis.•Over 140 papers using semi-supervised, multi-instance or transfer learning are covered.•We discuss connections between these scenarios and further opportunities for research. [Display omitted] Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a challenge for supervised ML algorithms that is frequently mentioned is the lack of annotated data. As a result, various methods that can learn with less/other types of supervision, have been proposed. We give an overview of semi-supervised, multiple instance, and transfer learning in medical imaging, both in diagnosis or segmentation tasks. We also discuss connections between these learning scenarios, and opportunities for future research. A dataset with the details of the surveyed papers is available via https://figshare.com/articles/Database_of_surveyed_literature_in_Not-so-supervised_a_survey_of_semi-supervised_multi-instance_and_transfer_learning_in_medical_image_analysis_/7479416.
AbstractList Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a challenge for supervised ML algorithms that is frequently mentioned is the lack of annotated data. As a result, various methods that can learn with less/other types of supervision, have been proposed. We give an overview of semi-supervised, multiple instance, and transfer learning in medical imaging, both in diagnosis or segmentation tasks. We also discuss connections between these learning scenarios, and opportunities for future research. A dataset with the details of the surveyed papers is available via https://figshare.com/articles/Database_of_surveyed_literature_in_Not-so-supervised_a_survey_of_semi-supervised_multi-instance_and_transfer_learning_in_medical_image_analysis_/7479416.Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a challenge for supervised ML algorithms that is frequently mentioned is the lack of annotated data. As a result, various methods that can learn with less/other types of supervision, have been proposed. We give an overview of semi-supervised, multiple instance, and transfer learning in medical imaging, both in diagnosis or segmentation tasks. We also discuss connections between these learning scenarios, and opportunities for future research. A dataset with the details of the surveyed papers is available via https://figshare.com/articles/Database_of_surveyed_literature_in_Not-so-supervised_a_survey_of_semi-supervised_multi-instance_and_transfer_learning_in_medical_image_analysis_/7479416.
Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a challenge for supervised ML algorithms that is frequently mentioned is the lack of annotated data. As a result, various methods that can learn with less/other types of supervision, have been proposed. We give an overview of semi-supervised, multiple instance, and transfer learning in medical imaging, both in diagnosis or segmentation tasks. We also discuss connections between these learning scenarios, and opportunities for future research. A dataset with the details of the surveyed papers is available via https://figshare.com/articles/Database_of_surveyed_literature_in_Not-so-supervised_a_survey_of_semi-supervised_multi-instance_and_transfer_learning_in_medical_image_analysis_/7479416.
•We discuss different forms of supervision in medical image analysis.•Over 140 papers using semi-supervised, multi-instance or transfer learning are covered.•We discuss connections between these scenarios and further opportunities for research. [Display omitted] Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a challenge for supervised ML algorithms that is frequently mentioned is the lack of annotated data. As a result, various methods that can learn with less/other types of supervision, have been proposed. We give an overview of semi-supervised, multiple instance, and transfer learning in medical imaging, both in diagnosis or segmentation tasks. We also discuss connections between these learning scenarios, and opportunities for future research. A dataset with the details of the surveyed papers is available via https://figshare.com/articles/Database_of_surveyed_literature_in_Not-so-supervised_a_survey_of_semi-supervised_multi-instance_and_transfer_learning_in_medical_image_analysis_/7479416.
Author Cheplygina, Veronika
Pluim, Josien P.W.
de Bruijne, Marleen
Author_xml – sequence: 1
  givenname: Veronika
  orcidid: 0000-0003-0176-9324
  surname: Cheplygina
  fullname: Cheplygina, Veronika
  email: v.cheplygina@tue.nl
  organization: Medical Image Analysis, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
– sequence: 2
  givenname: Marleen
  orcidid: 0000-0002-6328-902X
  surname: de Bruijne
  fullname: de Bruijne, Marleen
  organization: Biomedical Imaging Group Rotterdam, Departments Radiology and Medical Informatics, Erasmus Medical Center, Rotterdam, the Netherlands
– sequence: 3
  givenname: Josien P.W.
  surname: Pluim
  fullname: Pluim, Josien P.W.
  organization: Medical Image Analysis, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30959445$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7If-AkECblx0xnzPRHBRilah6EbXITdzUnKZSa7JzIX77814ayld6CqBPE84533P0UlMERB6TUlLCVXvt-0EQ7AtI1S3hLeE6GfojHJFm14wfvJwp_IUnZeyJYR0QpAX6JQTLbUQ8gylb2luSmrKsoO8DwWGD_gKlyXv4YCTxwWm8OjxEk_LOIcmxDLb6OAS2zjgOdtYPGQ8gs0xxDscIl6Hc3bEYbJ3UDE7HkooL9Fzb8cCr-7PC_Tz86cf11-a2-83X6-vbhsnOJubgeiecum52PRd56zqvNS9ospKzSj4QTu1UV56KhgIsmGd1LxzXKqeO-0ov0Dvjv_ucvq1QJnNFIqDcbQR0lIMY0QxTjVnFX37BN2mJdd5V0oIWiOTK_Xmnlo2dTWzy3WxfDB_o6wAPwIup1Iy-AeEErMWZrbmT2FmLcwQbmph1dJPLBdmO4cUa6hh_I_78ehCDXIfIJviAtRWhpDBzWZI4Z_-b_MFsP0
CitedBy_id crossref_primary_10_1016_j_artmed_2021_102073
crossref_primary_10_1109_ACCESS_2020_2964315
crossref_primary_10_1088_1361_6560_ad33b5
crossref_primary_10_3390_a16080358
crossref_primary_10_1109_TIP_2020_3044220
crossref_primary_10_1016_j_compbiomed_2024_108547
crossref_primary_10_1109_TMI_2020_2995518
crossref_primary_10_3389_fimmu_2025_1547506
crossref_primary_10_1016_j_compmedimag_2025_102636
crossref_primary_10_1016_j_media_2021_102010
crossref_primary_10_1016_j_compbiomed_2025_110903
crossref_primary_10_3389_fonc_2024_1275769
crossref_primary_10_1016_j_compmedimag_2025_102517
crossref_primary_10_1007_s11042_023_16733_8
crossref_primary_10_1109_TNNLS_2023_3327248
crossref_primary_10_1016_j_knosys_2020_105974
crossref_primary_10_1038_s41598_023_46945_9
crossref_primary_10_1109_TPAMI_2021_3100536
crossref_primary_10_1109_TPAMI_2025_3540644
crossref_primary_10_1109_JBHI_2022_3162748
crossref_primary_10_1371_journal_pone_0251703
crossref_primary_10_1177_21925682251342531
crossref_primary_10_1088_2057_1976_adf8ef
crossref_primary_10_3390_cancers15154007
crossref_primary_10_1016_j_artmed_2022_102476
crossref_primary_10_1016_j_media_2021_102146
crossref_primary_10_3390_opt3010002
crossref_primary_10_1007_s11831_023_10028_9
crossref_primary_10_1016_j_media_2021_102263
crossref_primary_10_1042_BST20180391
crossref_primary_10_3390_app10093297
crossref_primary_10_1016_j_artmed_2020_101914
crossref_primary_10_1186_s12880_024_01253_0
crossref_primary_10_1016_j_bspc_2022_104057
crossref_primary_10_1038_s41597_021_00920_z
crossref_primary_10_1016_j_compbiomed_2022_105964
crossref_primary_10_1016_j_media_2022_102673
crossref_primary_10_1016_j_artmed_2022_102366
crossref_primary_10_1007_s00521_023_08930_1
crossref_primary_10_1016_j_compmedimag_2025_102539
crossref_primary_10_1155_2020_8884179
crossref_primary_10_1016_j_media_2023_102969
crossref_primary_10_3390_s25010167
crossref_primary_10_51537_chaos_1326790
crossref_primary_10_1109_TMI_2020_2996645
crossref_primary_10_1002_mp_16048
crossref_primary_10_1109_TMI_2024_3447071
crossref_primary_10_1016_j_knosys_2022_109992
crossref_primary_10_1109_TNNLS_2021_3059635
crossref_primary_10_1016_j_compbiomed_2022_105714
crossref_primary_10_1109_TPAMI_2022_3215186
crossref_primary_10_1038_s41598_021_83503_7
crossref_primary_10_1016_j_media_2024_103150
crossref_primary_10_3389_fendo_2024_1370838
crossref_primary_10_1109_JBHI_2022_3153902
crossref_primary_10_3348_kjr_2022_1032
crossref_primary_10_1109_JBHI_2022_3207502
crossref_primary_10_3390_cancers15102703
crossref_primary_10_3389_fvets_2023_1143986
crossref_primary_10_1016_j_artmed_2021_102078
crossref_primary_10_1038_s41598_023_38240_4
crossref_primary_10_1109_TAI_2021_3054609
crossref_primary_10_1109_TMI_2022_3214766
crossref_primary_10_1016_j_media_2022_102617
crossref_primary_10_1109_TMI_2019_2936244
crossref_primary_10_1109_TMI_2021_3126169
crossref_primary_10_1007_s00521_022_07259_5
crossref_primary_10_1007_s00330_020_06912_8
crossref_primary_10_1007_s11042_024_20503_5
crossref_primary_10_1016_j_engappai_2023_107777
crossref_primary_10_3390_app14072986
crossref_primary_10_3390_app14072741
crossref_primary_10_1016_j_compbiomed_2021_104253
crossref_primary_10_1088_2057_1976_ac64c5
crossref_primary_10_1016_j_media_2019_101624
crossref_primary_10_1016_j_bspc_2025_108391
crossref_primary_10_1016_j_media_2022_102731
crossref_primary_10_1109_TNNLS_2021_3106705
crossref_primary_10_3390_app122312094
crossref_primary_10_1186_s12880_023_01170_8
crossref_primary_10_1186_s12903_024_04460_x
crossref_primary_10_5858_arpa_2020_0850_OA
crossref_primary_10_1007_s00138_020_01101_5
crossref_primary_10_1109_JBHI_2023_3348436
crossref_primary_10_3748_wjg_v27_i34_5666
crossref_primary_10_1109_TAI_2022_3196326
crossref_primary_10_3389_fnins_2020_00125
crossref_primary_10_3390_app10207201
crossref_primary_10_1186_s12880_021_00609_0
crossref_primary_10_1002_mrm_29184
crossref_primary_10_3390_a14010017
crossref_primary_10_1002_mp_16219
crossref_primary_10_1016_j_compbiomed_2021_104269
crossref_primary_10_3390_jpm15070298
crossref_primary_10_1088_1361_6560_ac840f
crossref_primary_10_1007_s10462_025_11160_7
crossref_primary_10_1109_JBHI_2021_3051470
crossref_primary_10_1002_hbm_25858
crossref_primary_10_1109_JBHI_2021_3052320
crossref_primary_10_1016_j_compmedimag_2022_102092
crossref_primary_10_1109_JBHI_2024_3440171
crossref_primary_10_1109_TCBB_2022_3144428
crossref_primary_10_1016_j_compmedimag_2024_102455
crossref_primary_10_1016_j_procs_2022_01_214
crossref_primary_10_1038_s41598_025_05009_w
crossref_primary_10_1109_TMI_2021_3050040
crossref_primary_10_1016_j_ccell_2022_09_012
crossref_primary_10_1007_s43681_022_00161_9
crossref_primary_10_1038_s41467_021_26643_8
crossref_primary_10_1109_ACCESS_2021_3104724
crossref_primary_10_3390_app122010623
crossref_primary_10_1016_j_scitotenv_2020_140118
crossref_primary_10_1109_ACCESS_2021_3068343
crossref_primary_10_1038_s41598_023_39591_8
crossref_primary_10_1016_j_engappai_2025_110165
crossref_primary_10_1109_JPROC_2021_3054390
crossref_primary_10_1109_TMI_2025_3556310
crossref_primary_10_5858_arpa_2020_0712_OA
crossref_primary_10_1038_s41598_025_89831_2
crossref_primary_10_1016_j_expneurol_2024_114913
crossref_primary_10_3390_info14090509
crossref_primary_10_1002_mp_15150
crossref_primary_10_1016_j_media_2023_102802
crossref_primary_10_1016_j_rasd_2023_102223
crossref_primary_10_1016_j_media_2021_102205
crossref_primary_10_1016_j_media_2023_102920
crossref_primary_10_1016_j_nic_2020_08_007
crossref_primary_10_1016_j_neucom_2020_07_008
crossref_primary_10_1016_j_patcog_2025_112406
crossref_primary_10_1109_TAI_2022_3159510
crossref_primary_10_1016_j_compbiomed_2022_105631
crossref_primary_10_3390_app12136448
crossref_primary_10_1016_j_media_2019_101535
crossref_primary_10_1038_s41598_020_69106_8
crossref_primary_10_1016_j_media_2025_103494
crossref_primary_10_1109_TAI_2024_3359576
crossref_primary_10_1007_s41060_023_00414_8
crossref_primary_10_1016_j_compmedimag_2025_102593
crossref_primary_10_1007_s11042_024_18780_1
crossref_primary_10_1016_j_compbiomed_2024_108026
crossref_primary_10_1016_j_cviu_2024_104269
crossref_primary_10_1016_j_inffus_2025_103324
crossref_primary_10_1136_jitc_2022_004848
crossref_primary_10_1145_3464324
crossref_primary_10_1007_s42979_022_01166_1
crossref_primary_10_1016_j_compmedimag_2025_102591
crossref_primary_10_1088_1361_6560_aca069
crossref_primary_10_1002_nbm_5143
crossref_primary_10_1016_j_compbiomed_2022_105302
crossref_primary_10_1016_j_modpat_2024_100591
crossref_primary_10_1109_TMI_2023_3247941
crossref_primary_10_1177_15330338211027901
crossref_primary_10_1016_j_media_2024_103107
crossref_primary_10_1016_j_bspc_2023_104709
crossref_primary_10_3390_cancers14020367
crossref_primary_10_3390_mi13030449
crossref_primary_10_1016_j_eswa_2025_127425
crossref_primary_10_1016_j_future_2021_07_019
crossref_primary_10_1016_j_compbiomed_2023_106809
crossref_primary_10_1016_j_media_2025_103638
crossref_primary_10_2217_bmm_2020_0248
crossref_primary_10_1364_AO_550755
crossref_primary_10_1002_cncy_22238
crossref_primary_10_1016_j_cmpb_2025_109042
crossref_primary_10_3390_info15050246
crossref_primary_10_3390_jimaging9020050
crossref_primary_10_1038_s42256_023_00633_5
crossref_primary_10_1109_TMI_2024_3473745
crossref_primary_10_3390_jimaging7040066
crossref_primary_10_1016_j_patcog_2020_107417
crossref_primary_10_1016_j_neuroimage_2021_118568
crossref_primary_10_1038_s42256_022_00472_w
crossref_primary_10_3389_fpsyg_2020_623237
crossref_primary_10_1007_s00158_024_03800_3
crossref_primary_10_1109_ACCESS_2020_3018498
crossref_primary_10_1007_s11831_025_10238_3
crossref_primary_10_1007_s42979_024_03164_x
crossref_primary_10_1093_pcmedi_pbaa029
crossref_primary_10_3389_fonc_2022_980312
crossref_primary_10_1016_j_compbiomed_2024_109498
crossref_primary_10_1109_TIP_2025_3587597
crossref_primary_10_3390_app13063752
crossref_primary_10_1002_cpe_8293
crossref_primary_10_1002_mp_16338
crossref_primary_10_1109_ACCESS_2021_3106707
crossref_primary_10_1016_j_media_2024_103442
crossref_primary_10_1038_s41569_021_00527_2
crossref_primary_10_1038_s41598_024_55228_w
crossref_primary_10_1109_TMI_2022_3202759
crossref_primary_10_1134_S1064230724700138
crossref_primary_10_1007_s10044_024_01251_6
crossref_primary_10_1088_1361_6560_abfbf4
crossref_primary_10_1089_omi_2019_0069
crossref_primary_10_1371_journal_pdig_0000014
crossref_primary_10_1186_s12880_024_01269_6
crossref_primary_10_3389_fonc_2024_1491762
crossref_primary_10_1088_2632_2153_abd51d
crossref_primary_10_1109_TMI_2024_3366940
crossref_primary_10_1109_JBHI_2021_3106341
crossref_primary_10_1148_ryai_240263
crossref_primary_10_1007_s11831_025_10368_8
crossref_primary_10_1002_mp_16444
crossref_primary_10_1007_s10479_021_04164_3
crossref_primary_10_7717_peerj_19645
crossref_primary_10_3389_fnins_2019_00966
crossref_primary_10_1016_j_media_2025_103733
crossref_primary_10_1109_JBHI_2019_2944643
crossref_primary_10_1016_j_eswa_2025_127687
crossref_primary_10_1109_TRPMS_2023_3332619
crossref_primary_10_1007_s10115_023_01961_z
crossref_primary_10_1016_j_cviu_2024_104100
crossref_primary_10_1016_j_ejmp_2021_04_016
crossref_primary_10_1088_1361_6560_adabad
crossref_primary_10_1093_biomethods_bpaf017
crossref_primary_10_3390_aerospace10030258
crossref_primary_10_1016_j_ultrasmedbio_2022_09_010
crossref_primary_10_1186_s42234_022_00103_0
crossref_primary_10_1109_JBHI_2020_3012134
crossref_primary_10_1109_TPAMI_2019_2945942
crossref_primary_10_1007_s00521_023_08810_8
crossref_primary_10_1016_j_smaim_2025_06_003
crossref_primary_10_1371_journal_pone_0302169
crossref_primary_10_1109_JBHI_2023_3237137
crossref_primary_10_1007_s13246_024_01408_x
crossref_primary_10_1109_TIM_2023_3324675
crossref_primary_10_1007_s11042_022_13545_0
crossref_primary_10_1007_s10489_023_05155_6
crossref_primary_10_1016_j_patcog_2022_109076
crossref_primary_10_1371_journal_pone_0281931
crossref_primary_10_1109_TMI_2023_3306781
crossref_primary_10_7717_peerj_cs_715
crossref_primary_10_1016_j_eswa_2025_127583
crossref_primary_10_1016_j_media_2024_103259
crossref_primary_10_3390_s23156706
crossref_primary_10_1016_j_ultras_2022_106706
crossref_primary_10_3390_s23198219
crossref_primary_10_1007_s13755_023_00222_1
crossref_primary_10_1148_ryai_210315
crossref_primary_10_1245_s10434_025_17748_1
crossref_primary_10_1016_j_compbiomed_2023_106736
crossref_primary_10_1016_j_knosys_2020_106647
crossref_primary_10_1038_s41587_021_01182_1
crossref_primary_10_1016_j_media_2024_103246
crossref_primary_10_1016_j_engappai_2025_111413
crossref_primary_10_3390_bioengineering12050530
crossref_primary_10_1109_ACCESS_2019_2961126
crossref_primary_10_3390_math10163001
crossref_primary_10_3390_app11041675
crossref_primary_10_1186_s12903_025_05618_x
crossref_primary_10_1049_ipr2_70102
crossref_primary_10_1016_j_acra_2023_07_008
crossref_primary_10_1038_s43856_024_00434_w
crossref_primary_10_1007_s13198_024_02344_5
crossref_primary_10_1016_j_neucom_2024_127717
crossref_primary_10_1080_01621459_2024_2340792
crossref_primary_10_1148_ryai_230031
crossref_primary_10_1109_ACCESS_2020_2971391
crossref_primary_10_1016_j_compmedimag_2021_101895
crossref_primary_10_1109_TBME_2021_3117407
crossref_primary_10_1007_s00261_025_04951_7
crossref_primary_10_1016_j_media_2020_101693
crossref_primary_10_1016_j_knosys_2021_106792
crossref_primary_10_3390_app14145968
crossref_primary_10_1016_j_eswa_2024_123739
crossref_primary_10_1016_j_compbiomed_2023_107607
crossref_primary_10_26599_BDMA_2024_9020090
crossref_primary_10_1007_s11517_021_02497_6
crossref_primary_10_3390_pr8010105
crossref_primary_10_3390_diagnostics13243604
crossref_primary_10_1016_j_compbiomed_2023_107840
crossref_primary_10_1109_ACCESS_2021_3061690
crossref_primary_10_1109_TMI_2021_3069634
crossref_primary_10_1049_ipr2_12606
crossref_primary_10_1109_TMI_2021_3135002
crossref_primary_10_1016_j_cpet_2021_06_001
crossref_primary_10_1016_j_patcog_2024_110423
crossref_primary_10_1016_j_patcog_2024_110424
crossref_primary_10_1016_j_media_2021_101978
crossref_primary_10_1016_j_cmpb_2023_107832
crossref_primary_10_1016_j_compbiomed_2022_105499
crossref_primary_10_1038_s41551_020_00681_x
crossref_primary_10_1109_JBHI_2023_3257081
crossref_primary_10_1038_s41598_021_96091_3
crossref_primary_10_1155_2022_9469234
crossref_primary_10_33590_emj_10310309
crossref_primary_10_3390_cancers13040738
crossref_primary_10_1002_alz_13390
crossref_primary_10_1007_s12204_021_2383_4
crossref_primary_10_1109_TMI_2021_3067688
crossref_primary_10_1109_TMI_2020_3042789
crossref_primary_10_1109_ACCESS_2021_3084358
crossref_primary_10_1016_j_compbiomed_2025_110322
crossref_primary_10_1109_JBHI_2025_3556984
crossref_primary_10_1109_TRPMS_2023_3272209
crossref_primary_10_7717_peerj_cs_1258
crossref_primary_10_1007_s10586_025_05281_5
crossref_primary_10_1109_ACCESS_2020_3047544
crossref_primary_10_2118_214312_PA
crossref_primary_10_1007_s11517_022_02743_5
crossref_primary_10_1007_s11042_023_15196_1
crossref_primary_10_1109_ACCESS_2022_3143345
crossref_primary_10_1177_09544054221082779
crossref_primary_10_1016_j_eswa_2021_115598
crossref_primary_10_1007_s10489_023_05158_3
crossref_primary_10_3390_app13148330
crossref_primary_10_1002_adma_202413430
crossref_primary_10_3389_fbioe_2021_811028
crossref_primary_10_1088_1361_6560_ac9173
crossref_primary_10_3389_fmed_2022_886763
crossref_primary_10_1016_j_drudis_2020_12_003
crossref_primary_10_3389_frai_2023_1253183
crossref_primary_10_3390_diagnostics13050834
crossref_primary_10_1016_j_media_2023_103011
crossref_primary_10_1016_j_bspc_2024_106493
crossref_primary_10_1007_s00405_023_08190_8
crossref_primary_10_1016_j_media_2020_101766
crossref_primary_10_1109_TMI_2021_3123572
crossref_primary_10_1038_s41698_024_00666_y
crossref_primary_10_1109_TMI_2020_2996256
crossref_primary_10_1038_s41598_022_24574_y
crossref_primary_10_1016_j_cmpb_2021_106493
crossref_primary_10_1016_j_compmedimag_2020_101744
crossref_primary_10_3390_s20236711
crossref_primary_10_1016_j_compbiomed_2022_106034
crossref_primary_10_1007_s11517_023_02873_4
crossref_primary_10_1109_TAI_2022_3168804
crossref_primary_10_1016_j_saa_2025_126907
crossref_primary_10_1148_ryai_210290
crossref_primary_10_1016_j_imavis_2024_105196
crossref_primary_10_3390_app10010338
crossref_primary_10_1016_j_neucom_2025_130491
crossref_primary_10_1109_JBHI_2023_3240844
crossref_primary_10_1109_TNNLS_2020_2995319
crossref_primary_10_3390_data5020056
crossref_primary_10_3390_jimaging8080222
crossref_primary_10_1016_j_media_2020_101759
crossref_primary_10_1002_path_5773
crossref_primary_10_1109_LGRS_2021_3059708
crossref_primary_10_1002_mp_15923
crossref_primary_10_3390_app13095520
crossref_primary_10_1155_2020_6805710
crossref_primary_10_1016_j_compbiomed_2023_107897
crossref_primary_10_1038_s41598_020_79512_7
crossref_primary_10_1038_s41746_022_00592_y
crossref_primary_10_1002_cjce_24913
crossref_primary_10_1016_j_compbiomed_2022_106147
crossref_primary_10_1038_s42003_021_02814_7
crossref_primary_10_3390_electronics10121403
crossref_primary_10_1007_s10462_024_10932_x
crossref_primary_10_1016_j_dt_2021_09_004
crossref_primary_10_3390_s21155025
crossref_primary_10_1016_j_cmpb_2023_107729
crossref_primary_10_1016_j_engappai_2024_108489
crossref_primary_10_1016_j_isci_2023_108516
crossref_primary_10_3389_fonc_2022_1019749
crossref_primary_10_1002_acm2_13912
crossref_primary_10_3390_electronics12214411
crossref_primary_10_1186_s12880_024_01192_w
crossref_primary_10_1016_j_neucom_2024_127316
crossref_primary_10_3390_ijms232314581
crossref_primary_10_7759_cureus_87181
crossref_primary_10_1080_10408398_2022_2131725
crossref_primary_10_3389_frai_2022_640926
crossref_primary_10_3390_app15126841
crossref_primary_10_1002_alz_70143
crossref_primary_10_1016_j_patrec_2022_06_015
crossref_primary_10_1016_j_compbiomed_2022_106051
crossref_primary_10_3390_s24061933
crossref_primary_10_1016_j_inffus_2024_102263
crossref_primary_10_1007_s11633_021_1313_0
crossref_primary_10_1007_s12559_020_09761_1
crossref_primary_10_1016_j_jpi_2022_100139
crossref_primary_10_1007_s00500_023_08771_z
crossref_primary_10_1016_j_bspc_2025_107757
crossref_primary_10_1007_s11042_024_19922_1
crossref_primary_10_3390_jpm11010032
crossref_primary_10_1111_cdev_13818
crossref_primary_10_1016_j_compbiomed_2022_106168
crossref_primary_10_1016_j_fmre_2025_09_014
crossref_primary_10_1109_TCSVT_2024_3400876
crossref_primary_10_1109_TMI_2021_3061724
crossref_primary_10_1109_TNNLS_2023_3282809
crossref_primary_10_1007_s00521_024_10956_y
crossref_primary_10_2196_28028
crossref_primary_10_1016_j_bpg_2025_102004
crossref_primary_10_1016_j_ebiom_2023_104541
crossref_primary_10_1016_j_eswa_2023_123052
crossref_primary_10_1109_TMI_2022_3152157
crossref_primary_10_1016_j_neuroimage_2022_119127
crossref_primary_10_1109_TAI_2024_3400750
crossref_primary_10_1016_j_ins_2020_05_018
crossref_primary_10_3389_fpls_2022_973745
crossref_primary_10_3390_s22135053
crossref_primary_10_1016_j_irbm_2022_05_002
crossref_primary_10_1371_journal_pone_0249580
crossref_primary_10_3389_fmars_2025_1539828
crossref_primary_10_3389_fonc_2025_1517278
crossref_primary_10_3389_frai_2022_848056
crossref_primary_10_1080_0952813X_2023_2165721
crossref_primary_10_1007_s11265_020_01612_4
crossref_primary_10_1016_j_nicl_2023_103362
crossref_primary_10_1109_TIM_2024_3488143
crossref_primary_10_1016_j_media_2023_102774
crossref_primary_10_1016_j_media_2022_102373
crossref_primary_10_1109_ACCESS_2021_3072997
crossref_primary_10_1109_TRPMS_2023_3265863
crossref_primary_10_1017_dce_2022_40
crossref_primary_10_1186_s40537_021_00552_5
crossref_primary_10_1109_JBHI_2025_3559091
crossref_primary_10_1016_j_compbiomed_2024_108714
crossref_primary_10_1177_11795549231220320
crossref_primary_10_1007_s10489_022_04045_7
crossref_primary_10_1097_j_jcrs_0000000000001538
crossref_primary_10_1016_j_bej_2022_108774
crossref_primary_10_3390_life14101248
crossref_primary_10_1038_s41598_021_03806_7
crossref_primary_10_1007_s11633_022_1382_8
crossref_primary_10_1016_j_apacoust_2020_107691
crossref_primary_10_1016_j_engappai_2022_104842
crossref_primary_10_1016_j_neunet_2023_03_028
crossref_primary_10_1016_j_cmpb_2022_106833
crossref_primary_10_1088_1361_6560_ac3b32
crossref_primary_10_1038_s43856_025_00777_y
crossref_primary_10_1007_s11633_022_1406_4
crossref_primary_10_1109_ACCESS_2024_3442569
crossref_primary_10_3390_e26050400
crossref_primary_10_1038_s41598_023_33900_x
crossref_primary_10_1016_j_media_2021_102191
crossref_primary_10_1016_j_jneumeth_2021_109066
crossref_primary_10_3390_e23070898
crossref_primary_10_14366_usg_20117
crossref_primary_10_1007_s11548_024_03314_9
crossref_primary_10_1016_j_engappai_2024_109300
crossref_primary_10_1007_s10462_023_10588_z
crossref_primary_10_1049_cit2_12216
crossref_primary_10_1155_2022_9112634
crossref_primary_10_1016_j_compbiomed_2022_106090
crossref_primary_10_1016_j_media_2020_101813
crossref_primary_10_1016_j_media_2019_101618
crossref_primary_10_1016_j_cmpb_2021_106004
crossref_primary_10_1016_j_media_2020_101814
crossref_primary_10_1038_s41467_024_48747_7
crossref_primary_10_1111_epi_18028
crossref_primary_10_1109_TMI_2021_3060551
crossref_primary_10_1016_j_compbiomed_2025_110719
crossref_primary_10_1088_2632_2153_ad4c38
crossref_primary_10_3389_fphy_2024_1398393
crossref_primary_10_1109_MSMC_2022_3198027
crossref_primary_10_1016_j_media_2020_101800
crossref_primary_10_1016_j_neucom_2020_05_119
crossref_primary_10_1016_j_compbiomed_2021_104890
crossref_primary_10_1016_j_patcog_2021_108139
crossref_primary_10_1016_j_neucom_2024_127497
crossref_primary_10_3390_bioengineering12080818
crossref_primary_10_1109_ACCESS_2022_3209825
crossref_primary_10_1007_s10489_022_04012_2
crossref_primary_10_3390_s23167289
crossref_primary_10_1016_j_cels_2024_11_009
crossref_primary_10_2196_28776
crossref_primary_10_1186_s12859_020_03936_1
crossref_primary_10_1016_j_envpol_2021_117884
crossref_primary_10_1016_j_media_2022_102688
crossref_primary_10_1002_mp_16188
crossref_primary_10_1093_comjnl_bxaa006
crossref_primary_10_1016_j_engappai_2025_112181
crossref_primary_10_1016_j_neucom_2021_08_051
crossref_primary_10_1016_j_media_2021_102062
crossref_primary_10_1109_TMI_2023_3323540
crossref_primary_10_1016_j_media_2022_102444
crossref_primary_10_1088_1741_2552_abbff2
crossref_primary_10_1016_j_imu_2021_100709
crossref_primary_10_1038_s41571_021_00560_7
crossref_primary_10_1162_imag_a_00548
crossref_primary_10_1038_s42256_020_0185_2
crossref_primary_10_1016_j_compbiomed_2020_104115
crossref_primary_10_1016_j_foodcont_2023_110150
crossref_primary_10_1109_JSEN_2020_3032897
crossref_primary_10_1016_j_media_2022_102470
crossref_primary_10_1038_s41597_020_00622_y
crossref_primary_10_1109_TMI_2024_3429340
crossref_primary_10_3390_s19051181
crossref_primary_10_1016_j_asoc_2022_108983
crossref_primary_10_1016_j_media_2021_102155
crossref_primary_10_1007_s11831_021_09649_9
crossref_primary_10_1016_j_media_2021_102158
crossref_primary_10_1186_s12938_025_01355_y
crossref_primary_10_1016_j_acra_2023_10_061
crossref_primary_10_3389_fonc_2022_905203
crossref_primary_10_3390_ijms221910891
crossref_primary_10_1016_j_compbiomed_2024_109627
crossref_primary_10_1016_j_ins_2021_07_059
crossref_primary_10_1186_s41824_020_00086_8
crossref_primary_10_1007_s00500_023_08422_3
crossref_primary_10_1186_s12880_024_01217_4
crossref_primary_10_1016_j_compmedimag_2022_102127
crossref_primary_10_1038_s41598_025_93824_6
crossref_primary_10_1016_j_media_2023_102762
crossref_primary_10_3233_JIFS_212171
crossref_primary_10_1016_j_media_2021_102165
crossref_primary_10_1109_TCYB_2022_3223528
Cites_doi 10.1109/RBME.2017.2651164
10.1109/TKDE.2009.191
10.1017/S026988890999035X
10.1109/TMI.2018.2842767
10.1016/j.media.2017.01.009
10.1109/TMI.2014.2350539
10.1109/BIBM.2017.8217822
10.1109/CVPR.2016.266
10.1109/TMI.2017.2724070
10.1109/CVPR.2018.00865
10.1016/j.media.2016.06.032
10.1016/j.compmedimag.2014.11.010
10.1016/j.cmpb.2013.12.009
10.1162/jocn.2007.19.9.1498
10.1186/1755-8794-6-S3-S10
10.1016/j.neuroimage.2014.10.002
10.1007/978-3-319-59050-9_20
10.1016/j.media.2014.01.010
10.1016/j.neuroimage.2016.05.053
10.1117/1.JMI.4.4.041311
10.1016/j.patcog.2017.10.009
10.1007/s11548-018-1772-0
10.1016/j.media.2012.06.003
10.1016/j.media.2013.08.004
10.1007/978-3-319-02126-3_4
10.1016/j.patcog.2014.07.025
10.1109/TMI.2014.2366792
10.1016/j.media.2016.02.005
10.1007/s11263-015-0816-y
10.1016/j.media.2015.06.010
10.1109/TPAMI.2006.248
10.1016/S0004-3702(96)00034-3
10.1109/TMI.2013.2239654
10.1109/TMI.2016.2528120
10.1109/JBHI.2017.2691738
10.1109/JBHI.2016.2636929
10.1016/j.media.2017.07.005
10.1118/1.4967345
10.1109/TNNLS.2014.2329567
10.1093/bioinformatics/btw252
10.1109/TMI.2016.2629462
10.1016/j.patrec.2015.03.008
10.1609/aaai.v32i1.11756
10.1016/j.cmpb.2016.07.017
10.1016/j.patcog.2010.05.010
10.1371/journal.pone.0117401
10.1016/j.media.2016.06.023
10.1109/JBHI.2017.2769800
10.1109/JBHI.2016.2635662
10.1109/TMI.2015.2463078
10.1016/j.neuroimage.2013.03.073
10.1016/j.patcog.2016.09.009
10.1016/j.neuroimage.2011.09.069
10.1016/j.artint.2013.06.003
10.1109/TMI.2016.2535302
10.1007/s11682-015-9356-x
10.1016/j.cobme.2018.12.005
10.1007/s10554-009-9543-1
10.1109/TMI.2015.2494582
10.1118/1.4898200
10.1007/s11548-015-1168-3
10.1109/TBME.2007.909544
10.1016/j.imavis.2017.10.001
10.1016/j.media.2015.08.001
10.1016/j.media.2014.04.007
10.1371/journal.pone.0100972
10.1109/ACCESS.2017.2689058
10.1109/TMI.2014.2384733
10.1109/TMI.2015.2505672
10.1007/s10044-008-0104-3
10.1007/s10044-007-0093-7
10.1109/TMI.2004.828354
10.1016/j.neuroimage.2010.12.066
10.1016/j.cviu.2016.01.006
10.1007/978-3-319-46723-8_28
10.1109/JBHI.2015.2425041
10.1109/TMI.2012.2187304
10.1016/j.cmpb.2016.01.014
10.1109/TMI.2016.2524985
10.1117/1.JMI.3.3.034501
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier B.V.
Copyright Elsevier BV May 2019
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier B.V.
– notice: Copyright Elsevier BV May 2019
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2019.03.009
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 296
ExternalDocumentID 30959445
10_1016_j_media_2019_03_009
S1361841518307588
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c432t-d098135f34b877ca67f598616a5921efd9c6b6f5f142e40b275937c35683c9c13
ISICitedReferencesCount 624
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467891200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Sun Sep 28 01:47:28 EDT 2025
Tue Oct 07 06:53:38 EDT 2025
Thu Apr 03 07:08:14 EDT 2025
Sat Nov 29 07:04:22 EST 2025
Tue Nov 18 22:22:05 EST 2025
Fri Feb 23 02:28:19 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Medical imaging
Weakly-supervised learning
Semi-supervised learning
Transfer learning
Machine learning
Computer aided diagnosis
Multiple instance learning
Multi-task learning
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c432t-d098135f34b877ca67f598616a5921efd9c6b6f5f142e40b275937c35683c9c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6328-902X
0000-0003-0176-9324
OpenAccessLink http://hdl.handle.net/1765/116960
PMID 30959445
PQID 2244144052
PQPubID 2045428
PageCount 17
ParticipantIDs proquest_miscellaneous_2206231932
proquest_journals_2244144052
pubmed_primary_30959445
crossref_primary_10_1016_j_media_2019_03_009
crossref_citationtrail_10_1016_j_media_2019_03_009
elsevier_sciencedirect_doi_10_1016_j_media_2019_03_009
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Nappi, Hironaka, Regge, Yoshida (bib0123) 2016
Lu, Bi, Wolf, Salganicoff (bib0101) 2011
Warfield, Zou, Wells (bib0170) 2004; 23
Hussein, S., Cao, K., Song, Q., Bagci, U., 2017. Risk Stratification of Lung Nodules using 3D CNN-Based Multi-Task Learning. arXiv
Kandemir (bib0083) 2015
Baur, Albarqouni, Navab (bib0013) 2017
Cheplygina, Tax, Loog (bib0039) 2015; 59
Chapelle, Schölkopf, Zien (bib0026) 2006; 2
Tiwari, Kurhanewicz, Rosen, Madabhushi (bib0158) 2010
Yan, Zhan, Peng, Liao, Shinagawa, Zhang, Metaxas, Zhou (bib0177) 2016; 35
Ciompi, Pujol, Gatta, Rodríguez-Leor, Mauri-Ferré, Radeva (bib0042) 2010; 26
Dempster, Laird, Rubin (bib0046) 1977
Hon, M., Khan, N., 2017. Towards Alzheimer’s Disease Classification through Transfer Learning. arXiv
Marcus, Wang, Parker, Csernansky, Morris, Buckner (bib0108) 2007; 19
Schlegl, Seeböck, Waldstein, Schmidt-Erfurth, Langs (bib0144) 2017
van Engelen, van Dijk, Truijman, van’t Klooster, van Opbroek, van der Lugt, Niessen, Kooi, de Bruijne (bib0056) 2015; 34
Kamnitsas, Baumgartner, Ledig, Newcombe, Simpson, Kane, Menon, Nori, Criminisi, Rueckert (bib0082) 2017
Situ, Yuan, Zouridakis (bib0150) 2010; 2010
Borga, Andersson, Leinhard (bib0020) 2016
Dhungel, Carneiro, Bradley (bib0047) 2017; 37
Li, Zhang, Zhang, Liu, Xie (bib0093) 2017
.
Chen, Tong, Ho, Patel, Cohen, Dawson, Halse, Geraghty, Rinne, White, Nakornchai, Bentley, Rueckert (bib0028) 2015
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0064) 2014
Jia, Huang, Eric, Chang, Xu (bib0081) 2017; 36
Bi, Xiong, Yu, Dundar, Rao (bib0017) 2008
Moeskops, Wolterink, van der Velden, Gilhuijs, Leiner, Viergever, Išgum (bib0119) 2016
Venkatesan, Chandakkar, Li (bib0161) 2015
Manivannan, Cobb, Burgess, Trucco (bib0107) 2016
Moradi, Pepe, Gaser, Huttunen, Tohka (bib0120) 2015; 104
Quellec, Lamard, Abràmoff, Decencière, Lay, Erginay, Cochener, Cazuguel (bib0132) 2012; 16
Sun, Tseng, Zhang, Qian (bib0156) 2016; 135
Azizi, Mousavi, Yan, Tahmasebi, Kwak, Xu, Turkbey, Choyke, Pinto, Wood (bib0009) 2017
Zhang, Shen (bib0178) 2012; 59
Gärtner, Flach, Kowalczyk, Smola (bib0060) 2002
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bib0140) 2015; 115
Sanchez de la Rosa, Lamard, Cazuguel, Coatrieux, Cozic, Quellec (bib0137) 2015; 2015
Su, Yin, Huh, Kanade, Zhu (bib0155) 2016; 35
Huang, Chan, Gao, Zhou, Chong (bib0073) 2008
Mahmood, F., Chen, R., Durr, N. J., 2017. Unsupervised reverse domain adaption for synthetic medical images via adversarial training. arXiv
Kouw, W. M., Loog, M., Bartels, L. W., Mendrik, A. M., 2017. MR Acquisition-Invariant Representation Learning. arXiv
Alex, Vaidhya, Thirunavukkarasu, Kesavadas, Krishnamurthi (bib0004) 2017; 4
Cheplygina, Peña, Pedersen, Lynch, Sørensen, de Bruijne (bib0035) 2018; 22
Vural, Fung, Krishnapuram, Dy, Rao (bib0162) 2006
Wang, Liu, Prastawa, Irimia, Vespa, van Horn, Fletcher, Gerig (bib0164) 2014; 2014
Elmahdy, Abdeldayem, Yassine (bib0055) 2017
Amores (bib0005) 2013; 201
Mahapatra, Vos, Buhmann (bib0103) 2016; 128
Weese, Lorenz (bib0171) 2016; 33
Borji (bib0021) 2018; 69
Huang, Zheng, Liu, Ding, Rohde (bib0074) 2017
Ravishankar, Sudhakar, Venkataramani, Thiruvenkadam, Annangi, Babu, Vaidya (bib0134) 2016
Song, Zhang, Lee, Wang, Xiang, Zhang (bib0151) 2009; 12
Chang, Han, Zhong, Snijders, Mao (bib0025) 2017
Liu, Xie, Zhang, Yu, Niu, Sun (bib0098) 2017
Meng, Zhang, Cao, Cao, Zhang, Hu (bib0116) 2017
Parag, Plaza, Scheffer (bib0127) 2014
Filipovych, Davatzikos, Initiative (bib0057) 2011; 55
Zuluaga, Hush, Leyton, Hoyos, Orkisz (bib0185) 2011
Foulds, Frank (bib0058) 2010; 25
Hou, L., Samaras, D., Kurc, T. M., Gao, Y., Davis, J. E., Saltz, J. H., 2015. Efficient multiple instance convolutional neural networks for gigapixel resolution image classification.
Conjeti, Katouzian, Roy, Peter, Sheet, Carlier, Laine, Navab (bib0044) 2016; 32
Liang, Bi (bib0095) 2007
Bar, Diamant, Wolf, Lieberman, Konen, Greenspan (bib0011) 2015
de Bruijne (bib0022) 2016; 33
Xu, Zhu, Chang, Lai, Tu (bib0176) 2014; 18
Samala, Chan, Hadjiiski, Helvie, Wei, Cha (bib0141) 2016; 43
Ribeiro, Häfner, Wimmer, Tamaki, Tischendorf, Yoshida, Tanaka, Uhl (bib0135) 2017
Cha, Hadjiiski, Chan, Samala, Cohan, Caoili, Paramagul, Alva, Weizer (bib0024) 2017
Carbonneau, Cheplygina, Granger, Gagnon (bib0023) 2018; 77
Cheplygina, Perez-Rovira, Kuo, Tiddens, de Bruijne (bib0036) 2016
Samsudin, Bradley (bib0142) 2010; 43
Dittrich, Raviv, Kasprian, Donner, Brugger, Prayer, Langs (bib0049) 2014; 18
Heimann, Mountney, John, Ionasec (bib0068) 2014; 18
Melendez, van Ginneken, Maduskar, Philipsen, Reither, Breuninger, Adetifa, Maane, Ayles, Sanchez (bib0113) 2014; 34
Wang, Prastawa, Saha, Awate, Irimia, Chambers, Vespa, Van Horn, Pascucci, Gerig (bib0165) 2013; 8159
Zhou, Xu (bib0183) 2007
Meier, Bauer, Slotboom, Wiest, Reyes (bib0111) 2014; 17
Tomczak, J. M., Ilse, M., Welling, M., 2017. Deep Learning with Permutation-invariant Operator for Multi-instance Histopathology Classification. arXiv
Maken, Gal, Mcclymont, Bradley (bib0106) 2014
Schlegl, Ofner, Langs (bib0143) 2014
Phan, Kumar, Kim, Feng (bib0129) 2016
Kazeminia, S., Baur, C., Kuijper, A., van Ginneken, B., Navab, N., Albarqouni, S., Mukhopadhyay, A., 2018. GANs for Medical Image Analysis. arXiv
Maier-Hein, Kondermann, Roß, Mersmann, Heim, Bodenstedt, Kenngott, Sanchez, Wagner, Preukschas (bib0105) 2015; 10
Elkan, Noto (bib0054) 2008
Melendez, van Ginneken, Maduskar, Philipsen, Ayles, Snchez (bib0112) 2016; 35
Stainvas, I., Manevitch, A., Leichter, I., 2014. Cancer detection with multiple radiologists via soft multiple instance logistic regression and
Xu, Su, Zhu, Guan, Zhang (bib0175) 2016
Wang, McKenna, Nguyen, Burns, Petrick, Sahiner, Summers (bib0169) 2012; 31
Guan, M. Y., Gulshan, V., Dai, A. M., Hinton, G. E., 2017. Who said What: Modeling IndividualLlabelers improves Classification. arXiv
McCann, Bhagavatula, Fickus, Ozolek, Kovacevic (bib0110) 2012; 2012
Ilse, M., Tomczak, J. M., Welling, M., 2018. Attention-Based Deep Multiple Instance Learning. arXiv
Zhang, Yin, Li, Su, Li, Zhang (bib0179) 2013; 6
Biggio (bib0018) 2010
Chen, Bi, Wang (bib0031) 2006; 28
Ruder, S., 2017. An Overview of Multi-task Learning in Deep Neural Networks. arXiv
Shen, Zhou, Yang, Dong, Yang, Zang, Tian (bib0147) 2016
Becker, Christoudias, Fua, Christoudias, Fua (bib0014) 2014; 34
Huynh, Antropova, Giger (bib0076) 2017
Loog, Jensen (bib0099) 2015; 26
Prasad, Sowmya, Wilson (bib0130) 2009; 12
Li, Zhang, McKenna (bib0092) 2015
Ross, T., Zimmerer, D., Vemuri, A., Isensee, F., Bodenstedt, S., Both, F., Kessler, P., Wagner, M., Müller, B., Kenngott, H., et al., 2017. Exploiting the Potential of Unlabeled Endoscopic Video Data with Self-Supervised Learning. arXiv
Murphree, D. H., Ngufor, C., 2017. Transfer Learning for Melanoma Detection: Participation in ISIC 2017 Skin Lesion Classification Challenge. arXiv
Ablavsky, Becker, Fua (bib0001) 2012
van Rikxoort, Galperin-Aizenberg, Goldin, Kockelkorn, van Ginneken, Brown (bib0136) 2010
Tong, Wolz, Gao, Hajnal, Rueckert (bib0160) 2014; 16
Dietterich, Lathrop, Lozano-Pérez (bib0048) 1997; 89
Maron, Ratan (bib0109) 1998; 15
Menegola, Fornaciali, Pires, Bittencourt, Avila, Valle (bib0115) 2017
Sonoyama, S., Tamaki, T., Hirakawa, T., Raytchev, B., Kaneda, K., Koide, T., Yoshida, S., Mieno, H., Tanaka, S., 2016. Transfer Learning for Endoscopic Image Classification. arXiv
Wang, Cong, Fan, Yang, Tang, Zhao (bib0167) 2015
Antony, McGuinness, Connor, Moran (bib0008) 2016
Zhou, Lapedriza, Khosla, Oliva, Torralba (bib0181) 2017
Hwang, S., Kim, H.-E., 2016. Self-Transfer Learning for Fully Weakly Supervised Object Localization 239–246. arXiv
Albarqouni, Baur, Achilles, Belagiannis, Demirci, Navab (bib0003) 2016; 35
Wang, Li, Chen, Lin, Liu, Zeng, Li (bib0166) 2017
Rajchl, M., Lee, M. C., Schrans, F., Davidson, A., Passerat-Palmbach, J., Tarroni, G., Alansary, A., Oktay, O., Kainz, B., Rueckert, D., 2016. Learning under Distributed Weak Supervision. arXiv
Bi, Liang (bib0016) 2007
Mercan, Mercan, Aksoy, Shapiro, Weaver, Elmore (bib0117) 2016
Dubost, Bortsova, Adams, Ikram, Niessen, Vernooij, de Bruijne (bib0051) 2017
Goetz, Weber, Binczyk, Polanska, Tarnawski, Bobek-Billewicz, Koethe, Kleesiek, Stieltjes, Maier-Hein (bib0063) 2016; 35
Singh, Janoos, Pécot, Caserta, Leone, Rittscher, Machiraju (bib0149) 2011
Gass, Székely, Goksel (bib0061) 2012
van Opbroek, Ikram, Vernooij, De Bruijne (bib0124) 2015; 34
Ciompi, de Hoop, van Riel, Chung, Scholten, Oudkerk, de Jong, Prokop, van Ginneken (bib0041) 2015; 26
Lu, Ding, Merkur, Sarunic, Beg (bib0100) 2017
Donner, Wildenauer, Bischof, Langs (bib0050) 2009; 12
Gu, Zheng, Bise, Sato, Imanishi, Aiso (bib0065) 2017
Shin, S. Y., Lee, S., Yun, I. D., Lee, K. M., 2017. Joint weakly and semi-supervised deep learning for localization and classification of masses in breast ultrasound images. arXiv
Mitry, Peto, Hayat, Blows, Morgan, Khaw, Foster (bib0118) 2015; 10
regularization. arXiv
Cheplygina, Sørensen, Tax, de Bruijne, Loog (bib0037) 2015
Li, Z., Wang, C., Han, M., Xue, Y., Wei, W., Li, L.-J., Li, F.-F., 2017b. Thoracic Disease Identification and Localization with Limited Supervision. arXiv
Guerrero, Ledig, Rueckert (bib0067) 2014; 8679
Chen, Qin, Ji, Lei, Wang, Ni, Cheng (bib0030) 2017; 36
Andrews, Hofmann, Tsochantaridis (bib0007) 2002
Kandemir, Zhang, Hamprecht (bib0085) 2014; 8674
Menegola, A., Fornaciali, M., Pires, R., Avila, S., Valle, E., 2016. Towards automated melanoma screening: Exploring transfer learning schemes. arXiv
Schlegl, Waldstein, Vogl, Schmidt-Erfurth, Langs (bib0145) 2015
Cheplygina, Sørensen, Tax, Pedersen, Loog, De Bruijne (bib0038) 2014
An, Adeli, Liu, Zhang, Shen (bib0006) 2016
Wachinger, Reuter (bib0163) 2016; 139
Christodoulidis, Anthimopoulos, Ebner, Christe, Mougiakakou (bib0040) 2017; 21
Chen, Ni, Qin, Li, Yang, Wang, Heng (bib0027) 2015; 19
Kim, H., Hwang, S., 2016. Scale-Invariant Feature Learning using Deconvolutional Neural Networks for Weakly-Supervised Semantic Segmentation. arxiv preprint. arXiv
Zhou, Liu, Narayan, Ye (bib0182) 2013; 78
Krijthe, Loog (bib0091) 2017; 63
van Opbroek, Vernooij, Ik
Bi (10.1016/j.media.2019.03.009_bib0017) 2008
Situ (10.1016/j.media.2019.03.009_bib0150) 2010; 2010
Azizi (10.1016/j.media.2019.03.009_bib0009) 2017
Quellec (10.1016/j.media.2019.03.009_bib0131) 2017; 10
Kandemir (10.1016/j.media.2019.03.009_bib0085) 2014; 8674
Mercan (10.1016/j.media.2019.03.009_bib0117) 2016
Ciompi (10.1016/j.media.2019.03.009_bib0042) 2010; 26
Wu (10.1016/j.media.2019.03.009_bib0173) 2009
Bai (10.1016/j.media.2019.03.009_bib0010) 2017
Zhou (10.1016/j.media.2019.03.009_bib0183) 2007
10.1016/j.media.2019.03.009_bib0072
10.1016/j.media.2019.03.009_bib0071
Hofer (10.1016/j.media.2019.03.009_bib0070) 2017
Zhou (10.1016/j.media.2019.03.009_bib0182) 2013; 78
Andrews (10.1016/j.media.2019.03.009_bib0007) 2002
Tong (10.1016/j.media.2019.03.009_bib0160) 2014; 16
Dubost (10.1016/j.media.2019.03.009_bib0051) 2017
10.1016/j.media.2019.03.009_bib0075
Park (10.1016/j.media.2019.03.009_sbref0114) 2014; 41
10.1016/j.media.2019.03.009_bib0078
Li (10.1016/j.media.2019.03.009_bib0092) 2015
Zhang (10.1016/j.media.2019.03.009_sbref0157) 2013; 6
Albarqouni (10.1016/j.media.2019.03.009_bib0003) 2016; 35
Cha (10.1016/j.media.2019.03.009_sbref0024) 2017
Cheplygina (10.1016/j.media.2019.03.009_bib0035) 2018; 22
Phan (10.1016/j.media.2019.03.009_bib0129) 2016
10.1016/j.media.2019.03.009_bib0114
An (10.1016/j.media.2019.03.009_bib0006) 2016
Zhu (10.1016/j.media.2019.03.009_bib0184) 2009; 3
Xie (10.1016/j.media.2019.03.009_bib0174) 2013; 32
Dhungel (10.1016/j.media.2019.03.009_bib0047) 2017; 37
Gärtner (10.1016/j.media.2019.03.009_bib0060) 2002
Moeskops (10.1016/j.media.2019.03.009_bib0119) 2016
Melendez (10.1016/j.media.2019.03.009_bib0112) 2016; 35
Samala (10.1016/j.media.2019.03.009_bib0141) 2016; 43
Dundar (10.1016/j.media.2019.03.009_bib0053) 2007; 55
Foulds (10.1016/j.media.2019.03.009_bib0058) 2010; 25
Tiwari (10.1016/j.media.2019.03.009_bib0158) 2010
Chen (10.1016/j.media.2019.03.009_bib0030) 2017; 36
Melendez (10.1016/j.media.2019.03.009_bib0113) 2014; 34
Loog (10.1016/j.media.2019.03.009_bib0099) 2015; 26
Schlegl (10.1016/j.media.2019.03.009_bib0145) 2015
10.1016/j.media.2019.03.009_bib0080
Xu (10.1016/j.media.2019.03.009_bib0176) 2014; 18
10.1016/j.media.2019.03.009_bib0087
Ciurte (10.1016/j.media.2019.03.009_bib0043) 2014; 9
10.1016/j.media.2019.03.009_bib0086
Lu (10.1016/j.media.2019.03.009_bib0101) 2011
Wang (10.1016/j.media.2019.03.009_bib0167) 2015
Wang (10.1016/j.media.2019.03.009_bib0169) 2012; 31
10.1016/j.media.2019.03.009_bib0089
10.1016/j.media.2019.03.009_bib0121
Samsudin (10.1016/j.media.2019.03.009_bib0142) 2010; 43
Dempster (10.1016/j.media.2019.03.009_bib0046) 1977
van Engelen (10.1016/j.media.2019.03.009_bib0056) 2015; 34
Liu (10.1016/j.media.2019.03.009_bib0097) 2010
Adal (10.1016/j.media.2019.03.009_bib0002) 2014; 114
Bermúdez-Chacón (10.1016/j.media.2019.03.009_bib0015) 2016
Tajbakhsh (10.1016/j.media.2019.03.009_bib0157) 2016; 35
Cheplygina (10.1016/j.media.2019.03.009_bib0034) 2016
Marcus (10.1016/j.media.2019.03.009_bib0108) 2007; 19
Chen (10.1016/j.media.2019.03.009_bib0027) 2015; 19
Cheng (10.1016/j.media.2019.03.009_bib0032) 2015; 9
Ghafoorian (10.1016/j.media.2019.03.009_bib0062) 2017
Guerrero (10.1016/j.media.2019.03.009_bib0067) 2014; 8679
Gadermayr (10.1016/j.media.2019.03.009_bib0059) 2016
Huang (10.1016/j.media.2019.03.009_bib0074) 2017
Jia (10.1016/j.media.2019.03.009_bib0081) 2017; 36
Krijthe (10.1016/j.media.2019.03.009_bib0091) 2017; 63
Shah (10.1016/j.media.2019.03.009_bib0146) 2018
Carbonneau (10.1016/j.media.2019.03.009_bib0023) 2018; 77
Cozman (10.1016/j.media.2019.03.009_bib0045) 2006
10.1016/j.media.2019.03.009_bib0172
Su (10.1016/j.media.2019.03.009_bib0155) 2016; 35
Chapelle (10.1016/j.media.2019.03.009_bib0026) 2006; 2
Maier-Hein (10.1016/j.media.2019.03.009_bib0105) 2015; 10
Quellec (10.1016/j.media.2019.03.009_bib0132) 2012; 16
Christodoulidis (10.1016/j.media.2019.03.009_bib0040) 2017; 21
Wang (10.1016/j.media.2019.03.009_bib0166) 2017
Zhang (10.1016/j.media.2019.03.009_bib0178) 2012; 59
Zuluaga (10.1016/j.media.2019.03.009_bib0185) 2011
Elkan (10.1016/j.media.2019.03.009_bib0054) 2008
Schlegl (10.1016/j.media.2019.03.009_bib0143) 2014
Wang (10.1016/j.media.2019.03.009_bib0168) 2015; 48
Sun (10.1016/j.media.2019.03.009_bib0156) 2016; 135
van Opbroek (10.1016/j.media.2019.03.009_bib0125) 2015; 24
Conjeti (10.1016/j.media.2019.03.009_bib0044) 2016; 32
Chen (10.1016/j.media.2019.03.009_bib0028) 2015
Filipovych (10.1016/j.media.2019.03.009_bib0057) 2011; 55
10.1016/j.media.2019.03.009_bib0066
Kamnitsas (10.1016/j.media.2019.03.009_bib0082) 2017
10.1016/j.media.2019.03.009_bib0104
Nappi (10.1016/j.media.2019.03.009_sbref0109) 2016
Yan (10.1016/j.media.2019.03.009_bib0177) 2016; 35
Lu (10.1016/j.media.2019.03.009_bib0100) 2017
Borji (10.1016/j.media.2019.03.009_bib0021) 2018; 69
Cheplygina (10.1016/j.media.2019.03.009_bib0039) 2015; 59
Borga (10.1016/j.media.2019.03.009_bib0020) 2016
Amores (10.1016/j.media.2019.03.009_bib0005) 2013; 201
van Rikxoort (10.1016/j.media.2019.03.009_bib0136) 2010
Huynh (10.1016/j.media.2019.03.009_sbref0072) 2016; 3
Maron (10.1016/j.media.2019.03.009_bib0109) 1998; 15
Wang (10.1016/j.media.2019.03.009_bib0165) 2013; 8159
Moradi (10.1016/j.media.2019.03.009_bib0120) 2015; 104
Antony (10.1016/j.media.2019.03.009_bib0008) 2016
Kandemir (10.1016/j.media.2019.03.009_bib0083) 2015
10.1016/j.media.2019.03.009_bib0152
Venkatesan (10.1016/j.media.2019.03.009_bib0161) 2015
Dittrich (10.1016/j.media.2019.03.009_bib0049) 2014; 18
Schlegl (10.1016/j.media.2019.03.009_bib0144) 2017
Chen (10.1016/j.media.2019.03.009_sbref0029) 2017
Ciompi (10.1016/j.media.2019.03.009_bib0041) 2015; 26
10.1016/j.media.2019.03.009_bib0033
Cheplygina (10.1016/j.media.2019.03.009_bib0036) 2016
Kraus (10.1016/j.media.2019.03.009_bib0090) 2016; 32
10.1016/j.media.2019.03.009_bib0154
Russakovsky (10.1016/j.media.2019.03.009_bib0140) 2015; 115
Meng (10.1016/j.media.2019.03.009_bib0116) 2017
de Bruijne (10.1016/j.media.2019.03.009_bib0022) 2016; 33
10.1016/j.media.2019.03.009_bib0159
Zhou (10.1016/j.media.2019.03.009_bib0181) 2017
Spanhol (10.1016/j.media.2019.03.009_bib0153) 2017
Kandemir (10.1016/j.media.2019.03.009_bib0084) 2015; 42
Ravishankar (10.1016/j.media.2019.03.009_bib0134) 2016
Meier (10.1016/j.media.2019.03.009_bib0111) 2014; 17
Liang (10.1016/j.media.2019.03.009_bib0095) 2007
Litjens (10.1016/j.media.2019.03.009_bib0096) 2017; 42
Kisilev (10.1016/j.media.2019.03.009_bib0088) 2016
Parag (10.1016/j.media.2019.03.009_bib0127) 2014
Mahapatra (10.1016/j.media.2019.03.009_bib0102) 2016; 151
Singh (10.1016/j.media.2019.03.009_bib0149) 2011
Alex (10.1016/j.media.2019.03.009_bib0004) 2017; 4
Blum (10.1016/j.media.2019.03.009_bib0019) 1998
Pan (10.1016/j.media.2019.03.009_bib0126) 2010; 22
Warfield (10.1016/j.media.2019.03.009_bib0170) 2004; 23
Herrera (10.1016/j.media.2019.03.009_bib0069) 2016
Mitry (10.1016/j.media.2019.03.009_bib0118) 2015; 10
Xu (10.1016/j.media.2019.03.009_bib0175) 2016
Manivannan (10.1016/j.media.2019.03.009_bib0107) 2016
Donner (10.1016/j.media.2019.03.009_bib0050) 2009; 12
Zhang (10.1016/j.media.2019.03.009_bib0180) 2017; 21
Shen (10.1016/j.media.2019.03.009_bib0147) 2016
Iglesias (10.1016/j.media.2019.03.009_bib0079) 2010; 13
Biggio (10.1016/j.media.2019.03.009_bib0018) 2010
10.1016/j.media.2019.03.009_bib0094
Menegola (10.1016/j.media.2019.03.009_bib0115) 2017
Goodfellow (10.1016/j.media.2019.03.009_bib0064) 2014
Sanchez de la Rosa (10.1016/j.media.2019.03.009_bib0137) 2015; 2015
Cheplygina (10.1016/j.media.2019.03.009_bib0038) 2014
Goetz (10.1016/j.media.2019.03.009_bib0063) 2016; 35
Maken (10.1016/j.media.2019.03.009_bib0106) 2014
Murthy (10.1016/j.media.2019.03.009_bib0122) 2017
Dundar (10.1016/j.media.2019.03.009_bib0052) 2010
10.1016/j.media.2019.03.009_bib0133
Liu (10.1016/j.media.2019.03.009_bib0098) 2017
10.1016/j.media.2019.03.009_bib0139
10.1016/j.media.2019.03.009_bib0138
Dietterich (10.1016/j.media.2019.03.009_bib0048) 1997; 89
Huang (10.1016/j.media.2019.03.009_bib0073) 2008
McCann (10.1016/j.media.2019.03.009_bib0110) 2012; 2012
Song (10.1016/j.media.2019.03.009_bib0151) 2009; 12
Ablavsky (10.1016/j.media.2019.03.009_bib0001) 2012
Wang (10.1016/j.media.2019.03.009_bib0164) 2014; 2014
Wachinger (10.1016/j.media.2019.03.009_bib0163) 2016; 139
Chang (10.1016/j.media.2019.03.009_bib0025) 2017
Baur (10.1016/j.media.2019.03.009_bib0013) 2017
Elmahdy (10.1016/j.media.2019.03.009_bib0055) 2017
Ribeiro (10.1016/j.media.2019.03.009_bib0135) 2017
Mahapatra (10.1016/j.media.2019.03.009_bib0103) 2016; 128
Batmanghelich (10.1016/j.media.2019.03.009_bib0012) 2011
Bi (10.1016/j.media.2019.03.009_bib0016) 2007
Li (10.1016/j.media.2019.03.009_bib0093) 2017
Becker (10.1016/j.media.2019.03.009_bib0014) 2014; 34
Weese (10.1016/j.media.2019.03.009_bib0171) 2016; 33
Vural (10.1016/j.media.2019.03.009_bib0162) 2006
Bar (10.1016/j.media.2019.03.009_bib0011) 2015
Heimann (10.1016/j.media.2019.03.009_bib0068) 2014; 18
van Opbroek (10.1016/j.media.2019.03.009_bib0124) 2015; 34
Prasad (10.1016/j.media.2019.03.009_bib0130) 2009; 12
Chen (10.1016/j.media.2019.03.009_bib0031) 2006; 28
Gass (10.1016/j.media.2019.03.009_bib0061) 2012
Huynh (10.1016/j.media.2019.03.009_sbref0071) 2017
Cheplygina (10.1016/j.media.2019.03.009_bib0037) 2015
Gu (10.1016/j.media.2019.03.009_bib0065) 2017
10.1016/j.media.2019.03.009_bib0148
References_xml – start-page: 79
  year: 2016
  end-page: 87
  ident: bib0006
  article-title: Semi-supervised hierarchical multimodal feature and sample selection for Alzheimer’s disease diagnosis
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– year: 2017
  ident: bib0025
  article-title: Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– volume: 8679
  start-page: 77
  year: 2014
  end-page: 84
  ident: bib0067
  article-title: Manifold alignment and transfer learning for classification of Alzheimer’s disease
  publication-title: Machine Learning in Medical Imaging (MICCAI MLMI)
– start-page: 834
  year: 2017
  end-page: 841
  ident: bib0122
  article-title: Center-focusing multi-task CNN with injected features for classification of glioma nuclear images
  publication-title: IEEE Winter Conference on Applications of Computer Vision (WACV)
– volume: 37
  start-page: 114
  year: 2017
  end-page: 128
  ident: bib0047
  article-title: A deep learning approach for the analysis of masses in mammograms with minimal user intervention
  publication-title: Med. Image Anal.
– year: 2017
  ident: bib0024
  article-title: Bladder cancer treatment response assessment using deep learning in CT with transfer learning
  publication-title: SPIE Medical Imaging
– volume: 63
  start-page: 115
  year: 2017
  end-page: 126
  ident: bib0091
  article-title: Robust semi-supervised least squares classification by implicit constraints
  publication-title: Pattern Recognit.
– volume: 31
  start-page: 1141
  year: 2012
  end-page: 1153
  ident: bib0169
  article-title: Seeing is believing: video classification for computed tomographic colonography using multiple-instance learning
  publication-title: IEEE Trans. Med. Imaging
– volume: 25
  start-page: 1
  year: 2010
  ident: bib0058
  article-title: A review of multi-instance learning assumptions
  publication-title: Knowl. Eng. Rev.
– reference: Cheplygina, V., 2018. Cats or Cat Scans: Transfer Learning from Natural or Medical Image Source Datasets? arXiv:
– start-page: 379
  year: 2018
  end-page: 387
  ident: bib0146
  article-title: MS-Net: Mixed-supervision fully-convolutional networks for full-resolution segmentation
  publication-title: IMedical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 10
  start-page: 1201
  year: 2015
  end-page: 1212
  ident: bib0105
  article-title: Crowdtruth validation: a new paradigm for validating algorithms that rely on image correspondences
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– start-page: 1167
  year: 2007
  end-page: 1174
  ident: bib0183
  article-title: On the relation between multi-instance learning and semi-supervised learning
  publication-title: International Conference on Machine learning (ICML)
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: bib0126
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 121
  year: 2016
  end-page: 129
  ident: bib0088
  article-title: Medical image description using multi-task-loss CNN
  publication-title: Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (MICCAI LABELS)
– volume: 3
  start-page: 1
  year: 2009
  end-page: 130
  ident: bib0184
  article-title: Introduction to semi-supervised learning
  publication-title: Synth. Lect. Artif. Intell. Mach. Learn.
– start-page: 1508
  year: 2014
  end-page: 1513
  ident: bib0038
  article-title: Classification of COPD with multiple instance learning
  publication-title: International Conference on Pattern Recognition (ICPR)
– volume: 26
  start-page: 763
  year: 2010
  end-page: 779
  ident: bib0042
  article-title: Fusing in-vitro and in-vivo intravascular ultrasound data for plaque characterization
  publication-title: Int. J. Cardiovasc. Imaging
– start-page: 597
  year: 2017
  end-page: 609
  ident: bib0082
  article-title: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks
  publication-title: International Conference on Information Processing in Medical Imaging (IPMI)
– reference: Menegola, A., Fornaciali, M., Pires, R., Avila, S., Valle, E., 2016. Towards automated melanoma screening: Exploring transfer learning schemes. arXiv:
– start-page: 1
  year: 2017
  end-page: 11
  ident: bib0009
  article-title: Transfer learning from rf to b-mode temporal enhanced ultrasound features for prostate cancer detection
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 21
  start-page: 41
  year: 2017
  end-page: 47
  ident: bib0180
  article-title: Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain
  publication-title: IEEE J. Biomed. Health Inform.
– year: 2012
  ident: bib0001
  article-title: Transfer Learning by Sharing Support Vectors
  publication-title: Technical Report
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0064
  article-title: Generative adversarial nets
  publication-title: Advances in neural information processing systems
– start-page: 449
  year: 2006
  end-page: 460
  ident: bib0162
  article-title: Batch classification with applications in computer aided diagnosis
  publication-title: European Conference on Machine Learning (ECML)
– volume: 2012
  start-page: 2809
  year: 2012
  end-page: 2812
  ident: bib0110
  article-title: Automated colitis detection from endoscopic biopsies as a tissue screening tool in diagnostic pathology
  publication-title: International Conference on Image Processing (ICIP)
– start-page: 3146
  year: 2016
  end-page: 3149
  ident: bib0020
  article-title: Semi-supervised learning of anatomical manifolds for atlas-based segmentation of medical images
  publication-title: International Conference on Pattern Recognition (ICPR)
– start-page: 297
  year: 2017
  end-page: 300
  ident: bib0115
  article-title: Knowledge transfer for melanoma screening with deep learning
  publication-title: International Sympsium on Biomedical Imaging (ISBI)
– volume: 34
  start-page: 1
  year: 2014
  end-page: 14
  ident: bib0014
  article-title: Domain adaptation for microscopy imaging
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1
  year: 2014
  ident: bib0106
  article-title: Multiple instance learning for breast cancer magnetic resonance imaging
  publication-title: Digital lmage Computing: Techniques and Applications (DICTA)
– year: 2016
  ident: bib0069
  article-title: Multiple Instance Learning: Foundations and Algorithms
– start-page: 51
  year: 2008
  end-page: 58
  ident: bib0073
  article-title: Semi-supervised nasopharyngeal carcinoma lesion extraction from magnetic resonance images using online spectral clustering with a learned metric
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 114
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib0002
  article-title: Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning
  publication-title: Comput. Methods Programs Biomed.
– volume: 10
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib0118
  article-title: Crowdsourcing as a screening tool to detect clinical features of glaucomatous optic neuropathy from digital photography
  publication-title: PLoS ONE
– start-page: 214
  year: 2017
  end-page: 221
  ident: bib0051
  article-title: GP-Unet: Lesion detection from weak labels with a 3D regression network
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 13
  start-page: 147
  year: 2010
  end-page: 154
  ident: bib0079
  article-title: Agreement-based semi-supervised learning for skull stripping
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 12
  start-page: 99
  year: 2009
  end-page: 115
  ident: bib0151
  article-title: Semi-supervised discriminative classification with application to tumorous tissues segmentation of MR brain images
  publication-title: Pattern Anal. Appl.
– volume: 18
  start-page: 1320
  year: 2014
  end-page: 1328
  ident: bib0068
  article-title: Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data
  publication-title: Med. Image Anal.
– volume: 24
  start-page: 245
  year: 2015
  end-page: 254
  ident: bib0125
  article-title: Weighting training images by maximizing distribution similarity for supervised segmentation across scanners
  publication-title: Med. Image Anal.
– volume: 35
  start-page: 1299
  year: 2016
  end-page: 1312
  ident: bib0157
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning?
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1
  year: 2007
  end-page: 8
  ident: bib0016
  article-title: Multiple instance learning of pulmonary embolism detection with geodesic distance along vascular structure
  publication-title: Computer Vision and Pattern Recognition (CVPR)
– start-page: 666
  year: 2010
  end-page: 673
  ident: bib0158
  article-title: Semi supervised multi kernel (SeSMiK) graph embedding: identifying aggressive prostate cancer via magnetic resonance imaging and spectroscopy
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– start-page: 1049
  year: 2011
  end-page: 1056
  ident: bib0101
  article-title: Effective 3D object detection and regression using probabilistic segmentation features in CT images
  publication-title: Computer Vision and Pattern Recognition (CVPR)
– volume: 3
  year: 2016
  ident: bib0077
  article-title: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
  publication-title: J. Med. Imaging
– year: 2017
  ident: bib0074
  article-title: Epithelium-stroma classification via convolutional neural networks and unsupervised domain adaptation in histopathological images
  publication-title: IEEE J. Biomed. Health Inform
– start-page: 188
  year: 2016
  end-page: 196
  ident: bib0134
  article-title: Understanding the mechanisms of deep transfer learning for medical images
  publication-title: Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (MICCAI LABELS)
– start-page: 1868
  year: 2017
  end-page: 1873
  ident: bib0153
  article-title: Deep features for breast cancer histopathological image classification
  publication-title: IEEE International Conference on Systems, Man, and Cybernetics (SMC)
– volume: 2
  year: 2006
  ident: bib0026
  article-title: Semi-Supervised Learning
– volume: 12
  start-page: 9
  year: 2009
  end-page: 20
  ident: bib0130
  article-title: Multi-level classification of emphysema in HRCT lung images
  publication-title: Pattern Anal. Appl.
– start-page: 539
  year: 2015
  end-page: 546
  ident: bib0037
  article-title: Label stability in multiple instance learning
  publication-title: Medical Imaging Computing and Computer Assisted Intervention (MICCAI)
– start-page: 645
  year: 2015
  end-page: 652
  ident: bib0092
  article-title: Multiple Instance Cancer Detection by Boosting Regularised Trees
– start-page: 124
  year: 2016
  end-page: 131
  ident: bib0147
  article-title: Learning from Experts: Developing Transferable Deep Features for Patient-level Lung Cancer Prediction
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 9
  start-page: 1
  year: 2015
  end-page: 14
  ident: bib0032
  article-title: Multimodal manifold-regularized transfer learning for MCI conversion prediction
  publication-title: Brain Imaging Behav.
– start-page: 1044
  year: 2017
  end-page: 1048
  ident: bib0135
  article-title: Exploring texture transfer learning for colonic polyp classification via convolutional neural networks
  publication-title: International Symposium on Biomedical Imaging (ISBI)
– volume: 32
  start-page: 628
  year: 2013
  end-page: 635
  ident: bib0174
  article-title: Multiple atlas construction from a heterogeneous brain MR image collection
  publication-title: IEEE Trans. Med. Imaging
– volume: 19
  start-page: 1627
  year: 2015
  end-page: 1636
  ident: bib0027
  article-title: Standard plane localization in fetal ultrasound via domain transferred deep neural networks
  publication-title: IEEE J. Biomed. Health Inform.
– start-page: 3072
  year: 2015
  end-page: 3076
  ident: bib0167
  article-title: Computer aided endoscope diagnosis via weakly labeled data mining
  publication-title: International Conference on Image Processing (ICIP)
– volume: 17
  start-page: 714
  year: 2014
  end-page: 721
  ident: bib0111
  article-title: Patient-specific semi-supervised learning for postoperative brain tumor segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 43
  start-page: 3458
  year: 2010
  end-page: 3467
  ident: bib0142
  article-title: Nearest neighbour group-based classification
  publication-title: Pattern Recognit.
– start-page: 146
  year: 2017
  end-page: 157
  ident: bib0144
  article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery
  publication-title: International Conference on Information Processing in Medical Imaging
– volume: 35
  start-page: 762
  year: 2016
  end-page: 777
  ident: bib0155
  article-title: Interactive cell segmentation based on active and semi-supervised learning
  publication-title: IEEE Trans. Med. Imaging
– volume: 201
  start-page: 81
  year: 2013
  end-page: 105
  ident: bib0005
  article-title: Multiple instance classification: review, taxonomy and comparative study
  publication-title: Artif. Intell.
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: bib0096
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– volume: 10
  start-page: 213
  year: 2017
  end-page: 234
  ident: bib0131
  article-title: Multiple-instance learning for medical image and video analysis
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 8674
  start-page: 228
  year: 2014
  end-page: 235
  ident: bib0085
  article-title: Empowering multiple instance histopathology cancer diagnosis by cell graphs
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0140
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– start-page: 20
  year: 2016
  end-page: 28
  ident: bib0175
  article-title: Neuron segmentation based on CNN with semi-supervised regularization
  publication-title: Computer Vision and Pattern Recognition (CVPR) Workshops
– reference: Hussein, S., Cao, K., Song, Q., Bagci, U., 2017. Risk Stratification of Lung Nodules using 3D CNN-Based Multi-Task Learning. arXiv:
– reference: Hwang, S., Kim, H.-E., 2016. Self-Transfer Learning for Fully Weakly Supervised Object Localization 239–246. arXiv:
– volume: 26
  start-page: 995
  year: 2015
  end-page: 1006
  ident: bib0099
  article-title: Semi-supervised nearest mean classification through a constrained log-likelihood
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: Murphree, D. H., Ngufor, C., 2017. Transfer Learning for Melanoma Detection: Participation in ISIC 2017 Skin Lesion Classification Challenge. arXiv:
– start-page: 253
  year: 2017
  end-page: 260
  ident: bib0010
  article-title: Semi-supervised learning for network-based cardiac MR image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 16
  start-page: 599
  year: 2014
  end-page: 606
  ident: bib0160
  article-title: Multiple instance learning for classification of dementia in brain MRI
  publication-title: Med. Image Anal.
– volume: 15
  start-page: 341
  year: 1998
  end-page: 349
  ident: bib0109
  article-title: Multiple-instance learning for natural scene classification
  publication-title: International Conference on Machine Learning
– volume: 59
  start-page: 895
  year: 2012
  end-page: 907
  ident: bib0178
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease
  publication-title: Neuroimage
– volume: 12
  start-page: 860
  year: 2009
  end-page: 868
  ident: bib0050
  article-title: Weakly supervised group-wise model learning based on discrete optimization
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 35
  start-page: 184
  year: 2016
  end-page: 196
  ident: bib0063
  article-title: DALSA: Domain adaptation for supervised learning from sparsely annotated MR images
  publication-title: IEEE Trans. Med. Imaging
– start-page: 389
  year: 2014
  end-page: 397
  ident: bib0127
  article-title: Small sample learning of superpixel classifiers for EM segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– start-page: 1359
  year: 2009
  end-page: 1366
  ident: bib0173
  article-title: A min-max framework of cascaded classifier with multiple instance learning for computer aided diagnosis
  publication-title: Computer Vision and Pattern Recognition (CVPR)
– start-page: 437
  year: 2015
  end-page: 448
  ident: bib0145
  article-title: Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks
  publication-title: Information Processing in Medical Imaging (IPMI)
– volume: 32
  start-page: 1
  year: 2016
  end-page: 17
  ident: bib0044
  article-title: Supervised domain adaptation of decision forests: transfer of models trained in vitro for in vivo intravascular ultrasound tissue characterization
  publication-title: Med. Image Anal.
– start-page: 139
  year: 2017
  end-page: 142
  ident: bib0100
  article-title: Multiple instance learning for age-related macular degeneration diagnosis in optical coherence tomography images
  publication-title: International Symposium on Biomedical Imaging (ISBI)
– volume: 23
  start-page: 903
  year: 2004
  end-page: 921
  ident: bib0170
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 34
  start-page: 1294
  year: 2015
  end-page: 1305
  ident: bib0056
  article-title: Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– start-page: 702
  year: 2017
  end-page: 710
  ident: bib0065
  article-title: Semi-supervised learning for biomedical image segmentation via forest oriented super pixels (voxels)
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– year: 2017
  ident: bib0181
  article-title: Places: a 10 million image database for scene recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– volume: 35
  start-page: 1313
  year: 2016
  end-page: 1321
  ident: bib0003
  article-title: Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images
  publication-title: IEEE Trans. Med. Imaging
– volume: 2010
  start-page: 5561
  year: 2010
  end-page: 5564
  ident: bib0150
  article-title: Boosting instance prototypes to detect local dermoscopic features
  publication-title: International Conference of the IEEE Engineering in Medicine and Biology Society
– reference: regularization. arXiv:
– reference: Shin, S. Y., Lee, S., Yun, I. D., Lee, K. M., 2017. Joint weakly and semi-supervised deep learning for localization and classification of masses in breast ultrasound images. arXiv:
– start-page: 56
  year: 2006
  end-page: 72
  ident: bib0045
  article-title: Risks of semi-supervised learning
  publication-title: Semi-Supervised Learn.
– start-page: 2732
  year: 2010
  end-page: 2735
  ident: bib0052
  article-title: A multiple instance learning approach toward optimal classification of pathology slides
  publication-title: International Conference on Pattern Recognition (ICPR)
– volume: 77
  start-page: 329
  year: 2018
  end-page: 353
  ident: bib0023
  article-title: Multiple instance learning: a survey of problem characteristics and applications
  publication-title: Pattern Recognit.
– volume: 35
  start-page: 1013
  year: 2016
  end-page: 1024
  ident: bib0112
  article-title: On combining multiple-instance learning and active learning for computer-aided detection of tuberculosis
  publication-title: IEEE Trans. Med. Imaging
– volume: 2015
  start-page: 7055
  year: 2015
  end-page: 7058
  ident: bib0137
  article-title: Multiple-instance learning for breast cancer detection in mammograms
  publication-title: International Conference of the IEEE Engineering in Medicine and Biology Society
– reference: Kouw, W. M., Loog, M., Bartels, L. W., Mendrik, A. M., 2017. MR Acquisition-Invariant Representation Learning. arXiv:
– start-page: 2605
  year: 2015
  end-page: 2613
  ident: bib0161
  article-title: Simpler non-parametric methods provide as good or better results to multiple-instance learning
  publication-title: International Conference on Computer Vision (ICCV)
– reference: Stainvas, I., Manevitch, A., Leichter, I., 2014. Cancer detection with multiple radiologists via soft multiple instance logistic regression and
– volume: 16
  start-page: 1228
  year: 2012
  end-page: 1240
  ident: bib0132
  article-title: A multiple-instance learning framework for diabetic retinopathy screening
  publication-title: Med. Image Anal.
– start-page: 1086
  year: 2011
  end-page: 1090
  ident: bib0012
  article-title: Disease classification and prediction via semi-supervised dimensionality reduction
  publication-title: International Symposium on Biomedical Imaging (ISBI)
– volume: 9
  start-page: e100972
  year: 2014
  ident: bib0043
  article-title: Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut
  publication-title: PLoS ONE
– reference: Ilse, M., Tomczak, J. M., Welling, M., 2018. Attention-Based Deep Multiple Instance Learning. arXiv:
– start-page: 979108
  year: 2016
  ident: bib0117
  article-title: Multi-instance multi-label learning for whole slide breast histopathology
  publication-title: Medical Imaging 2016: Digital Pathology
– volume: 139
  start-page: 470
  year: 2016
  end-page: 479
  ident: bib0163
  article-title: Domain adaptation for Alzheimer’s disease diagnostics
  publication-title: Neuroimage
– start-page: 41
  year: 2010
  end-page: 48
  ident: bib0136
  article-title: Multi-classifier semi-supervised classification of tuberculosis patterns on chest CT scans
  publication-title: Pulmonary Image Analysis (MICCAI PIA)
– volume: 26
  start-page: 195
  year: 2015
  end-page: 202
  ident: bib0041
  article-title: Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
  publication-title: Med. Image Anal.
– start-page: 1208
  year: 2016
  end-page: 1211
  ident: bib0129
  article-title: Transfer learning of a convolutional neural network for HEp-2 cell image classification
  publication-title: International Symposium on Biomedical Imaging (ISBI)
– start-page: 29
  year: 2012
  end-page: 37
  ident: bib0061
  article-title: Semi-supervised segmentation using multiple segmentation hypotheses from a single atlas
  publication-title: Medical Computer Vision (MICCAI MCV)
– start-page: 179
  year: 2002
  end-page: 186
  ident: bib0060
  article-title: Multi-instance kernels
  publication-title: International Conference on Machine Learning
– volume: 34
  start-page: 1018
  year: 2015
  end-page: 1030
  ident: bib0124
  article-title: Transfer learning improves supervised image segmentation across imaging protocols
  publication-title: IEEE Trans. Med. Imaging
– reference: Ruder, S., 2017. An Overview of Multi-task Learning in Deep Neural Networks. arXiv:
– volume: 34
  start-page: 179
  year: 2014
  end-page: 192
  ident: bib0113
  article-title: A novel multiple-instance learning-based approach to computer-aided detection of tuberculosis on chest x-rays
  publication-title: IEEE Trans. Med. Imaging
– start-page: 209
  year: 2016
  end-page: 218
  ident: bib0036
  article-title: Early experiences with crowdsourcing airway annotations in chest CT
  publication-title: Large-scale Annotation of Biomedical data and Expert Label Synthesis (MICCAI LABELS)
– start-page: 1
  year: 1977
  end-page: 38
  ident: bib0046
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
– start-page: 730
  year: 2015
  end-page: 738
  ident: bib0083
  article-title: Asymmetric transfer learning with deep gaussian processes
  publication-title: International Conference on Machine Learning
– start-page: 398
  year: 2011
  end-page: 410
  ident: bib0149
  article-title: Identifying nuclear phenotypes using semi-supervised metric learning
  publication-title: Information Processing in Medical Imaging (IPMI)
– start-page: 441
  year: 2017
  end-page: 445
  ident: bib0070
  article-title: Simple domain adaptation for cross-dataset analyses of brain MRI data
  publication-title: International Symposium on Biomedical Imaging (ISBI)
– reference: Sonoyama, S., Tamaki, T., Hirakawa, T., Raytchev, B., Kaneda, K., Koide, T., Yoshida, S., Mieno, H., Tanaka, S., 2016. Transfer Learning for Endoscopic Image Classification. arXiv:
– volume: 8159
  start-page: 31
  year: 2013
  end-page: 39
  ident: bib0165
  article-title: Modeling 4D changes in pathological anatomy using domain adaptation: analysis of TBI imaging using a tumor database
  publication-title: Multimodal Brain Image Anal. (MICCAI MBIA)
– year: 2017
  ident: bib0116
  article-title: Liver fibrosis classification based on transfer learning and fcnet for ultrasound images
  publication-title: IEEE Access
– volume: 4
  start-page: 041311
  year: 2017
  ident: bib0004
  article-title: Semisupervised learning using denoising autoencoders for brain lesion detection and segmentation
  publication-title: J. Med. Imaging
– start-page: 630
  year: 2007
  end-page: 641
  ident: bib0095
  article-title: Computer aided detection of pulmonary embolism with tobogganing and mutiple instance classification in CT pulmonary angiography
  publication-title: Information Processing in Medical Imaging (IPMI)
– start-page: 82
  year: 2014
  end-page: 93
  ident: bib0143
  article-title: Unsupervised pre-training across image domains improves lung tissue classification
  publication-title: Medical Computer Vision: Algorithms for Big Data (MICCAI MCV)
– reference: Kim, H., Hwang, S., 2016. Scale-Invariant Feature Learning using Deconvolutional Neural Networks for Weakly-Supervised Semantic Segmentation. arxiv preprint. arXiv:
– start-page: 1222
  year: 2017
  end-page: 1225
  ident: bib0166
  article-title: Direct aneurysm volume estimation by multi-view semi-supervised manifold learning
  publication-title: International Symposium on Biomedical Imaging
– start-page: 523
  year: 2015
  end-page: 530
  ident: bib0028
  article-title: Identification of cerebral small vessel disease using multiple instance learning
  publication-title: Medical Image Computing and Computer Assisted Intervention (MICCAI)
– reference: Hon, M., Khan, N., 2017. Towards Alzheimer’s Disease Classification through Transfer Learning. arXiv:
– volume: 135
  start-page: 77
  year: 2016
  end-page: 88
  ident: bib0156
  article-title: Computerized breast cancer analysis system using three stage semi-supervised learning method
  publication-title: Comput. Methods Programs Biomed.
– volume: 151
  start-page: 114
  year: 2016
  end-page: 123
  ident: bib0102
  article-title: Combining multiple expert annotations using semi-supervised learning and graph cuts for medical image segmentation
  publication-title: Comput. Vis. Image Understanding
– reference: Tomczak, J. M., Ilse, M., Welling, M., 2017. Deep Learning with Permutation-invariant Operator for Multi-instance Histopathology Classification. arXiv:
– volume: 89
  start-page: 31
  year: 1997
  end-page: 71
  ident: bib0048
  article-title: Solving the multiple instance problem with axis-parallel rectangles
  publication-title: Artif. Intell.
– start-page: 516
  year: 2017
  end-page: 524
  ident: bib0062
  article-title: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– start-page: 1096
  year: 2017
  end-page: 1099
  ident: bib0098
  article-title: Feature selection and thyroid nodule classification using transfer learning
  publication-title: International Symposium on Biomedical Imaging (ISBI)
– year: 2016
  ident: bib0123
  article-title: Deep transfer learning of virtual endoluminal views for the detection of polyps in CT colonography
– volume: 18
  start-page: 9
  year: 2014
  end-page: 21
  ident: bib0049
  article-title: A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation
  publication-title: Med. Image Anal.
– volume: 35
  start-page: 1332
  year: 2016
  end-page: 1343
  ident: bib0177
  article-title: Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition
  publication-title: IEEE Trans. Med. Imaging
– volume: 69
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib0021
  article-title: Negative results in computer vision: a perspective
  publication-title: Image Vis. Comput.
– volume: 28
  start-page: 1931
  year: 2006
  end-page: 1947
  ident: bib0031
  article-title: MILES: Multiple-instance learning via embedded instance selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 294
  year: 2015
  end-page: 297
  ident: bib0011
  article-title: Chest pathology detection using deep learning with non-medical training
  publication-title: International Symposium on Biomedical Imaging (ISBI)
– reference: Hou, L., Samaras, D., Kurc, T. M., Gao, Y., Davis, J. E., Saltz, J. H., 2015. Efficient multiple instance convolutional neural networks for gigapixel resolution image classification.
– volume: 6
  year: 2013
  ident: bib0179
  article-title: Automated skin biopsy histopathological image annotation using multi-instance representation and learning
  publication-title: BMC Med. Genom.
– start-page: 311
  year: 2017
  end-page: 319
  ident: bib0013
  article-title: Semi-supervised deep learning for fully convolutional networks
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– start-page: 92
  year: 1998
  end-page: 100
  ident: bib0019
  article-title: Combining labeled and unlabeled data with co-training
  publication-title: Computational learning theory (COLT)
– volume: 55
  start-page: 1109
  year: 2011
  end-page: 1119
  ident: bib0057
  article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)
  publication-title: Neuroimage
– volume: 41
  year: 2014
  ident: bib0128
  article-title: Interactive prostate segmentation using atlas-guided semi-supervised learning and adaptive feature selection
  publication-title: Med. Phys.
– start-page: 213
  year: 2008
  end-page: 220
  ident: bib0054
  article-title: Learning classifiers from only positive and unlabeled data
  publication-title: International Conference on Knowledge Discovery and Data Mining
– volume: 48
  start-page: 276
  year: 2015
  end-page: 287
  ident: bib0168
  article-title: Optimizing area under the ROC curve using semi-supervised learning
  publication-title: Pattern Recognit.
– reference: Kazeminia, S., Baur, C., Kuijper, A., van Ginneken, B., Navab, N., Albarqouni, S., Mukhopadhyay, A., 2018. GANs for Medical Image Analysis. arXiv:
– volume: 32
  start-page: i52
  year: 2016
  end-page: i59
  ident: bib0090
  article-title: Classifying and segmenting microscopy images with deep multiple instance learning
  publication-title: Bioinformatics
– start-page: 616
  year: 2016
  end-page: 622
  ident: bib0059
  article-title: Domain Adaptive Classification for Compensating Variability in Histopathological Whole Slide Images
  publication-title: International Conference Image Analysis and Recognition
– reference: Ross, T., Zimmerer, D., Vemuri, A., Isensee, F., Bodenstedt, S., Both, F., Kessler, P., Wagner, M., Müller, B., Kenngott, H., et al., 2017. Exploiting the Potential of Unlabeled Endoscopic Video Data with Self-Supervised Learning. arXiv:
– reference: Li, Z., Wang, C., Han, M., Xue, Y., Wei, W., Li, L.-J., Li, F.-F., 2017b. Thoracic Disease Identification and Localization with Limited Supervision. arXiv:
– start-page: 117
  year: 2008
  end-page: 132
  ident: bib0017
  article-title: An improved multi-task learning approach
  publication-title: Mach. Learn. Knowl. Discov. Databases
– reference: Guan, M. Y., Gulshan, V., Dai, A. M., Hinton, G. E., 2017. Who said What: Modeling IndividualLlabelers improves Classification. arXiv:
– volume: 42
  start-page: 44
  year: 2015
  end-page: 50
  ident: bib0084
  article-title: Computer-aided diagnosis from weak supervision: a benchmarking study
  publication-title: Comput. Med. Imaging Graph.
– start-page: 373
  year: 2017
  end-page: 376
  ident: bib0055
  article-title: Low quality dermal image classification using transfer learning
  publication-title: IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)
– volume: 78
  start-page: 233
  year: 2013
  end-page: 248
  ident: bib0182
  article-title: Modeling disease progression via multi-task learning
  publication-title: Neuroimage
– volume: 33
  start-page: 94
  year: 2016
  end-page: 97
  ident: bib0022
  article-title: Machine learning approaches in medical image analysis: from detection to diagnosis
  publication-title: Med. Image Anal.
– volume: 128
  start-page: 75
  year: 2016
  end-page: 85
  ident: bib0103
  article-title: Active learning based segmentation of Crohns disease from abdominal MRI
  publication-title: Comput. Methods Programs Biomed.
– start-page: 9
  year: 2011
  end-page: 16
  ident: bib0185
  article-title: Learning from only positive and unlabeled data to detect lesions in vascular CT images
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 36
  start-page: 2376
  year: 2017
  end-page: 2388
  ident: bib0081
  article-title: Constrained deep weak supervision for histopathology image segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 2014
  start-page: 529
  year: 2014
  end-page: 532
  ident: bib0164
  article-title: 4D active cut: An interactive tool for pathological anatomy modeling
  publication-title: International Symposium on Biomedical Imaging (ISBI)
– volume: 36
  start-page: 802
  year: 2017
  end-page: 814
  ident: bib0030
  article-title: Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1994
  year: 2017
  end-page: 1997
  ident: bib0093
  article-title: Exploring transfer learning for gastrointestinal bleeding detection on small-size imbalanced endoscopy images
  publication-title: International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 43
  start-page: 6654
  year: 2016
  end-page: 6666
  ident: bib0141
  article-title: Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography
  publication-title: Med. Phys.
– year: 2017
  ident: bib0076
  article-title: Comparison of breast DCE-MRI contrast time points for predicting response to neoadjuvant chemotherapy using deep convolutional neural network features with transfer learning
  publication-title: SPIE Medical Imaging
– reference: Wolterink, J. M., Kamnitsas, K., Ledig, C., Išgum, I., 2018. Generative Adversarial Networks and Adversarial Methods in Biomedical Image Analysis. arXiv:
– year: 2010
  ident: bib0018
  publication-title: Adversarial Pattern Classification, Ph.D. thesis
– year: 2017
  ident: bib0029
  article-title: A transfer learning approach for classification of clinical significant prostate cancers from mpMRI scans
  publication-title: SPIE Medical Imaging
– volume: 21
  start-page: 76
  year: 2017
  end-page: 84
  ident: bib0040
  article-title: Multisource transfer learning with convolutional neural networks for lung pattern analysis
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 55
  start-page: 1015
  year: 2007
  end-page: 1021
  ident: bib0053
  article-title: Multiple-instance learning algorithms for computer-aided detection
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 478
  year: 2016
  end-page: 486
  ident: bib0119
  article-title: Deep learning for multi-task medical image segmentation in multiple modalities
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– reference: .
– start-page: 273
  year: 2016
  end-page: 277
  ident: bib0034
  article-title: Asymmetric similarity-weighted ensembles for image segmentation
  publication-title: International Symposium on Biomedical Imaging (ISBI)
– year: 2016
  ident: bib0107
  article-title: Sub-category classifiers for multiple-instance learning and its application to retinal nerve fiber layer visibility classification
  publication-title: Medical Image Computing and Computer Assisted Intervention (MICCAI)
– volume: 19
  start-page: 1498
  year: 2007
  end-page: 1507
  ident: bib0108
  article-title: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
  publication-title: J. Cogn. Neurosci.
– year: 2016
  ident: bib0008
  article-title: Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks
  publication-title: International Conference on Pattern Recognition (ICPR)
– volume: 18
  start-page: 591
  year: 2014
  end-page: 604
  ident: bib0176
  article-title: Weakly supervised histopathology cancer image segmentation and classification
  publication-title: Med. Image Anal.
– start-page: 943
  year: 2002
  end-page: 944
  ident: bib0007
  article-title: Multiple instance learning with generalized support vector machines
  publication-title: National Conference on Artificial Intelligence
– start-page: 326
  year: 2016
  end-page: 334
  ident: bib0015
  article-title: Scalable unsupervised domain adaptation for electron microscopy
  publication-title: Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 59
  start-page: 11
  year: 2015
  end-page: 17
  ident: bib0039
  article-title: On classification with bags, groups and sets
  publication-title: Pattern Recognit. Lett.
– reference: Rajchl, M., Lee, M. C., Schrans, F., Davidson, A., Passerat-Palmbach, J., Tarroni, G., Alansary, A., Oktay, O., Kainz, B., Rueckert, D., 2016. Learning under Distributed Weak Supervision. arXiv:
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  ident: bib0120
  article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in MCI subjects
  publication-title: Neuroimage
– start-page: 484
  year: 2010
  end-page: 492
  ident: bib0097
  article-title: Lesion-specific coronary artery calcium quantification for predicting cardiac event with multiple instance support vector machines
– volume: 22
  start-page: 1486
  year: 2018
  end-page: 1496
  ident: bib0035
  article-title: Transfer learning for multi-center classification of chronic obstructive pulmonary disease
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 33
  start-page: 44
  year: 2016
  end-page: 49
  ident: bib0171
  article-title: Four challenges in medical image analysis from an industrial perspective
  publication-title: Med. Image Anal.
– reference: Mahmood, F., Chen, R., Durr, N. J., 2017. Unsupervised reverse domain adaption for synthetic medical images via adversarial training. arXiv:
– volume: 10
  start-page: 213
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0131
  article-title: Multiple-instance learning for medical image and video analysis
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2017.2651164
– start-page: 297
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0115
  article-title: Knowledge transfer for melanoma screening with deep learning
– start-page: 2605
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0161
  article-title: Simpler non-parametric methods provide as good or better results to multiple-instance learning
– start-page: 979108
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0117
  article-title: Multi-instance multi-label learning for whole slide breast histopathology
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.media.2019.03.009_bib0126
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– start-page: 441
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0070
  article-title: Simple domain adaptation for cross-dataset analyses of brain MRI data
– year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0107
  article-title: Sub-category classifiers for multiple-instance learning and its application to retinal nerve fiber layer visibility classification
– start-page: 630
  year: 2007
  ident: 10.1016/j.media.2019.03.009_bib0095
  article-title: Computer aided detection of pulmonary embolism with tobogganing and mutiple instance classification in CT pulmonary angiography
– volume: 15
  start-page: 341
  year: 1998
  ident: 10.1016/j.media.2019.03.009_bib0109
  article-title: Multiple-instance learning for natural scene classification
– volume: 16
  start-page: 599
  issue: Pt 2
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0160
  article-title: Multiple instance learning for classification of dementia in brain MRI
  publication-title: Med. Image Anal.
– volume: 25
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.media.2019.03.009_bib0058
  article-title: A review of multi-instance learning assumptions
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S026988890999035X
– ident: 10.1016/j.media.2019.03.009_bib0104
  doi: 10.1109/TMI.2018.2842767
– start-page: 124
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0147
  article-title: Learning from Experts: Developing Transferable Deep Features for Patient-level Lung Cancer Prediction
– volume: 37
  start-page: 114
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0047
  article-title: A deep learning approach for the analysis of masses in mammograms with minimal user intervention
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.01.009
– start-page: 1222
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0166
  article-title: Direct aneurysm volume estimation by multi-view semi-supervised manifold learning
– volume: 34
  start-page: 179
  issue: 1
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0113
  article-title: A novel multiple-instance learning-based approach to computer-aided detection of tuberculosis on chest x-rays
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2350539
– ident: 10.1016/j.media.2019.03.009_bib0121
– ident: 10.1016/j.media.2019.03.009_bib0087
– ident: 10.1016/j.media.2019.03.009_bib0071
  doi: 10.1109/BIBM.2017.8217822
– volume: 13
  start-page: 147
  year: 2010
  ident: 10.1016/j.media.2019.03.009_bib0079
  article-title: Agreement-based semi-supervised learning for skull stripping
– start-page: 379
  year: 2018
  ident: 10.1016/j.media.2019.03.009_bib0146
  article-title: MS-Net: Mixed-supervision fully-convolutional networks for full-resolution segmentation
– ident: 10.1016/j.media.2019.03.009_bib0072
  doi: 10.1109/CVPR.2016.266
– volume: 36
  start-page: 2376
  issue: 11
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0081
  article-title: Constrained deep weak supervision for histopathology image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2724070
– start-page: 121
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0088
  article-title: Medical image description using multi-task-loss CNN
– start-page: 1044
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0135
  article-title: Exploring texture transfer learning for colonic polyp classification via convolutional neural networks
– start-page: 666
  year: 2010
  ident: 10.1016/j.media.2019.03.009_bib0158
  article-title: Semi supervised multi kernel (SeSMiK) graph embedding: identifying aggressive prostate cancer via magnetic resonance imaging and spectroscopy
– start-page: 597
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0082
  article-title: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks
– start-page: 437
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0145
  article-title: Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks
– start-page: 79
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0006
  article-title: Semi-supervised hierarchical multimodal feature and sample selection for Alzheimer’s disease diagnosis
– start-page: 273
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0034
  article-title: Asymmetric similarity-weighted ensembles for image segmentation
– ident: 10.1016/j.media.2019.03.009_bib0094
  doi: 10.1109/CVPR.2018.00865
– start-page: 484
  year: 2010
  ident: 10.1016/j.media.2019.03.009_bib0097
– volume: 33
  start-page: 94
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0022
  article-title: Machine learning approaches in medical image analysis: from detection to diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.06.032
– start-page: 1167
  year: 2007
  ident: 10.1016/j.media.2019.03.009_bib0183
  article-title: On the relation between multi-instance learning and semi-supervised learning
– volume: 42
  start-page: 44
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0084
  article-title: Computer-aided diagnosis from weak supervision: a benchmarking study
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2014.11.010
– volume: 114
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0002
  article-title: Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.12.009
– volume: 8674
  start-page: 228
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0085
  article-title: Empowering multiple instance histopathology cancer diagnosis by cell graphs
– volume: 19
  start-page: 1498
  issue: 9
  year: 2007
  ident: 10.1016/j.media.2019.03.009_bib0108
  article-title: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2007.19.9.1498
– volume: 6
  issue: Suppl 3
  year: 2013
  ident: 10.1016/j.media.2019.03.009_sbref0157
  article-title: Automated skin biopsy histopathological image annotation using multi-instance representation and learning
  publication-title: BMC Med. Genom.
  doi: 10.1186/1755-8794-6-S3-S10
– start-page: 9
  year: 2011
  ident: 10.1016/j.media.2019.03.009_bib0185
  article-title: Learning from only positive and unlabeled data to detect lesions in vascular CT images
– start-page: 214
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0051
  article-title: GP-Unet: Lesion detection from weak labels with a 3D regression network
– volume: 12
  start-page: 860
  year: 2009
  ident: 10.1016/j.media.2019.03.009_bib0050
  article-title: Weakly supervised group-wise model learning based on discrete optimization
– volume: 104
  start-page: 398
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0120
  article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in MCI subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– start-page: 1
  year: 2007
  ident: 10.1016/j.media.2019.03.009_bib0016
  article-title: Multiple instance learning of pulmonary embolism detection with geodesic distance along vascular structure
– ident: 10.1016/j.media.2019.03.009_bib0075
  doi: 10.1007/978-3-319-59050-9_20
– start-page: 516
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0062
  article-title: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation
– volume: 18
  start-page: 591
  issue: 3
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0176
  article-title: Weakly supervised histopathology cancer image segmentation and classification
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.01.010
– start-page: 1
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0106
  article-title: Multiple instance learning for breast cancer magnetic resonance imaging
– volume: 139
  start-page: 470
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0163
  article-title: Domain adaptation for Alzheimer’s disease diagnostics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.05.053
– year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0008
  article-title: Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks
– volume: 4
  start-page: 041311
  issue: 4
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0004
  article-title: Semisupervised learning using denoising autoencoders for brain lesion detection and segmentation
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.4.4.041311
– volume: 77
  start-page: 329
  year: 2018
  ident: 10.1016/j.media.2019.03.009_bib0023
  article-title: Multiple instance learning: a survey of problem characteristics and applications
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.009
– ident: 10.1016/j.media.2019.03.009_bib0138
  doi: 10.1007/s11548-018-1772-0
– volume: 16
  start-page: 1228
  issue: 6
  year: 2012
  ident: 10.1016/j.media.2019.03.009_bib0132
  article-title: A multiple-instance learning framework for diabetic retinopathy screening
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.06.003
– start-page: 1096
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0098
  article-title: Feature selection and thyroid nodule classification using transfer learning
– start-page: 478
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0119
  article-title: Deep learning for multi-task medical image segmentation in multiple modalities
– start-page: 1868
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0153
  article-title: Deep features for breast cancer histopathological image classification
– start-page: 1049
  year: 2011
  ident: 10.1016/j.media.2019.03.009_bib0101
  article-title: Effective 3D object detection and regression using probabilistic segmentation features in CT images
– volume: 18
  start-page: 9
  issue: 1
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0049
  article-title: A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.08.004
– volume: 8159
  start-page: 31
  year: 2013
  ident: 10.1016/j.media.2019.03.009_bib0165
  article-title: Modeling 4D changes in pathological anatomy using domain adaptation: analysis of TBI imaging using a tumor database
  publication-title: Multimodal Brain Image Anal. (MICCAI MBIA)
  doi: 10.1007/978-3-319-02126-3_4
– start-page: 117
  year: 2008
  ident: 10.1016/j.media.2019.03.009_bib0017
  article-title: An improved multi-task learning approach
  publication-title: Mach. Learn. Knowl. Discov. Databases
– ident: 10.1016/j.media.2019.03.009_bib0133
– start-page: 2672
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0064
  article-title: Generative adversarial nets
– start-page: 311
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0013
  article-title: Semi-supervised deep learning for fully convolutional networks
– volume: 48
  start-page: 276
  issue: 1
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0168
  article-title: Optimizing area under the ROC curve using semi-supervised learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.07.025
– year: 2010
  ident: 10.1016/j.media.2019.03.009_bib0018
– start-page: 209
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0036
  article-title: Early experiences with crowdsourcing airway annotations in chest CT
– volume: 34
  start-page: 1018
  issue: 5
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0124
  article-title: Transfer learning improves supervised image segmentation across imaging protocols
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2366792
– volume: 32
  start-page: 1
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0044
  article-title: Supervised domain adaptation of decision forests: transfer of models trained in vitro for in vivo intravascular ultrasound tissue characterization
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.02.005
– year: 2017
  ident: 10.1016/j.media.2019.03.009_sbref0029
  article-title: A transfer learning approach for classification of clinical significant prostate cancers from mpMRI scans
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0140
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 24
  start-page: 245
  issue: 1
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0125
  article-title: Weighting training images by maximizing distribution similarity for supervised segmentation across scanners
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.06.010
– volume: 28
  start-page: 1931
  issue: 12
  year: 2006
  ident: 10.1016/j.media.2019.03.009_bib0031
  article-title: MILES: Multiple-instance learning via embedded instance selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.248
– volume: 89
  start-page: 31
  issue: 1–2
  year: 1997
  ident: 10.1016/j.media.2019.03.009_bib0048
  article-title: Solving the multiple instance problem with axis-parallel rectangles
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(96)00034-3
– start-page: 389
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0127
  article-title: Small sample learning of superpixel classifiers for EM segmentation
– start-page: 373
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0055
  article-title: Low quality dermal image classification using transfer learning
– start-page: 3146
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0020
  article-title: Semi-supervised learning of anatomical manifolds for atlas-based segmentation of medical images
– start-page: 1359
  year: 2009
  ident: 10.1016/j.media.2019.03.009_bib0173
  article-title: A min-max framework of cascaded classifier with multiple instance learning for computer aided diagnosis
– start-page: 1208
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0129
  article-title: Transfer learning of a convolutional neural network for HEp-2 cell image classification
– start-page: 616
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0059
  article-title: Domain Adaptive Classification for Compensating Variability in Histopathological Whole Slide Images
– volume: 32
  start-page: 628
  issue: 3
  year: 2013
  ident: 10.1016/j.media.2019.03.009_bib0174
  article-title: Multiple atlas construction from a heterogeneous brain MR image collection
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2239654
– volume: 35
  start-page: 1313
  issue: 5
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0003
  article-title: Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528120
– year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0074
  article-title: Epithelium-stroma classification via convolutional neural networks and unsupervised domain adaptation in histopathological images
  publication-title: IEEE J. Biomed. Health Inform
  doi: 10.1109/JBHI.2017.2691738
– start-page: 730
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0083
  article-title: Asymmetric transfer learning with deep gaussian processes
– start-page: 398
  year: 2011
  ident: 10.1016/j.media.2019.03.009_bib0149
  article-title: Identifying nuclear phenotypes using semi-supervised metric learning
– start-page: 1
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0009
  article-title: Transfer learning from rf to b-mode temporal enhanced ultrasound features for prostate cancer detection
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 21
  start-page: 76
  issue: 1
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0040
  article-title: Multisource transfer learning with convolutional neural networks for lung pattern analysis
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2636929
– volume: 2
  year: 2006
  ident: 10.1016/j.media.2019.03.009_bib0026
– ident: 10.1016/j.media.2019.03.009_bib0148
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0096
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– start-page: 1508
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0038
  article-title: Classification of COPD with multiple instance learning
– volume: 43
  start-page: 6654
  issue: 12
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0141
  article-title: Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography
  publication-title: Med. Phys.
  doi: 10.1118/1.4967345
– volume: 34
  start-page: 1
  issue: c
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0014
  article-title: Domain adaptation for microscopy imaging
  publication-title: IEEE Trans. Med. Imaging
– year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0069
– start-page: 645
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0092
– volume: 26
  start-page: 995
  issue: 5
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0099
  article-title: Semi-supervised nearest mean classification through a constrained log-likelihood
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2329567
– ident: 10.1016/j.media.2019.03.009_bib0080
– ident: 10.1016/j.media.2019.03.009_bib0114
– year: 2016
  ident: 10.1016/j.media.2019.03.009_sbref0109
– ident: 10.1016/j.media.2019.03.009_bib0139
– start-page: 29
  year: 2012
  ident: 10.1016/j.media.2019.03.009_bib0061
  article-title: Semi-supervised segmentation using multiple segmentation hypotheses from a single atlas
– start-page: 51
  year: 2008
  ident: 10.1016/j.media.2019.03.009_bib0073
  article-title: Semi-supervised nasopharyngeal carcinoma lesion extraction from magnetic resonance images using online spectral clustering with a learned metric
– year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0025
  article-title: Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– volume: 32
  start-page: i52
  issue: 12
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0090
  article-title: Classifying and segmenting microscopy images with deep multiple instance learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw252
– start-page: 294
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0011
  article-title: Chest pathology detection using deep learning with non-medical training
– start-page: 146
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0144
  article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery
– start-page: 326
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0015
  article-title: Scalable unsupervised domain adaptation for electron microscopy
– ident: 10.1016/j.media.2019.03.009_bib0172
– ident: 10.1016/j.media.2019.03.009_bib0152
– volume: 36
  start-page: 802
  issue: 3
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0030
  article-title: Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2629462
– volume: 59
  start-page: 11
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0039
  article-title: On classification with bags, groups and sets
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2015.03.008
– start-page: 1994
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0093
  article-title: Exploring transfer learning for gastrointestinal bleeding detection on small-size imbalanced endoscopy images
– ident: 10.1016/j.media.2019.03.009_bib0066
  doi: 10.1609/aaai.v32i1.11756
– volume: 135
  start-page: 77
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0156
  article-title: Computerized breast cancer analysis system using three stage semi-supervised learning method
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.07.017
– start-page: 82
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0143
  article-title: Unsupervised pre-training across image domains improves lung tissue classification
– start-page: 92
  year: 1998
  ident: 10.1016/j.media.2019.03.009_bib0019
  article-title: Combining labeled and unlabeled data with co-training
– volume: 43
  start-page: 3458
  issue: 10
  year: 2010
  ident: 10.1016/j.media.2019.03.009_bib0142
  article-title: Nearest neighbour group-based classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.05.010
– start-page: 253
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0010
  article-title: Semi-supervised learning for network-based cardiac MR image segmentation
– volume: 10
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0118
  article-title: Crowdsourcing as a screening tool to detect clinical features of glaucomatous optic neuropathy from digital photography
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0117401
– start-page: 2732
  year: 2010
  ident: 10.1016/j.media.2019.03.009_bib0052
  article-title: A multiple instance learning approach toward optimal classification of pathology slides
– start-page: 1
  year: 1977
  ident: 10.1016/j.media.2019.03.009_bib0046
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
– volume: 2015
  start-page: 7055
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0137
  article-title: Multiple-instance learning for breast cancer detection in mammograms
– volume: 33
  start-page: 44
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0171
  article-title: Four challenges in medical image analysis from an industrial perspective
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.06.023
– volume: 22
  start-page: 1486
  issue: 5
  year: 2018
  ident: 10.1016/j.media.2019.03.009_bib0035
  article-title: Transfer learning for multi-center classification of chronic obstructive pulmonary disease
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2769800
– volume: 21
  start-page: 41
  issue: 1
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0180
  article-title: Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2635662
– start-page: 943
  year: 2002
  ident: 10.1016/j.media.2019.03.009_bib0007
  article-title: Multiple instance learning with generalized support vector machines
– volume: 35
  start-page: 184
  issue: 1
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0063
  article-title: DALSA: Domain adaptation for supervised learning from sparsely annotated MR images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2463078
– volume: 17
  start-page: 714
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0111
  article-title: Patient-specific semi-supervised learning for postoperative brain tumor segmentation
– volume: 3
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.media.2019.03.009_bib0184
  article-title: Introduction to semi-supervised learning
  publication-title: Synth. Lect. Artif. Intell. Mach. Learn.
– volume: 78
  start-page: 233
  year: 2013
  ident: 10.1016/j.media.2019.03.009_bib0182
  article-title: Modeling disease progression via multi-task learning
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.073
– volume: 63
  start-page: 115
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0091
  article-title: Robust semi-supervised least squares classification by implicit constraints
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.09.009
– start-page: 449
  year: 2006
  ident: 10.1016/j.media.2019.03.009_bib0162
  article-title: Batch classification with applications in computer aided diagnosis
– volume: 59
  start-page: 895
  issue: 2
  year: 2012
  ident: 10.1016/j.media.2019.03.009_bib0178
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.069
– volume: 2012
  start-page: 2809
  year: 2012
  ident: 10.1016/j.media.2019.03.009_bib0110
  article-title: Automated colitis detection from endoscopic biopsies as a tissue screening tool in diagnostic pathology
– ident: 10.1016/j.media.2019.03.009_bib0159
– volume: 201
  start-page: 81
  year: 2013
  ident: 10.1016/j.media.2019.03.009_bib0005
  article-title: Multiple instance classification: review, taxonomy and comparative study
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2013.06.003
– volume: 2014
  start-page: 529
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0164
  article-title: 4D active cut: An interactive tool for pathological anatomy modeling
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0157
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535302
– start-page: 3072
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0167
  article-title: Computer aided endoscope diagnosis via weakly labeled data mining
– volume: 9
  start-page: 1
  issue: 4
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0032
  article-title: Multimodal manifold-regularized transfer learning for MCI conversion prediction
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9356-x
– start-page: 139
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0100
  article-title: Multiple instance learning for age-related macular degeneration diagnosis in optical coherence tomography images
– ident: 10.1016/j.media.2019.03.009_bib0089
– start-page: 1086
  year: 2011
  ident: 10.1016/j.media.2019.03.009_bib0012
  article-title: Disease classification and prediction via semi-supervised dimensionality reduction
– start-page: 834
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0122
  article-title: Center-focusing multi-task CNN with injected features for classification of glioma nuclear images
– ident: 10.1016/j.media.2019.03.009_bib0033
  doi: 10.1016/j.cobme.2018.12.005
– volume: 26
  start-page: 763
  issue: 7
  year: 2010
  ident: 10.1016/j.media.2019.03.009_bib0042
  article-title: Fusing in-vitro and in-vivo intravascular ultrasound data for plaque characterization
  publication-title: Int. J. Cardiovasc. Imaging
  doi: 10.1007/s10554-009-9543-1
– volume: 35
  start-page: 762
  issue: 3
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0155
  article-title: Interactive cell segmentation based on active and semi-supervised learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2494582
– volume: 41
  issue: 11
  year: 2014
  ident: 10.1016/j.media.2019.03.009_sbref0114
  article-title: Interactive prostate segmentation using atlas-guided semi-supervised learning and adaptive feature selection
  publication-title: Med. Phys.
  doi: 10.1118/1.4898200
– volume: 10
  start-page: 1201
  issue: 8
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0105
  article-title: Crowdtruth validation: a new paradigm for validating algorithms that rely on image correspondences
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-015-1168-3
– volume: 55
  start-page: 1015
  issue: 3
  year: 2007
  ident: 10.1016/j.media.2019.03.009_bib0053
  article-title: Multiple-instance learning algorithms for computer-aided detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.909544
– volume: 69
  start-page: 1
  year: 2018
  ident: 10.1016/j.media.2019.03.009_bib0021
  article-title: Negative results in computer vision: a perspective
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2017.10.001
– start-page: 179
  year: 2002
  ident: 10.1016/j.media.2019.03.009_bib0060
  article-title: Multi-instance kernels
– volume: 26
  start-page: 195
  issue: 1
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0041
  article-title: Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.08.001
– volume: 18
  start-page: 1320
  issue: 8
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0068
  article-title: Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.04.007
– volume: 9
  start-page: e100972
  issue: 7
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0043
  article-title: Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0100972
– year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0116
  article-title: Liver fibrosis classification based on transfer learning and fcnet for ultrasound images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2689058
– volume: 34
  start-page: 1294
  issue: 6
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0056
  article-title: Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2384733
– start-page: 188
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0134
  article-title: Understanding the mechanisms of deep transfer learning for medical images
– volume: 35
  start-page: 1013
  issue: 4
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0112
  article-title: On combining multiple-instance learning and active learning for computer-aided detection of tuberculosis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2505672
– volume: 12
  start-page: 99
  issue: 2
  year: 2009
  ident: 10.1016/j.media.2019.03.009_bib0151
  article-title: Semi-supervised discriminative classification with application to tumorous tissues segmentation of MR brain images
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-008-0104-3
– volume: 12
  start-page: 9
  issue: 1
  year: 2009
  ident: 10.1016/j.media.2019.03.009_bib0130
  article-title: Multi-level classification of emphysema in HRCT lung images
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-007-0093-7
– year: 2012
  ident: 10.1016/j.media.2019.03.009_bib0001
  article-title: Transfer Learning by Sharing Support Vectors
– year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0181
  article-title: Places: a 10 million image database for scene recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– volume: 23
  start-page: 903
  issue: 7
  year: 2004
  ident: 10.1016/j.media.2019.03.009_bib0170
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.828354
– volume: 55
  start-page: 1109
  issue: 3
  year: 2011
  ident: 10.1016/j.media.2019.03.009_bib0057
  article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.12.066
– volume: 151
  start-page: 114
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0102
  article-title: Combining multiple expert annotations using semi-supervised learning and graph cuts for medical image segmentation
  publication-title: Comput. Vis. Image Understanding
  doi: 10.1016/j.cviu.2016.01.006
– ident: 10.1016/j.media.2019.03.009_bib0154
– volume: 8679
  start-page: 77
  year: 2014
  ident: 10.1016/j.media.2019.03.009_bib0067
  article-title: Manifold alignment and transfer learning for classification of Alzheimer’s disease
– year: 2017
  ident: 10.1016/j.media.2019.03.009_sbref0071
  article-title: Comparison of breast DCE-MRI contrast time points for predicting response to neoadjuvant chemotherapy using deep convolutional neural network features with transfer learning
– ident: 10.1016/j.media.2019.03.009_bib0078
  doi: 10.1007/978-3-319-46723-8_28
– year: 2017
  ident: 10.1016/j.media.2019.03.009_sbref0024
  article-title: Bladder cancer treatment response assessment using deep learning in CT with transfer learning
– volume: 19
  start-page: 1627
  issue: 5
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0027
  article-title: Standard plane localization in fetal ultrasound via domain transferred deep neural networks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2425041
– volume: 31
  start-page: 1141
  issue: 5
  year: 2012
  ident: 10.1016/j.media.2019.03.009_bib0169
  article-title: Seeing is believing: video classification for computed tomographic colonography using multiple-instance learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2187304
– start-page: 20
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0175
  article-title: Neuron segmentation based on CNN with semi-supervised regularization
– start-page: 523
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0028
  article-title: Identification of cerebral small vessel disease using multiple instance learning
– start-page: 213
  year: 2008
  ident: 10.1016/j.media.2019.03.009_bib0054
  article-title: Learning classifiers from only positive and unlabeled data
– start-page: 702
  year: 2017
  ident: 10.1016/j.media.2019.03.009_bib0065
  article-title: Semi-supervised learning for biomedical image segmentation via forest oriented super pixels (voxels)
– volume: 128
  start-page: 75
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0103
  article-title: Active learning based segmentation of Crohns disease from abdominal MRI
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.01.014
– start-page: 56
  year: 2006
  ident: 10.1016/j.media.2019.03.009_bib0045
  article-title: Risks of semi-supervised learning
  publication-title: Semi-Supervised Learn.
– ident: 10.1016/j.media.2019.03.009_bib0086
– start-page: 41
  year: 2010
  ident: 10.1016/j.media.2019.03.009_bib0136
  article-title: Multi-classifier semi-supervised classification of tuberculosis patterns on chest CT scans
– start-page: 539
  year: 2015
  ident: 10.1016/j.media.2019.03.009_bib0037
  article-title: Label stability in multiple instance learning
– volume: 2010
  start-page: 5561
  year: 2010
  ident: 10.1016/j.media.2019.03.009_bib0150
  article-title: Boosting instance prototypes to detect local dermoscopic features
– volume: 35
  start-page: 1332
  issue: 5
  year: 2016
  ident: 10.1016/j.media.2019.03.009_bib0177
  article-title: Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2524985
– volume: 3
  issue: 3
  year: 2016
  ident: 10.1016/j.media.2019.03.009_sbref0072
  article-title: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.3.3.034501
SSID ssj0007440
Score 2.7023976
SecondaryResourceType review_article
Snippet •We discuss different forms of supervision in medical image analysis.•Over 140 papers using semi-supervised, multi-instance or transfer learning are...
Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 280
SubjectTerms Algorithms
Computer aided diagnosis
Datasets
Image analysis
Image processing
Image segmentation
Learning algorithms
Machine learning
Medical imaging
Multi-task learning
Multiple instance learning
Polls & surveys
Semi-supervised learning
Transfer learning
Weakly-supervised learning
Title Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis
URI https://dx.doi.org/10.1016/j.media.2019.03.009
https://www.ncbi.nlm.nih.gov/pubmed/30959445
https://www.proquest.com/docview/2244144052
https://www.proquest.com/docview/2206231932
Volume 54
WOSCitedRecordID wos000467891200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLkJwQLA8trCsjMSxrpLYeXGr0CJYqVUPi-gtSlxHSmmTqmmq3T_C78XjR1q2asUeuERVYluJ5-vM2P5mBqFPIguyIGeCZNJ6EhbnGZHLZpe4XNAwd7i02qkqNhGORtFkEo87nd82FmYzD8syur2Nl_9V1PKeFDaEzj5A3O2g8ob8LYUur1Ls8vpPgh9Va1JXpG6WoAZqMdXB53Wz2gh1nF6LRbH7WE6yohWSQrmKpgo8ECuVUytWtrSECn5ZmJOdYgFsn9TkNNn1cYeHWygegVjO76AahKLYCsjN-6u1DVNgKzTFTO-zDoEKsI1VG88bXfv5uqqhOsG4_7O_u2sBgVKWI2gULQ1cEjEdymk1sc92Vamu8GSssqfr3u4pfL33MOurOBtg6pmctfHWvtkz_XtmryUjWp7bLFGDJDBI4tBExYWeeqEfS4V_Ovh-NblubTykVdQRfforbD4rxRzce5dDPs-hNY3ybW5eoOdmUYIHGkwvUUeUZ-jZTqrKM_RkaEgYr1C1h7DPeIA1vnCV43v46uG_0dXDElvYYgtbbOGixAZbWCEHW-S8Rj--Xt18-UZM3Q7CGfXWZOrEkUv9nLIsCkOeBmEOVQDcIPVjzxX5NOagIPzcZZ5gTgZTTENO_SCiPOYufYNOyqoU5whzaX6lB-9mbuSwMAhiylIv81Iqewah53SRZ2c24SapPdRWmSdHpNpFvbbTUud0Od48sCJLjFuq3c1EgvB4xwsr4MQoiDqRLjMDQoXvddHH9rHU6XBQl5aiaqCNI1clsLTqorcaGO2LUti4Z8x_97CPeI-ebv-GF-hkvWrEB_SYb9ZFvbpEj8JJdGlA_gfO9c54
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Not-so-supervised%3A+A+survey+of+semi-supervised%2C+multi-instance%2C+and+transfer+learning+in+medical+image+analysis&rft.jtitle=Medical+image+analysis&rft.au=Cheplygina%2C+Veronika&rft.au=de+Bruijne%2C+Marleen&rft.au=Pluim%2C+Josien+P.W.&rft.date=2019-05-01&rft.issn=1361-8415&rft.volume=54&rft.spage=280&rft.epage=296&rft_id=info:doi/10.1016%2Fj.media.2019.03.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2019_03_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon