A multi-sensor data fusion algorithm based on consistency preprocessing and adaptive weighting

In the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor data fusion algorithm based on anomaly data preprocessing and adaptive weighted estimation is proposed. To improve the reliability of the algor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatika Ročník 65; číslo 1; s. 82 - 91
Hlavní autoři: Du, Shengxue, Chen, Shujun
Médium: Journal Article Paper
Jazyk:angličtina
Vydáno: Ljubljana Taylor & Francis Ltd 02.01.2024
KoREMA - Hrvatsko društvo za komunikacije,računarstvo, elektroniku, mjerenja i automatiku
Taylor & Francis Group
Témata:
ISSN:0005-1144, 1848-3380
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor data fusion algorithm based on anomaly data preprocessing and adaptive weighted estimation is proposed. To improve the reliability of the algorithm, first, for a single sensor measurement signal sequence, a consistency preprocessing using the off-centre distance method is performed, and the weighting factor of each measurement data is calculated. Then, the measurement signal sequence is weighted and fused; Secondly, in response to the uneven distribution of measurement errors among multiple sensors in different directions, an adaptive weighted data fusion method based on the principle of optimal weight allocation is proposed. The proposed method was compared with the adaptive weighting method and arithmetic mean method. The simulation results showed that the total mean square error of the data fusion results obtained using the proposed algorithm is smaller. The proposed algorithm can effectively improve the accuracy of data measurement, reduce redundancy, and improve the stability of data measurement.
AbstractList ABSTRACTIn the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor data fusion algorithm based on anomaly data preprocessing and adaptive weighted estimation is proposed. To improve the reliability of the algorithm, first, for a single sensor measurement signal sequence, a consistency preprocessing using the off-centre distance method is performed, and the weighting factor of each measurement data is calculated. Then, the measurement signal sequence is weighted and fused; Secondly, in response to the uneven distribution of measurement errors among multiple sensors in different directions, an adaptive weighted data fusion method based on the principle of optimal weight allocation is proposed. The proposed method was compared with the adaptive weighting method and arithmetic mean method. The simulation results showed that the total mean square error of the data fusion results obtained using the proposed algorithm is smaller. The proposed algorithm can effectively improve the accuracy of data measurement, reduce redundancy, and improve the stability of data measurement.
In the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor data fusion algorithm based on anomaly data preprocessing and adaptive weighted estimation is proposed. To improve the reliability of the algorithm, first, for a single sensor measurement signal sequence, a consistency preprocessing using the off-centre distance method is performed, and the weighting factor of each measurement data is calculated. Then, the measurement signal sequence is weighted and fused; Secondly, in response to the uneven distribution of measurement errors among multiple sensors in different directions, an adaptive weighted data fusion method based on the principle of optimal weight allocation is proposed. The proposed method was compared with the adaptive weighting method and arithmetic mean method. The simulation results showed that the total mean square error of the data fusion results obtained using the proposed algorithm is smaller. The proposed algorithm can effectively improve the accuracy of data measurement, reduce redundancy, and improve the stability of data measurement.
In the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor data fusion algorithm based on anomaly data preprocessing and adaptive weighted estimation is proposed. To improve the reliability of the algorithm, first, for a single sensor measurement signal sequence, a consistency preprocessing using the off-centre distance method is performed, and the weighting factor of each measurement data is calculated. Then, the measurement signal sequence is weighted and fused; Secondly, in response to the uneven distribution of measurement errors among multiple sensors in different directions, an adaptive weighted data fusion method based on the principle of optimal weight allocation is proposed. The proposed method was compared with the adaptive weighting method and arithmetic mean method. The simulation results showed that the total mean square error of the data fusion results obtained using the proposed algorithm is smaller. The proposed algorithm can effectively improve the accuracy of data measurement, reduce redundancy, and improve the stability of data measurement.
Author Du, Shengxue
Chen, Shujun
Author_xml – sequence: 1
  givenname: Shengxue
  surname: Du
  fullname: Du, Shengxue
  organization: School of Information and Electrical Engineering, Hebei University of Engineering, Handan, People’s Republic of China
– sequence: 2
  givenname: Shujun
  surname: Chen
  fullname: Chen, Shujun
  organization: Modern Education Technology Center, Hebei University of Engineering, Handan, People’s Republic of China
BookMark eNp9kc1uEzEUhS1UJNLCIyCNxHqC_2bGFquq4qdSJTawtu5c30kcknGwHVDfps_Ck-Ew7QIWrGwffefo-p5LdjHHmRh7LfhacMPfcs47IbReSy7VWkqjuVLP2EoYbVqlDL9gqzPTnqEX7DLnXX31qucr5q6bw2lfQptpzjE1Hgo00ymHODew38QUyvbQjJDJN1XCOOeQC8143xwTHVNEyjnMmwZm_-sBPBxL-EHNTwqbban6S_Z8gn2mV4_nFfv64f2Xm0_t3eePtzfXdy1qJUuLXKPwQ0diNFIP1ng1grEkCMFCN9rRKtTaa4UkzNRPfFCDspMRoic7juqK3S65PsLOHVM4QLp3EYL7I8S0cZBKwD05RNlLbyVHHLQlA12vxTDR6FEOmvc1q12ytgnh219hi5ITUr06JaXVpvJvFr6u4_uJcnG7eEpz_a6TVighrOC8Uu8WClPMOdHkMBQoddElQdg7wd25TffUpju36R7brO7uH_fTWP_3_QY9haW2
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3422610
crossref_primary_10_1177_16878132251365117
crossref_primary_10_2478_amns_2024_2531
crossref_primary_10_1016_j_inffus_2025_103084
crossref_primary_10_1109_JSEN_2025_3561322
Cites_doi 10.1016/j.matpr.2021.05.067
10.1186/s13638-016-0793-z
10.1109/ICUMT.2015.7382445
10.1109/JSEN.2014.2356501
10.1016/j.isatra.2020.06.024
10.3390/s18113851
10.3390/s22155902
10.1007/s10772-016-9354-4
10.1080/1206212X.2017.1396427
10.1016/j.jclepro.2014.04.036
10.3390/s20154156
10.1109/TCST.2018.2797920
10.1109/INCoS.2016.38
10.1016/j.cageo.2017.12.005
10.1016/j.ijms.2016.06.002
10.3390/s20071897
10.1155/2016/8325845
10.1007/s11432-019-2751-4
10.1109/TMC.2016.2599158
10.1007/s11277-017-4909-5
10.1109/ACCESS.2017.2728623
10.1109/ICCMC.2019.8819721
10.1109/MGRS.2018.2890023
10.32604/cmc.2019.06354
10.3390/s19092139
ContentType Journal Article
Paper
Copyright 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8FD
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
JQ2
L7M
L~C
L~D
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
VP8
DOA
DOI 10.1080/00051144.2023.2284033
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Portal of Croatian Scientific and Professional Journals – HRČAK
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
Computer and Information Systems Abstracts Professional
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Research Library Prep
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1848-3380
EndPage 91
ExternalDocumentID oai_doaj_org_article_cc262d920cc749e8a56417febdc27406
oai_hrcak_srce_hr_322948
10_1080_00051144_2023_2284033
GroupedDBID .4S
.DC
0YH
2WC
8G5
AAYXX
ABUWG
ACGFS
ADBBV
AENEX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BCNDV
BENPR
BLEHA
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
EBS
EDO
EN8
EOJEC
GNUQQ
GROUPED_DOAJ
GUQSH
H13
I-F
KTTOD
M2O
M4Z
OBODZ
OK1
PHGZM
PHGZT
PQQKQ
PROAC
QZIEQ
TFW
TUS
3V.
7SC
7XB
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
C1A
EJD
M~E
VP8
ID FETCH-LOGICAL-c432t-c04c1d75e1b824798d3ba89e1eca9a5b9b93c44d43ce18f6f073739f8116e9bb3
IEDL.DBID BENPR
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001119583500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0005-1144
IngestDate Fri Oct 03 12:39:28 EDT 2025
Thu Dec 05 13:38:28 EST 2024
Fri Jul 25 22:45:13 EDT 2025
Sat Nov 29 06:32:26 EST 2025
Tue Nov 18 22:16:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License openAccess
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-c04c1d75e1b824798d3ba89e1eca9a5b9b93c44d43ce18f6f073739f8116e9bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
322948
OpenAccessLink https://doaj.org/article/cc262d920cc749e8a56417febdc27406
PQID 2913119100
PQPubID 3933318
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_cc262d920cc749e8a56417febdc27406
hrcak_primary_oai_hrcak_srce_hr_322948
proquest_journals_2913119100
crossref_citationtrail_10_1080_00051144_2023_2284033
crossref_primary_10_1080_00051144_2023_2284033
PublicationCentury 2000
PublicationDate 2024-01-02
PublicationDateYYYYMMDD 2024-01-02
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Ljubljana
PublicationPlace_xml – name: Ljubljana
PublicationTitle Automatika
PublicationTitle_FL Automatika
PublicationYear 2024
Publisher Taylor & Francis Ltd
KoREMA - Hrvatsko društvo za komunikacije,računarstvo, elektroniku, mjerenja i automatiku
Taylor & Francis Group
Publisher_xml – sequence: 0
  name: KoREMA - Hrvatsko društvo za komunikacije,računarstvo, elektroniku, mjerenja i automatiku
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_13_1
e_1_3_3_16_1
e_1_3_3_15_1
e_1_3_3_10_1
e_1_3_3_12_1
e_1_3_3_11_1
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_12_1
  doi: 10.1016/j.matpr.2021.05.067
– ident: e_1_3_3_24_1
  doi: 10.1186/s13638-016-0793-z
– ident: e_1_3_3_23_1
  doi: 10.1109/ICUMT.2015.7382445
– ident: e_1_3_3_25_1
  doi: 10.1109/JSEN.2014.2356501
– ident: e_1_3_3_2_1
  doi: 10.1016/j.isatra.2020.06.024
– ident: e_1_3_3_29_1
  doi: 10.3390/s18113851
– ident: e_1_3_3_14_1
  doi: 10.3390/s22155902
– ident: e_1_3_3_5_1
  doi: 10.1007/s10772-016-9354-4
– ident: e_1_3_3_13_1
  doi: 10.1080/1206212X.2017.1396427
– ident: e_1_3_3_4_1
  doi: 10.1016/j.jclepro.2014.04.036
– ident: e_1_3_3_11_1
  doi: 10.3390/s20154156
– ident: e_1_3_3_21_1
  doi: 10.1109/TCST.2018.2797920
– ident: e_1_3_3_18_1
  doi: 10.1109/INCoS.2016.38
– ident: e_1_3_3_19_1
  doi: 10.1016/j.cageo.2017.12.005
– ident: e_1_3_3_9_1
  doi: 10.1080/1206212X.2017.1396427
– ident: e_1_3_3_20_1
  doi: 10.1016/j.ijms.2016.06.002
– ident: e_1_3_3_15_1
  doi: 10.3390/s20071897
– ident: e_1_3_3_10_1
  doi: 10.1155/2016/8325845
– ident: e_1_3_3_26_1
  doi: 10.3390/s20071897
– ident: e_1_3_3_16_1
  doi: 10.1007/s11432-019-2751-4
– ident: e_1_3_3_22_1
  doi: 10.1109/TMC.2016.2599158
– ident: e_1_3_3_6_1
  doi: 10.1007/s11277-017-4909-5
– ident: e_1_3_3_8_1
  doi: 10.1109/ACCESS.2017.2728623
– ident: e_1_3_3_7_1
  doi: 10.1109/ICCMC.2019.8819721
– ident: e_1_3_3_3_1
  doi: 10.1109/MGRS.2018.2890023
– ident: e_1_3_3_17_1
  doi: 10.1016/j.isatra.2020.06.024
– ident: e_1_3_3_28_1
  doi: 10.32604/cmc.2019.06354
– ident: e_1_3_3_27_1
  doi: 10.3390/s19092139
SSID ssj0056360
Score 2.3090446
Snippet In the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor...
In the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor...
ABSTRACTIn the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a...
SourceID doaj
hrcak
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 82
SubjectTerms adaptive weighting
Algorithms
Consistency
consistency preprocess
Data collection
data fusion
Data integration
Errors
INDEX TERMS: Multi-sensor system
Multi-sensor system
Multisensor fusion
off-centre distance
Preprocessing
Redundancy
Sensors
Weighting methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELaqikM5IKBFbCnIB9SbF_8lsY8FUXGqOFCpN8seO7Si7K6SbSvehmfhyRjb2VUrDr1wiyaxY4_H48_W-BtC3kfRtxJ3O8ynwJkOSjKPZsWibSxvDCijQ0k20Z2dmYsL-_Veqq8cE1bpgaviPgDIVkYrOUCnbTK-abXo-hQi4C8q2Tbv7GYzVX1wk1mwKvBtGCJ-vbm7k1m1sx2iaJ4Th88lumeu1INVqZD3I1i9HMD_-MdHl4Xn9Dl5NiFGelJb-oLspMVL8vQej-A-cSe0BAayETely4HmsE_a3-SDMOqvvy-Hq_XlT5oXrEhRBDkodsxg-RddZVbLclcAa6J-Ef_89tGvshOkd-XYFOUH5Pz087dPX9iUOYGBVnLNgGsQsWuSCEbqzpqogjc2iQTe-ibYYBVoHbWCJEzf9jjRO2V7I0SbbAjqFdldLBfpNaGR69SqACIhULRNxLfcytSbFH3nQ5gRvdGcg4lWPGe3uHZiyz5aFe6ywt2k8BmZb4utKq_GYwU-5mHZfpxpsYsAjcVNxuIeM5YZOS6D-qCWKhkHSPjo0MFZbWbkaDPqbprUo5M2cxMhvuKH_6Mxb8gedlCX8xx5RHbXw016S57A7fpqHN4Ve_4LiGb2RA
  priority: 102
  providerName: Directory of Open Access Journals
Title A multi-sensor data fusion algorithm based on consistency preprocessing and adaptive weighting
URI https://www.proquest.com/docview/2913119100
https://hrcak.srce.hr/322948
https://doaj.org/article/cc262d920cc749e8a56417febdc27406
Volume 65
WOSCitedRecordID wos001119583500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1848-3380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056360
  issn: 0005-1144
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1848-3380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056360
  issn: 0005-1144
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1848-3380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056360
  issn: 0005-1144
  databaseCode: M2O
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1848-3380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056360
  issn: 0005-1144
  databaseCode: TFW
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1848-3380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056360
  issn: 0005-1144
  databaseCode: 0YH
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAP5S0WSuUD4uYlfiSxT6hFrbiwVAiknoj8SltRdrfJFsS_74zjLK0qwYFLFI1jy4q_fB5P7G8IeR14WwlY7TAbXcGUk4JZgBULpjRFqb3UyqVkE_Vspo-PzVEOuPV5W-XIiYmow8JjjPytMCgMA5Nb8W55wTBrFP5dzSk07pJNVCoDnG_uH8yOPo9cXKIa1uAAlww8fzWe4UF1bcQjmKaYQHwqgKYLKW_MTknEH5zW087b77e4Ok1Ahw_-t-sPyXZ2PenegJVH5E6cPyZb1wQJn5BvezTtMGQ9rG4XHcX9o7S9xIgatecn0Ojq9AfFmS9QMHncXduj1_2bLlEeMx06gJaonQdqg10imdJfKfwK5qfk6-HBl_cfWM7AwLySYsV8oTwPdRm500LVRgfprDaRR2-NLZ1xRnqlgpI-ct1WLRBGLU2rOa-icU4-IxvzxTw-JzQUKlbSeR7B4TRlgNLCiNjqGGxtnZsQNb75xmd5csyScd7wtYrpMGANDliTB2xCputqy0Gf418V9nFY1w-jvHYyLLqTJn-tjfeiEsGIwnvobNS2rBSv2-iCB1wX1YS8SaC40cpg6Tsf4bYBojRKT8jOCIkmk0Pf_MHDi78XvyT3oesqRXzEDtlYdZfxFbnnf67O-m43Y303hRHg-lF8ugLzbwYI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQIOvBELBXwAblniRxL7gFB5VK1aFg5F6gnXr7SIsrskW6r-KX4jM06yUCHBqQdu0SS24vjzjGcy_oaQJ4HVJQdvJ7PR5Zl0gmcWYJUFXei8UF4o6VKxiWoyUXt7-sMK-TGchcG0ykEnJkUdZh5j5M-5RmIYMG75y_m3DKtG4d_VoYRGB4vteHoCLlv7YusNzO9Tzjfe7r7ezPqqApmXgi8yn0vPQlVE5hSXlVZBOKt0ZNFbbQunnRZeyiCFj0zVZQ2LoBK6VoyVUTsnoN8L5KJETwhTBfn7QfMXyL3VbbeLDPwMOZwYQi5vRD-IxliufMzBKORCnLGFqWQAbJEPG2-__GEZkrnbuP6_fagb5Fq_sabr3Uq4SVbi9Ba5-hvd4m3yaZ2m_MmsBd991lDMjqX1McYLqT06gEEsDr9StOuBgshj7nCLPsUpnSP5ZzpSAT1ROw3UBjtHU0FPUnAZxHfIx3MZ4F2yOp1N4z1CQy5jKZxnEbbTughwN9c81ioGW1nnRkQOM218T76ONUCODFtytHYAMQgQ0wNkRMbLZvOOfeRfDV4hjJYPI3l4EsyaA9PrIuM9L3nQPPceXjYqW5SSVXV0wcOqzcsReZZAeKaXTtI2PsKlATOgpRqRtQGCpld9rfmFv_t_v_2YXN7cfbdjdrYm2w_IFRiGTLEtvkZWF81xfEgu-e-Lz23zKK0ySvbPG60_AZA3YCo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-sensor+data+fusion+algorithm+based+on+consistency+preprocessing+and%C2%A0adaptive+weighting&rft.jtitle=Automatika&rft.au=Du%2C+Shengxue&rft.au=Chen%2C+Shujun&rft.date=2024-01-02&rft.issn=0005-1144&rft.eissn=1848-3380&rft.volume=65&rft.issue=1&rft.spage=82&rft.epage=91&rft_id=info:doi/10.1080%2F00051144.2023.2284033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00051144_2023_2284033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1144&client=summon