A multi-sensor data fusion algorithm based on consistency preprocessing and adaptive weighting
In the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor data fusion algorithm based on anomaly data preprocessing and adaptive weighted estimation is proposed. To improve the reliability of the algor...
Uloženo v:
| Vydáno v: | Automatika Ročník 65; číslo 1; s. 82 - 91 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ljubljana
Taylor & Francis Ltd
02.01.2024
KoREMA - Hrvatsko društvo za komunikacije,računarstvo, elektroniku, mjerenja i automatiku Taylor & Francis Group |
| Témata: | |
| ISSN: | 0005-1144, 1848-3380 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor data fusion algorithm based on anomaly data preprocessing and adaptive weighted estimation is proposed. To improve the reliability of the algorithm, first, for a single sensor measurement signal sequence, a consistency preprocessing using the off-centre distance method is performed, and the weighting factor of each measurement data is calculated. Then, the measurement signal sequence is weighted and fused; Secondly, in response to the uneven distribution of measurement errors among multiple sensors in different directions, an adaptive weighted data fusion method based on the principle of optimal weight allocation is proposed. The proposed method was compared with the adaptive weighting method and arithmetic mean method. The simulation results showed that the total mean square error of the data fusion results obtained using the proposed algorithm is smaller. The proposed algorithm can effectively improve the accuracy of data measurement, reduce redundancy, and improve the stability of data measurement. |
|---|---|
| AbstractList | ABSTRACTIn the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor data fusion algorithm based on anomaly data preprocessing and adaptive weighted estimation is proposed. To improve the reliability of the algorithm, first, for a single sensor measurement signal sequence, a consistency preprocessing using the off-centre distance method is performed, and the weighting factor of each measurement data is calculated. Then, the measurement signal sequence is weighted and fused; Secondly, in response to the uneven distribution of measurement errors among multiple sensors in different directions, an adaptive weighted data fusion method based on the principle of optimal weight allocation is proposed. The proposed method was compared with the adaptive weighting method and arithmetic mean method. The simulation results showed that the total mean square error of the data fusion results obtained using the proposed algorithm is smaller. The proposed algorithm can effectively improve the accuracy of data measurement, reduce redundancy, and improve the stability of data measurement. In the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor data fusion algorithm based on anomaly data preprocessing and adaptive weighted estimation is proposed. To improve the reliability of the algorithm, first, for a single sensor measurement signal sequence, a consistency preprocessing using the off-centre distance method is performed, and the weighting factor of each measurement data is calculated. Then, the measurement signal sequence is weighted and fused; Secondly, in response to the uneven distribution of measurement errors among multiple sensors in different directions, an adaptive weighted data fusion method based on the principle of optimal weight allocation is proposed. The proposed method was compared with the adaptive weighting method and arithmetic mean method. The simulation results showed that the total mean square error of the data fusion results obtained using the proposed algorithm is smaller. The proposed algorithm can effectively improve the accuracy of data measurement, reduce redundancy, and improve the stability of data measurement. In the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor data fusion algorithm based on anomaly data preprocessing and adaptive weighted estimation is proposed. To improve the reliability of the algorithm, first, for a single sensor measurement signal sequence, a consistency preprocessing using the off-centre distance method is performed, and the weighting factor of each measurement data is calculated. Then, the measurement signal sequence is weighted and fused; Secondly, in response to the uneven distribution of measurement errors among multiple sensors in different directions, an adaptive weighted data fusion method based on the principle of optimal weight allocation is proposed. The proposed method was compared with the adaptive weighting method and arithmetic mean method. The simulation results showed that the total mean square error of the data fusion results obtained using the proposed algorithm is smaller. The proposed algorithm can effectively improve the accuracy of data measurement, reduce redundancy, and improve the stability of data measurement. |
| Author | Du, Shengxue Chen, Shujun |
| Author_xml | – sequence: 1 givenname: Shengxue surname: Du fullname: Du, Shengxue organization: School of Information and Electrical Engineering, Hebei University of Engineering, Handan, People’s Republic of China – sequence: 2 givenname: Shujun surname: Chen fullname: Chen, Shujun organization: Modern Education Technology Center, Hebei University of Engineering, Handan, People’s Republic of China |
| BookMark | eNp9kc1uEzEUhS1UJNLCIyCNxHqC_2bGFquq4qdSJTawtu5c30kcknGwHVDfps_Ck-Ew7QIWrGwffefo-p5LdjHHmRh7LfhacMPfcs47IbReSy7VWkqjuVLP2EoYbVqlDL9gqzPTnqEX7DLnXX31qucr5q6bw2lfQptpzjE1Hgo00ymHODew38QUyvbQjJDJN1XCOOeQC8143xwTHVNEyjnMmwZm_-sBPBxL-EHNTwqbban6S_Z8gn2mV4_nFfv64f2Xm0_t3eePtzfXdy1qJUuLXKPwQ0diNFIP1ng1grEkCMFCN9rRKtTaa4UkzNRPfFCDspMRoic7juqK3S65PsLOHVM4QLp3EYL7I8S0cZBKwD05RNlLbyVHHLQlA12vxTDR6FEOmvc1q12ytgnh219hi5ITUr06JaXVpvJvFr6u4_uJcnG7eEpz_a6TVighrOC8Uu8WClPMOdHkMBQoddElQdg7wd25TffUpju36R7brO7uH_fTWP_3_QY9haW2 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3422610 crossref_primary_10_1177_16878132251365117 crossref_primary_10_2478_amns_2024_2531 crossref_primary_10_1016_j_inffus_2025_103084 crossref_primary_10_1109_JSEN_2025_3561322 |
| Cites_doi | 10.1016/j.matpr.2021.05.067 10.1186/s13638-016-0793-z 10.1109/ICUMT.2015.7382445 10.1109/JSEN.2014.2356501 10.1016/j.isatra.2020.06.024 10.3390/s18113851 10.3390/s22155902 10.1007/s10772-016-9354-4 10.1080/1206212X.2017.1396427 10.1016/j.jclepro.2014.04.036 10.3390/s20154156 10.1109/TCST.2018.2797920 10.1109/INCoS.2016.38 10.1016/j.cageo.2017.12.005 10.1016/j.ijms.2016.06.002 10.3390/s20071897 10.1155/2016/8325845 10.1007/s11432-019-2751-4 10.1109/TMC.2016.2599158 10.1007/s11277-017-4909-5 10.1109/ACCESS.2017.2728623 10.1109/ICCMC.2019.8819721 10.1109/MGRS.2018.2890023 10.32604/cmc.2019.06354 10.3390/s19092139 |
| ContentType | Journal Article Paper |
| Copyright | 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8FD 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH JQ2 L7M L~C L~D M2O MBDVC PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U VP8 DOA |
| DOI | 10.1080/00051144.2023.2284033 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic Portal of Croatian Scientific and Professional Journals – HRČAK DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) Computer and Information Systems Abstracts Professional ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Research Library Prep |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1848-3380 |
| EndPage | 91 |
| ExternalDocumentID | oai_doaj_org_article_cc262d920cc749e8a56417febdc27406 oai_hrcak_srce_hr_322948 10_1080_00051144_2023_2284033 |
| GroupedDBID | .4S .DC 0YH 2WC 8G5 AAYXX ABUWG ACGFS ADBBV AENEX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BCNDV BENPR BLEHA BPHCQ CCPQU CITATION DWQXO E3Z EBS EDO EN8 EOJEC GNUQQ GROUPED_DOAJ GUQSH H13 I-F KTTOD M2O M4Z OBODZ OK1 PHGZM PHGZT PQQKQ PROAC QZIEQ TFW TUS 3V. 7SC 7XB 8FD 8FK JQ2 L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U C1A EJD M~E VP8 |
| ID | FETCH-LOGICAL-c432t-c04c1d75e1b824798d3ba89e1eca9a5b9b93c44d43ce18f6f073739f8116e9bb3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001119583500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0005-1144 |
| IngestDate | Fri Oct 03 12:39:28 EDT 2025 Thu Dec 05 13:38:28 EST 2024 Fri Jul 25 22:45:13 EDT 2025 Sat Nov 29 06:32:26 EST 2025 Tue Nov 18 22:16:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | openAccess |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c432t-c04c1d75e1b824798d3ba89e1eca9a5b9b93c44d43ce18f6f073739f8116e9bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 322948 |
| OpenAccessLink | https://doaj.org/article/cc262d920cc749e8a56417febdc27406 |
| PQID | 2913119100 |
| PQPubID | 3933318 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cc262d920cc749e8a56417febdc27406 hrcak_primary_oai_hrcak_srce_hr_322948 proquest_journals_2913119100 crossref_citationtrail_10_1080_00051144_2023_2284033 crossref_primary_10_1080_00051144_2023_2284033 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-02 |
| PublicationDateYYYYMMDD | 2024-01-02 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Ljubljana |
| PublicationPlace_xml | – name: Ljubljana |
| PublicationTitle | Automatika |
| PublicationTitle_FL | Automatika |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Ltd KoREMA - Hrvatsko društvo za komunikacije,računarstvo, elektroniku, mjerenja i automatiku Taylor & Francis Group |
| Publisher_xml | – sequence: 0 name: KoREMA - Hrvatsko društvo za komunikacije,računarstvo, elektroniku, mjerenja i automatiku – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
| References | e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_13_1 e_1_3_3_16_1 e_1_3_3_15_1 e_1_3_3_10_1 e_1_3_3_12_1 e_1_3_3_11_1 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_4_1 e_1_3_3_22_1 |
| References_xml | – ident: e_1_3_3_12_1 doi: 10.1016/j.matpr.2021.05.067 – ident: e_1_3_3_24_1 doi: 10.1186/s13638-016-0793-z – ident: e_1_3_3_23_1 doi: 10.1109/ICUMT.2015.7382445 – ident: e_1_3_3_25_1 doi: 10.1109/JSEN.2014.2356501 – ident: e_1_3_3_2_1 doi: 10.1016/j.isatra.2020.06.024 – ident: e_1_3_3_29_1 doi: 10.3390/s18113851 – ident: e_1_3_3_14_1 doi: 10.3390/s22155902 – ident: e_1_3_3_5_1 doi: 10.1007/s10772-016-9354-4 – ident: e_1_3_3_13_1 doi: 10.1080/1206212X.2017.1396427 – ident: e_1_3_3_4_1 doi: 10.1016/j.jclepro.2014.04.036 – ident: e_1_3_3_11_1 doi: 10.3390/s20154156 – ident: e_1_3_3_21_1 doi: 10.1109/TCST.2018.2797920 – ident: e_1_3_3_18_1 doi: 10.1109/INCoS.2016.38 – ident: e_1_3_3_19_1 doi: 10.1016/j.cageo.2017.12.005 – ident: e_1_3_3_9_1 doi: 10.1080/1206212X.2017.1396427 – ident: e_1_3_3_20_1 doi: 10.1016/j.ijms.2016.06.002 – ident: e_1_3_3_15_1 doi: 10.3390/s20071897 – ident: e_1_3_3_10_1 doi: 10.1155/2016/8325845 – ident: e_1_3_3_26_1 doi: 10.3390/s20071897 – ident: e_1_3_3_16_1 doi: 10.1007/s11432-019-2751-4 – ident: e_1_3_3_22_1 doi: 10.1109/TMC.2016.2599158 – ident: e_1_3_3_6_1 doi: 10.1007/s11277-017-4909-5 – ident: e_1_3_3_8_1 doi: 10.1109/ACCESS.2017.2728623 – ident: e_1_3_3_7_1 doi: 10.1109/ICCMC.2019.8819721 – ident: e_1_3_3_3_1 doi: 10.1109/MGRS.2018.2890023 – ident: e_1_3_3_17_1 doi: 10.1016/j.isatra.2020.06.024 – ident: e_1_3_3_28_1 doi: 10.32604/cmc.2019.06354 – ident: e_1_3_3_27_1 doi: 10.3390/s19092139 |
| SSID | ssj0056360 |
| Score | 2.3090446 |
| Snippet | In the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor... In the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a multi-sensor... ABSTRACTIn the data collection of a multi-sensor system, there are problems with large errors, conflicts, and redundancy. To solve the above problem, a... |
| SourceID | doaj hrcak proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 82 |
| SubjectTerms | adaptive weighting Algorithms Consistency consistency preprocess Data collection data fusion Data integration Errors INDEX TERMS: Multi-sensor system Multi-sensor system Multisensor fusion off-centre distance Preprocessing Redundancy Sensors Weighting methods |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELaqikM5IKBFbCnIB9SbF_8lsY8FUXGqOFCpN8seO7Si7K6SbSvehmfhyRjb2VUrDr1wiyaxY4_H48_W-BtC3kfRtxJ3O8ynwJkOSjKPZsWibSxvDCijQ0k20Z2dmYsL-_Veqq8cE1bpgaviPgDIVkYrOUCnbTK-abXo-hQi4C8q2Tbv7GYzVX1wk1mwKvBtGCJ-vbm7k1m1sx2iaJ4Th88lumeu1INVqZD3I1i9HMD_-MdHl4Xn9Dl5NiFGelJb-oLspMVL8vQej-A-cSe0BAayETely4HmsE_a3-SDMOqvvy-Hq_XlT5oXrEhRBDkodsxg-RddZVbLclcAa6J-Ef_89tGvshOkd-XYFOUH5Pz087dPX9iUOYGBVnLNgGsQsWuSCEbqzpqogjc2iQTe-ibYYBVoHbWCJEzf9jjRO2V7I0SbbAjqFdldLBfpNaGR69SqACIhULRNxLfcytSbFH3nQ5gRvdGcg4lWPGe3uHZiyz5aFe6ywt2k8BmZb4utKq_GYwU-5mHZfpxpsYsAjcVNxuIeM5YZOS6D-qCWKhkHSPjo0MFZbWbkaDPqbprUo5M2cxMhvuKH_6Mxb8gedlCX8xx5RHbXw016S57A7fpqHN4Ve_4LiGb2RA priority: 102 providerName: Directory of Open Access Journals |
| Title | A multi-sensor data fusion algorithm based on consistency preprocessing and adaptive weighting |
| URI | https://www.proquest.com/docview/2913119100 https://hrcak.srce.hr/322948 https://doaj.org/article/cc262d920cc749e8a56417febdc27406 |
| Volume | 65 |
| WOSCitedRecordID | wos001119583500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1848-3380 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056360 issn: 0005-1144 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1848-3380 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056360 issn: 0005-1144 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1848-3380 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056360 issn: 0005-1144 databaseCode: M2O dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1848-3380 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056360 issn: 0005-1144 databaseCode: TFW dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1848-3380 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056360 issn: 0005-1144 databaseCode: 0YH dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAP5S0WSuUD4uYlfiSxT6hFrbiwVAiknoj8SltRdrfJFsS_74zjLK0qwYFLFI1jy4q_fB5P7G8IeR14WwlY7TAbXcGUk4JZgBULpjRFqb3UyqVkE_Vspo-PzVEOuPV5W-XIiYmow8JjjPytMCgMA5Nb8W55wTBrFP5dzSk07pJNVCoDnG_uH8yOPo9cXKIa1uAAlww8fzWe4UF1bcQjmKaYQHwqgKYLKW_MTknEH5zW087b77e4Ok1Ahw_-t-sPyXZ2PenegJVH5E6cPyZb1wQJn5BvezTtMGQ9rG4XHcX9o7S9xIgatecn0Ojq9AfFmS9QMHncXduj1_2bLlEeMx06gJaonQdqg10imdJfKfwK5qfk6-HBl_cfWM7AwLySYsV8oTwPdRm500LVRgfprDaRR2-NLZ1xRnqlgpI-ct1WLRBGLU2rOa-icU4-IxvzxTw-JzQUKlbSeR7B4TRlgNLCiNjqGGxtnZsQNb75xmd5csyScd7wtYrpMGANDliTB2xCputqy0Gf418V9nFY1w-jvHYyLLqTJn-tjfeiEsGIwnvobNS2rBSv2-iCB1wX1YS8SaC40cpg6Tsf4bYBojRKT8jOCIkmk0Pf_MHDi78XvyT3oesqRXzEDtlYdZfxFbnnf67O-m43Y303hRHg-lF8ugLzbwYI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQIOvBELBXwAblniRxL7gFB5VK1aFg5F6gnXr7SIsrskW6r-KX4jM06yUCHBqQdu0SS24vjzjGcy_oaQJ4HVJQdvJ7PR5Zl0gmcWYJUFXei8UF4o6VKxiWoyUXt7-sMK-TGchcG0ykEnJkUdZh5j5M-5RmIYMG75y_m3DKtG4d_VoYRGB4vteHoCLlv7YusNzO9Tzjfe7r7ezPqqApmXgi8yn0vPQlVE5hSXlVZBOKt0ZNFbbQunnRZeyiCFj0zVZQ2LoBK6VoyVUTsnoN8L5KJETwhTBfn7QfMXyL3VbbeLDPwMOZwYQi5vRD-IxliufMzBKORCnLGFqWQAbJEPG2-__GEZkrnbuP6_fagb5Fq_sabr3Uq4SVbi9Ba5-hvd4m3yaZ2m_MmsBd991lDMjqX1McYLqT06gEEsDr9StOuBgshj7nCLPsUpnSP5ZzpSAT1ROw3UBjtHU0FPUnAZxHfIx3MZ4F2yOp1N4z1CQy5jKZxnEbbTughwN9c81ioGW1nnRkQOM218T76ONUCODFtytHYAMQgQ0wNkRMbLZvOOfeRfDV4hjJYPI3l4EsyaA9PrIuM9L3nQPPceXjYqW5SSVXV0wcOqzcsReZZAeKaXTtI2PsKlATOgpRqRtQGCpld9rfmFv_t_v_2YXN7cfbdjdrYm2w_IFRiGTLEtvkZWF81xfEgu-e-Lz23zKK0ySvbPG60_AZA3YCo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-sensor+data+fusion+algorithm+based+on+consistency+preprocessing+and%C2%A0adaptive+weighting&rft.jtitle=Automatika&rft.au=Du%2C+Shengxue&rft.au=Chen%2C+Shujun&rft.date=2024-01-02&rft.issn=0005-1144&rft.eissn=1848-3380&rft.volume=65&rft.issue=1&rft.spage=82&rft.epage=91&rft_id=info:doi/10.1080%2F00051144.2023.2284033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00051144_2023_2284033 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1144&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1144&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1144&client=summon |