Application of experimental design and derivative spectrophotometry methods in optimization and analysis of biosorption of binary mixtures of basic dyes from aqueous solutions
Simultaneous biosorption of malachite green (MG) and crystal violet (CV) on biosorbent Yarrowia lipolytica ISF7 was studied. An appropriate derivative spectrophotometry technique was used to evaluate the concentration of each dye in binary solutions, despite significant interferences in visible ligh...
Gespeichert in:
| Veröffentlicht in: | Ecotoxicology and environmental safety Jg. 139; S. 219 - 227 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier Inc
01.05.2017
|
| Schlagworte: | |
| ISSN: | 0147-6513, 1090-2414 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Simultaneous biosorption of malachite green (MG) and crystal violet (CV) on biosorbent Yarrowia lipolytica ISF7 was studied. An appropriate derivative spectrophotometry technique was used to evaluate the concentration of each dye in binary solutions, despite significant interferences in visible light absorbances. The effects of pH, temperature, growth time, initial MG and CV concentration in batch experiments were assessed using Design of Experiment (DOE) according to central composite second order response surface methodology (RSM). The analysis showed that the greatest biosorption efficiency (>99% for both dyes) can be obtained at pH 7.0, T=28°C, 24h mixing and 20mgL−1 initial concentrations for both MG and CV dyes. The quadratic constructed equation ability for fitting experimental data is judged based on criterions like R2 values, significant p and lack-of-fit value strongly confirm its high adequacy and applicability for prediction of revel behavior of the system under study. The proposed model showed very high correlation coefficients (R2=0.9997 for CV and R2=0.9989 for MG), while supported by closeness of predicted and experimental value. A kinetic analysis was carried out, showing that for both dyes a pseudo-second order kinetic model adequately describes the available data. The Langmuir isotherm model in single and binary components has better performance for description of dyes biosorption with maximum monolayer biosorption capacity of 59.4 and 62.7mgg−1 in single component and 46.4 and 50.0mgg−1 for CV and MB in binary components, respectively. The surface structure of biosorbents and the possible biosorbents–dyes interactions between were also evaluated by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The values of thermodynamic parameters including ΔG° and ΔH° strongly confirm which method is spontaneous and endothermic.
[Display omitted]
•This is the first reported application of Yarrowia lipolytica ISF7 for the simultaneous removal of dyes from water.•The optimal pH for simultaneous biosorption of MG and CV on Yarrowia lipolytica ISF7 was 7.0.•Statistical designs were applied for optimization of process variables.•Interaction between adsorbate and adsorbent was elucidated by FTIR.•Various equilibrium and kinetic models were tested. |
|---|---|
| AbstractList | Simultaneous biosorption of malachite green (MG) and crystal violet (CV) on biosorbent Yarrowia lipolytica ISF7 was studied. An appropriate derivative spectrophotometry technique was used to evaluate the concentration of each dye in binary solutions, despite significant interferences in visible light absorbances. The effects of pH, temperature, growth time, initial MG and CV concentration in batch experiments were assessed using Design of Experiment (DOE) according to central composite second order response surface methodology (RSM). The analysis showed that the greatest biosorption efficiency (>99% for both dyes) can be obtained at pH 7.0, T=28°C, 24h mixing and 20mgL
initial concentrations for both MG and CV dyes. The quadratic constructed equation ability for fitting experimental data is judged based on criterions like R
values, significant p and lack-of-fit value strongly confirm its high adequacy and applicability for prediction of revel behavior of the system under study. The proposed model showed very high correlation coefficients (R
=0.9997 for CV and R
=0.9989 for MG), while supported by closeness of predicted and experimental value. A kinetic analysis was carried out, showing that for both dyes a pseudo-second order kinetic model adequately describes the available data. The Langmuir isotherm model in single and binary components has better performance for description of dyes biosorption with maximum monolayer biosorption capacity of 59.4 and 62.7mgg
in single component and 46.4 and 50.0mgg
for CV and MB in binary components, respectively. The surface structure of biosorbents and the possible biosorbents-dyes interactions between were also evaluated by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The values of thermodynamic parameters including ΔG° and ΔH° strongly confirm which method is spontaneous and endothermic. Simultaneous biosorption of malachite green (MG) and crystal violet (CV) on biosorbent Yarrowia lipolytica ISF7 was studied. An appropriate derivative spectrophotometry technique was used to evaluate the concentration of each dye in binary solutions, despite significant interferences in visible light absorbances. The effects of pH, temperature, growth time, initial MG and CV concentration in batch experiments were assessed using Design of Experiment (DOE) according to central composite second order response surface methodology (RSM). The analysis showed that the greatest biosorption efficiency (>99% for both dyes) can be obtained at pH 7.0, T=28°C, 24h mixing and 20mgL−1 initial concentrations for both MG and CV dyes. The quadratic constructed equation ability for fitting experimental data is judged based on criterions like R2 values, significant p and lack-of-fit value strongly confirm its high adequacy and applicability for prediction of revel behavior of the system under study. The proposed model showed very high correlation coefficients (R2=0.9997 for CV and R2=0.9989 for MG), while supported by closeness of predicted and experimental value. A kinetic analysis was carried out, showing that for both dyes a pseudo-second order kinetic model adequately describes the available data. The Langmuir isotherm model in single and binary components has better performance for description of dyes biosorption with maximum monolayer biosorption capacity of 59.4 and 62.7mgg−1 in single component and 46.4 and 50.0mgg−1 for CV and MB in binary components, respectively. The surface structure of biosorbents and the possible biosorbents–dyes interactions between were also evaluated by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The values of thermodynamic parameters including ΔG° and ΔH° strongly confirm which method is spontaneous and endothermic. [Display omitted] •This is the first reported application of Yarrowia lipolytica ISF7 for the simultaneous removal of dyes from water.•The optimal pH for simultaneous biosorption of MG and CV on Yarrowia lipolytica ISF7 was 7.0.•Statistical designs were applied for optimization of process variables.•Interaction between adsorbate and adsorbent was elucidated by FTIR.•Various equilibrium and kinetic models were tested. Simultaneous biosorption of malachite green (MG) and crystal violet (CV) on biosorbent Yarrowia lipolytica ISF7 was studied. An appropriate derivative spectrophotometry technique was used to evaluate the concentration of each dye in binary solutions, despite significant interferences in visible light absorbances. The effects of pH, temperature, growth time, initial MG and CV concentration in batch experiments were assessed using Design of Experiment (DOE) according to central composite second order response surface methodology (RSM). The analysis showed that the greatest biosorption efficiency (>99% for both dyes) can be obtained at pH 7.0, T=28°C, 24h mixing and 20mgL-1 initial concentrations for both MG and CV dyes. The quadratic constructed equation ability for fitting experimental data is judged based on criterions like R2 values, significant p and lack-of-fit value strongly confirm its high adequacy and applicability for prediction of revel behavior of the system under study. The proposed model showed very high correlation coefficients (R2=0.9997 for CV and R2=0.9989 for MG), while supported by closeness of predicted and experimental value. A kinetic analysis was carried out, showing that for both dyes a pseudo-second order kinetic model adequately describes the available data. The Langmuir isotherm model in single and binary components has better performance for description of dyes biosorption with maximum monolayer biosorption capacity of 59.4 and 62.7mgg-1 in single component and 46.4 and 50.0mgg-1 for CV and MB in binary components, respectively. The surface structure of biosorbents and the possible biosorbents-dyes interactions between were also evaluated by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The values of thermodynamic parameters including ΔG° and ΔH° strongly confirm which method is spontaneous and endothermic. Simultaneous biosorption of malachite green (MG) and crystal violet (CV) on biosorbent Yarrowia lipolytica ISF7 was studied. An appropriate derivative spectrophotometry technique was used to evaluate the concentration of each dye in binary solutions, despite significant interferences in visible light absorbances. The effects of pH, temperature, growth time, initial MG and CV concentration in batch experiments were assessed using Design of Experiment (DOE) according to central composite second order response surface methodology (RSM). The analysis showed that the greatest biosorption efficiency (>99% for both dyes) can be obtained at pH 7.0, T=28°C, 24h mixing and 20mgL−1 initial concentrations for both MG and CV dyes. The quadratic constructed equation ability for fitting experimental data is judged based on criterions like R2 values, significant p and lack-of-fit value strongly confirm its high adequacy and applicability for prediction of revel behavior of the system under study. The proposed model showed very high correlation coefficients (R2=0.9997 for CV and R2=0.9989 for MG), while supported by closeness of predicted and experimental value. A kinetic analysis was carried out, showing that for both dyes a pseudo-second order kinetic model adequately describes the available data. The Langmuir isotherm model in single and binary components has better performance for description of dyes biosorption with maximum monolayer biosorption capacity of 59.4 and 62.7mgg−1 in single component and 46.4 and 50.0mgg−1 for CV and MB in binary components, respectively. The surface structure of biosorbents and the possible biosorbents–dyes interactions between were also evaluated by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The values of thermodynamic parameters including ΔG° and ΔH° strongly confirm which method is spontaneous and endothermic. |
| Author | Asfaram, Arash Ghezelbash, Gholam Reza Pepe, Francesco Ghaedi, Mehrorang |
| Author_xml | – sequence: 1 givenname: Arash surname: Asfaram fullname: Asfaram, Arash organization: Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran – sequence: 2 givenname: Mehrorang surname: Ghaedi fullname: Ghaedi, Mehrorang email: m_ghaedi@mail.yu.ac.ir, m_ghaedi@yahoo.com organization: Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran – sequence: 3 givenname: Gholam Reza surname: Ghezelbash fullname: Ghezelbash, Gholam Reza email: gh.r.ghezelbash@gmail.com organization: Biology Department, Faculty of Science, Shahid Chamran University of Ahvaz, 61357-831351, Iran – sequence: 4 givenname: Francesco surname: Pepe fullname: Pepe, Francesco organization: Dipartimento di Ingegneria, Università del Sannio, Piazza Roma 21, 82100 Benevento, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28152403$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctu1DAUhi1URKeFN0DISzYTji-ZSVggVRW0SJXYwNry2CfUo8QOtjPq9KV4RZymZcGCbnyRvu-3df4zcuKDR0LeMqgYsM2HfYUmoD9UHNi2AlaBFC_IikELay6ZPCErYHK73tRMnJKzlPYAIKCuX5FT3rCaSxAr8vtiHHtndHbB09BRvBsxugF91j21mNxPT7W35RjdoVAHpGlEk2MYb0MOA-Z4pGW9DTZRVyLG7AZ3v-TNova6PyaX5vCdCynE8emtnfN6tt1dniIuhE7OUHssty6GgepfE4Yp0RT6adbSa_Ky033CN4_7Ofnx5fP3y-v1zberr5cXN2sjBc_rnQSEBqywssWt4RxAs5rxRtrW2FbWWlhutIG6E0XogAHvWqMb3oLt5Eack_dL7hhD-UPKanDJYN9rP39I8YdhgpDtsyhrNnXNGiZ5Qd89otNuQKvGMuoyAvXURwHkApgYUorY_UUYqLl2tVdL7WquXQFTpfaiffxHMy4_dJCjdv1z8qdFxjLPg8OoknHoDVoXS9PKBvf_gD-27s-A |
| CitedBy_id | crossref_primary_10_1016_j_aquaculture_2018_12_077 crossref_primary_10_1016_j_surfin_2022_102079 crossref_primary_10_1016_j_chemosphere_2020_127559 crossref_primary_10_5004_dwt_2018_22839 crossref_primary_10_1016_j_colsurfa_2018_06_061 crossref_primary_10_1002_aoc_4369 crossref_primary_10_1002_aoc_4205 crossref_primary_10_1007_s42452_020_1978_y crossref_primary_10_1016_j_surfin_2021_100977 crossref_primary_10_1002_aoc_4080 crossref_primary_10_1007_s13369_018_3441_6 crossref_primary_10_1080_00986445_2018_1555531 crossref_primary_10_1016_j_jngse_2018_02_034 crossref_primary_10_1080_03067319_2019_1655556 crossref_primary_10_1016_j_jiec_2017_09_049 crossref_primary_10_1016_j_jcis_2018_09_001 crossref_primary_10_1016_j_jclepro_2022_135522 crossref_primary_10_1016_j_ultsonch_2017_09_056 crossref_primary_10_1016_j_ultsonch_2018_07_045 crossref_primary_10_1016_j_chemosphere_2021_132670 crossref_primary_10_1007_s11274_023_03552_0 crossref_primary_10_1016_j_molliq_2017_05_155 crossref_primary_10_1016_j_ultsonch_2017_03_024 crossref_primary_10_1080_01496395_2017_1405038 crossref_primary_10_1007_s42108_019_00010_2 crossref_primary_10_2166_wst_2020_607 crossref_primary_10_1016_j_heliyon_2021_e07169 crossref_primary_10_1016_j_chemolab_2018_02_010 crossref_primary_10_1002_jctb_5419 crossref_primary_10_1016_j_jenvman_2017_06_050 crossref_primary_10_1002_adv_21932 crossref_primary_10_1016_j_gsd_2018_11_002 crossref_primary_10_1016_j_jwpe_2022_103107 crossref_primary_10_1016_j_jhazmat_2019_121675 crossref_primary_10_1016_j_ijbiomac_2018_03_103 crossref_primary_10_1016_j_heliyon_2024_e39628 crossref_primary_10_1016_j_molliq_2017_10_109 crossref_primary_10_1016_j_poly_2019_114105 crossref_primary_10_1016_j_ultsonch_2017_09_046 crossref_primary_10_1016_j_jece_2019_103617 crossref_primary_10_1016_j_matpr_2019_11_192 crossref_primary_10_1016_j_jiec_2018_05_006 crossref_primary_10_1016_j_ecoenv_2018_07_042 crossref_primary_10_1016_j_colsurfa_2017_06_049 crossref_primary_10_1016_j_jiec_2018_05_003 crossref_primary_10_1007_s12649_022_01831_9 crossref_primary_10_1007_s13399_021_01523_9 crossref_primary_10_1080_00032719_2017_1418879 crossref_primary_10_1515_revce_2023_0030 crossref_primary_10_1016_j_jcis_2018_01_067 crossref_primary_10_1016_j_jphotobiol_2017_12_024 crossref_primary_10_1016_j_ultsonch_2017_09_031 crossref_primary_10_5004_dwt_2019_23556 crossref_primary_10_1007_s13762_020_02632_0 crossref_primary_10_1016_j_eti_2019_100478 crossref_primary_10_1016_j_talanta_2018_10_088 crossref_primary_10_5004_dwt_2019_23557 crossref_primary_10_1016_j_jallcom_2025_182847 crossref_primary_10_1016_j_apsusc_2018_11_085 crossref_primary_10_1016_j_molliq_2017_11_130 crossref_primary_10_1016_j_jphotobiol_2017_10_017 crossref_primary_10_1016_j_colcom_2021_100549 crossref_primary_10_1016_j_molliq_2018_03_128 crossref_primary_10_1016_j_molstruc_2022_132842 crossref_primary_10_1016_j_ecoenv_2018_07_091 crossref_primary_10_1016_j_jhazmat_2020_123876 crossref_primary_10_5004_dwt_2020_25424 crossref_primary_10_1016_j_chemosphere_2018_10_113 crossref_primary_10_1038_s41598_025_97692_y crossref_primary_10_1016_j_jece_2020_104486 crossref_primary_10_5004_dwt_2021_26577 crossref_primary_10_1016_j_jece_2017_10_043 crossref_primary_10_1007_s13399_024_05996_2 crossref_primary_10_1016_j_jcis_2018_07_026 |
| Cites_doi | 10.1016/j.jiec.2015.11.010 10.1100/2012/512454 10.1016/j.microc.2016.08.012 10.1021/sc500848m 10.1039/C5RA26036A 10.1016/j.ibiod.2013.04.004 10.3923/jest.2008.143.150 10.1016/j.jhazmat.2005.12.043 10.1039/C5RA27170C 10.1016/j.jtice.2012.10.009 10.1016/j.jhazmat.2008.01.033 10.1002/ep.11756 10.1080/01496390802222640 10.1016/j.desal.2010.12.009 10.1016/j.jtice.2015.02.026 10.1016/j.jiec.2013.12.048 10.1016/S0304-3894(02)00017-1 10.1016/j.jtice.2013.10.009 10.1016/j.cej.2012.04.074 10.1016/j.ecoenv.2014.12.041 10.1016/j.msec.2013.03.009 10.1016/j.jtice.2013.05.002 10.1021/ja02242a004 10.1016/j.jhazmat.2011.11.083 10.1016/j.cej.2011.04.048 10.1016/j.jhazmat.2009.01.101 10.1007/s11270-008-9641-z 10.1016/j.biotechadv.2014.04.008 10.1016/j.jiec.2012.12.039 10.1016/j.jhazmat.2008.04.125 |
| ContentType | Journal Article |
| Copyright | 2017 Copyright © 2017. Published by Elsevier Inc. |
| Copyright_xml | – notice: 2017 – notice: Copyright © 2017. Published by Elsevier Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7U8 7X8 C1K JXQ 7S9 L.6 |
| DOI | 10.1016/j.ecoenv.2017.01.043 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed TOXLINE MEDLINE - Academic Environmental Sciences and Pollution Management Toxline AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) TOXLINE MEDLINE - Academic Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE TOXLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Ecology |
| EISSN | 1090-2414 |
| EndPage | 227 |
| ExternalDocumentID | 28152403 10_1016_j_ecoenv_2017_01_043 S0147651317300532 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ H~9 IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K VH1 WUQ XPP ZMT ZU3 ZXP ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AEGFY CGR CUY CVF ECM EIF NPM 7U8 7X8 C1K JXQ 7S9 L.6 |
| ID | FETCH-LOGICAL-c432t-b40e080d3d49e7c2200a151284d9cd945a3d2cac05f3432f0102f9ca8290df463 |
| ISICitedReferencesCount | 88 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396640600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0147-6513 |
| IngestDate | Sun Sep 28 11:06:06 EDT 2025 Sun Nov 09 14:35:23 EST 2025 Wed Feb 19 01:56:58 EST 2025 Tue Nov 18 22:27:02 EST 2025 Sat Nov 29 06:05:00 EST 2025 Fri Feb 23 02:28:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Binary solutions Crystal violet Biosorption Yarrowia lipolytica ISF7 Response surface methodology Malachite green |
| Language | English |
| License | Copyright © 2017. Published by Elsevier Inc. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c432t-b40e080d3d49e7c2200a151284d9cd945a3d2cac05f3432f0102f9ca8290df463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 28152403 |
| PQID | 1865518142 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2000300349 proquest_miscellaneous_1865518142 pubmed_primary_28152403 crossref_primary_10_1016_j_ecoenv_2017_01_043 crossref_citationtrail_10_1016_j_ecoenv_2017_01_043 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2017_01_043 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-01 |
| PublicationDateYYYYMMDD | 2017-05-01 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Ecotoxicology and environmental safety |
| PublicationTitleAlternate | Ecotoxicol Environ Saf |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Asfaram, Ghaedi, Hajati, Rezaeinejad, Goudarzi, Purkait (bib4) 2015; 53 El Haddad, Regti, Laamari, Slimani, Mamouni, El Antri, Lazar (bib17) 2014; 45 Liu, Gao, Su, Chen, Jiang, Yao (bib26) 2015; 3 Godbole, Sawant (bib19) 2006; 65 Senthil Kumar, Palaniyappan, Priyadharshini, Vignesh, Thanjiappan, Sebastina Anne Fernando, Tanvir Ahmed, Srinath (bib29) 2014; 33 Deniz (bib12) 2013; 33 Dasgupta, Singh, Sikder, Padarthi, Chakraborty, Curcio (bib11) 2015; 121 Azad, Ghaedi, Asfaram, Jamshidi, Hassani, Goudarzi, Azqhandi, Ghaedi (bib5) 2016; 6 Khattri, Singh (bib22) 2009; 167 El Haddad, Slimani, Mamouni, ElAntri, Lazar (bib15) 2013; 14 Regti, Laamari, Stiriba, El Haddad (bib28) 2017; 130 Asfaram, Ghaedi, Ghezelbash (bib3) 2016; 6 Basiri Parsa, Merati, Abbasi (bib6) 2013; 19 Ho (bib20) 2006; 136 Lagergren (bib24) 1898; 24 Zeinali, Ghaedi, Shafie (bib34) 2014; 20 El Haddad, Mamouni, Slimani, Saffaj, Ridaoui, El Antri, Lazar (bib16) 2012; 3 Zinjarde, Apte, Mohite, Kumar (bib35) 2014; 32 Witek-Krowiak (bib33) 2011; 171 Daneshvar, Kousha, Sohrabi, Khataee, Converti (bib10) 2012; 195 Bekçi, Seki, Cavas (bib7) 2009; 161 Slimani, El Ouahabi, Abidi, El Haddad, Regti, Laamari, El Antri, Lazar (bib30) 2014; 45 Belala, Jeguirim, Belhachemi, Addoun, Trouvé (bib8) 2011; 271 Ali, Muhammad (bib1) 2008; 1 Dogan, Abak, Alkan (bib14) 2008; 192 Kousha, Farhadian, Dorafshan, Soofiani, Bhatnagar (bib23) 2013; 44 Wang, Liu, Wen, Zhou, Jiang, Li (bib32) 2008; 43 Reddy, Sivaramakrishna, Reddy (bib27) 2012; 203–204 Langmuir (bib25) 1918; 40 Turabik (bib31) 2008; 158 Freundlich (bib18) 1906; 57 Dil, Ghaedi, Ghaedi, Asfaram, Goudarzi, Hajati, Soylak, Agarwal, Gupta (bib13) 2016; 34 Annadurai, Juang, Lee (bib2) 2002; 92 Khataee, Vafaei, Jannatkhah (bib21) 2013; 83 Cheriaa, Khaireddine, Rouabhia, Bakhrouf (bib9) 2012; 1 El Haddad (10.1016/j.ecoenv.2017.01.043_bib15) 2013; 14 Asfaram (10.1016/j.ecoenv.2017.01.043_bib3) 2016; 6 Azad (10.1016/j.ecoenv.2017.01.043_bib5) 2016; 6 Regti (10.1016/j.ecoenv.2017.01.043_bib28) 2017; 130 Basiri Parsa (10.1016/j.ecoenv.2017.01.043_bib6) 2013; 19 Bekçi (10.1016/j.ecoenv.2017.01.043_bib7) 2009; 161 Reddy (10.1016/j.ecoenv.2017.01.043_bib27) 2012; 203–204 Asfaram (10.1016/j.ecoenv.2017.01.043_bib4) 2015; 53 Annadurai (10.1016/j.ecoenv.2017.01.043_bib2) 2002; 92 Witek-Krowiak (10.1016/j.ecoenv.2017.01.043_bib33) 2011; 171 Wang (10.1016/j.ecoenv.2017.01.043_bib32) 2008; 43 Liu (10.1016/j.ecoenv.2017.01.043_bib26) 2015; 3 Zinjarde (10.1016/j.ecoenv.2017.01.043_bib35) 2014; 32 Ali (10.1016/j.ecoenv.2017.01.043_bib1) 2008; 1 Deniz (10.1016/j.ecoenv.2017.01.043_bib12) 2013; 33 Khataee (10.1016/j.ecoenv.2017.01.043_bib21) 2013; 83 Cheriaa (10.1016/j.ecoenv.2017.01.043_bib9) 2012; 1 El Haddad (10.1016/j.ecoenv.2017.01.043_bib17) 2014; 45 Kousha (10.1016/j.ecoenv.2017.01.043_bib23) 2013; 44 Slimani (10.1016/j.ecoenv.2017.01.043_bib30) 2014; 45 Dil (10.1016/j.ecoenv.2017.01.043_bib13) 2016; 34 Ho (10.1016/j.ecoenv.2017.01.043_bib20) 2006; 136 Dogan (10.1016/j.ecoenv.2017.01.043_bib14) 2008; 192 Godbole (10.1016/j.ecoenv.2017.01.043_bib19) 2006; 65 Belala (10.1016/j.ecoenv.2017.01.043_bib8) 2011; 271 El Haddad (10.1016/j.ecoenv.2017.01.043_bib16) 2012; 3 Langmuir (10.1016/j.ecoenv.2017.01.043_bib25) 1918; 40 Zeinali (10.1016/j.ecoenv.2017.01.043_bib34) 2014; 20 Khattri (10.1016/j.ecoenv.2017.01.043_bib22) 2009; 167 Lagergren (10.1016/j.ecoenv.2017.01.043_bib24) 1898; 24 Senthil Kumar (10.1016/j.ecoenv.2017.01.043_bib29) 2014; 33 Turabik (10.1016/j.ecoenv.2017.01.043_bib31) 2008; 158 Dasgupta (10.1016/j.ecoenv.2017.01.043_bib11) 2015; 121 Daneshvar (10.1016/j.ecoenv.2017.01.043_bib10) 2012; 195 Freundlich (10.1016/j.ecoenv.2017.01.043_bib18) 1906; 57 |
| References_xml | – volume: 40 start-page: 1361 year: 1918 end-page: 1403 ident: bib25 article-title: The adsorption of gases on plane surfaces of glass, mica and platinum publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 87 year: 2014 end-page: 98 ident: bib29 article-title: Adsorption of basic dye onto raw and surface-modified agricultural waste publication-title: Environ. Prog. Sustain. Energy – volume: 83 start-page: 33 year: 2013 end-page: 40 ident: bib21 article-title: Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: kinetic, isotherm and thermodynamic studies publication-title: Int. Biodeter. Biodegr. – volume: 130 start-page: 129 year: 2017 end-page: 136 ident: bib28 article-title: Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species publication-title: Microchem. J. – volume: 171 start-page: 976 year: 2011 end-page: 985 ident: bib33 article-title: Analysis of influence of process conditions on kinetics of malachite green biosorption onto beech sawdust publication-title: Chem. Eng. J. – volume: 65 start-page: 440 year: 2006 end-page: 442 ident: bib19 article-title: Removal of malachite green from aqueous solutions using immobilised Saccharomyces cerevisiae publication-title: J. Sci. Ind. Res. – volume: 32 start-page: 920 year: 2014 end-page: 933 ident: bib35 article-title: Yarrowia lipolytica and pollutants: interactions and applications publication-title: Biotechnol. Adv. – volume: 192 start-page: 141 year: 2008 end-page: 153 ident: bib14 article-title: Biosorption of methylene blue from aqueous solutions by hazelnut shells: equilibrium, parameters and isotherms publication-title: Water Air Soil Pollut. – volume: 14 start-page: 51 year: 2013 end-page: 59 ident: bib15 article-title: Removal of two textile dyes from aqueous solutions onto calcined bones publication-title: J. Assoc. Arab. Univ. Basic Appl. Sci. – volume: 24 start-page: 1 year: 1898 end-page: 39 ident: bib24 article-title: About the theory of so-called adsorption of soluble substances publication-title: K. Sven. Vetensk. Handl. – volume: 3 start-page: 432 year: 2015 end-page: 442 ident: bib26 article-title: Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent publication-title: ACS Sustain. Chem. Eng. – volume: 20 start-page: 3550 year: 2014 end-page: 3558 ident: bib34 article-title: Competitive adsorption of methylene blue and brilliant green onto graphite oxide nano particle following: derivative spectrophotometric and principal component-artificial neural network model methods for their simultaneous determination publication-title: J. Ind. Eng. Chem. – volume: 45 start-page: 1578 year: 2014 end-page: 1587 ident: bib30 article-title: Calcined eggshells as a new biosorbent to remove basic dye from aqueous solutions: thermodynamics, kinetics, isotherms and error analysis publication-title: J. Taiwan Inst. Chem. Eng. – volume: 6 start-page: 19768 year: 2016 end-page: 19779 ident: bib5 article-title: Optimization of the process parameters for the adsorption of ternary dyes by Ni doped FeO(OH)-NWs-AC using response surface methodology and an artificial neural network publication-title: RSC Adv. – volume: 44 start-page: 291 year: 2013 end-page: 294 ident: bib23 article-title: Optimization of malachite green biosorption by green microalgae—Scenedesmus quadricauda and Chlorella vulgaris: application of response surface methodology publication-title: J. Taiwan Inst. Chem. Eng. – volume: 158 start-page: 52 year: 2008 end-page: 64 ident: bib31 article-title: Adsorption of basic dyes from single and binary component systems onto bentonite: simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric analysis method publication-title: J. Hazard. Mater. – volume: 53 start-page: 80 year: 2015 end-page: 91 ident: bib4 article-title: Rapid removal of Auramine-O and Methylene blue by ZnS: Cu nanoparticles loaded on activated carbon: a response surface methodology approach publication-title: J. Taiwan Inst. Chem. Eng. – volume: 33 start-page: 2821 year: 2013 end-page: 2826 ident: bib12 article-title: Dye removal by almond shell residues: studies on biosorption performance and process design publication-title: Mater. Sci. Eng. C – volume: 121 start-page: 271 year: 2015 end-page: 278 ident: bib11 article-title: Response surface-optimized removal of Reactive Red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration publication-title: Ecotoxicol. Environ. Saf. – volume: 92 start-page: 263 year: 2002 end-page: 274 ident: bib2 article-title: Use of cellulose-based wastes for adsorption of dyes from aqueous solutions publication-title: J. Hazard. Mater. – volume: 271 start-page: 80 year: 2011 end-page: 87 ident: bib8 article-title: Biosorption of basic dye from aqueous solutions by date stones and palm-trees waste: kinetic, equilibrium and thermodynamic studies publication-title: Desalination – volume: 1 start-page: 1 year: 2012 end-page: 9 ident: bib9 article-title: Removal of triphenylmethane dyes by bacterial consortium publication-title: Sci. World J. – volume: 161 start-page: 1454 year: 2009 end-page: 1460 ident: bib7 article-title: Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea publication-title: J. Hazard. Mater. – volume: 57 start-page: 1100 year: 1906 end-page: 1107 ident: bib18 article-title: Over the adsorption in solution publication-title: J. Phys. Chem. – volume: 19 start-page: 1350 year: 2013 end-page: 1355 ident: bib6 article-title: Modeling and optimizing of electrochemical oxidation of C.I. Reactive Orange 7 on the Ti/Sb–SnO publication-title: J. Ind. Eng. Chem. – volume: 1 start-page: 143 year: 2008 end-page: 150 ident: bib1 article-title: Biosorption of crystal violet from water on leaf biomass of Calotropis procera publication-title: J. Environ. Sci. Technol. – volume: 6 start-page: 23599 year: 2016 end-page: 23610 ident: bib3 article-title: Biosorption of Zn publication-title: RSC Adv. – volume: 167 start-page: 1089 year: 2009 end-page: 1094 ident: bib22 article-title: Removal of malachite green from dye wastewater using neem sawdust by adsorption publication-title: J. Hazard. Mater. – volume: 45 start-page: 533 year: 2014 end-page: 540 ident: bib17 article-title: Calcined mussel shells as a new and eco-friendly biosorbent to remove textile dyes from aqueous solutions publication-title: J. Taiwan Inst. Chem. Eng. – volume: 34 start-page: 186 year: 2016 end-page: 197 ident: bib13 article-title: Modeling of quaternary dyes adsorption onto ZnO–NR–AC artificial neural network: analysis by derivative spectrophotometry publication-title: J. Ind. Eng. Chem. – volume: 3 start-page: 1019 year: 2012 end-page: 1026 ident: bib16 article-title: Adsorptive removal of reactive Yellow 84 dye from aqueous solutions onto animal bone meal publication-title: J. Mater. Environ. Sci. – volume: 136 start-page: 681 year: 2006 end-page: 689 ident: bib20 article-title: Review of second-order models for adsorption systems publication-title: J. Hazard. Mater. – volume: 43 start-page: 3712 year: 2008 end-page: 3731 ident: bib32 article-title: Comparison of basic dye crystal violet removal from aqueous solution by low-cost biosorbents publication-title: Sep. Sci. Technol. – volume: 195 start-page: 297 year: 2012 end-page: 306 ident: bib10 article-title: Biosorption of three acid dyes by the brown macroalga Stoechospermum marginatum: isotherm, kinetic and thermodynamic studies publication-title: Chem. Eng. J. – volume: 203–204 start-page: 118 year: 2012 end-page: 127 ident: bib27 article-title: The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium publication-title: J. Hazard. Mater. – volume: 34 start-page: 186 year: 2016 ident: 10.1016/j.ecoenv.2017.01.043_bib13 article-title: Modeling of quaternary dyes adsorption onto ZnO–NR–AC artificial neural network: analysis by derivative spectrophotometry publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.11.010 – volume: 1 start-page: 1 year: 2012 ident: 10.1016/j.ecoenv.2017.01.043_bib9 article-title: Removal of triphenylmethane dyes by bacterial consortium publication-title: Sci. World J. doi: 10.1100/2012/512454 – volume: 130 start-page: 129 year: 2017 ident: 10.1016/j.ecoenv.2017.01.043_bib28 article-title: Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species publication-title: Microchem. J. doi: 10.1016/j.microc.2016.08.012 – volume: 65 start-page: 440 year: 2006 ident: 10.1016/j.ecoenv.2017.01.043_bib19 article-title: Removal of malachite green from aqueous solutions using immobilised Saccharomyces cerevisiae publication-title: J. Sci. Ind. Res. – volume: 3 start-page: 432 year: 2015 ident: 10.1016/j.ecoenv.2017.01.043_bib26 article-title: Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc500848m – volume: 6 start-page: 19768 year: 2016 ident: 10.1016/j.ecoenv.2017.01.043_bib5 article-title: Optimization of the process parameters for the adsorption of ternary dyes by Ni doped FeO(OH)-NWs-AC using response surface methodology and an artificial neural network publication-title: RSC Adv. doi: 10.1039/C5RA26036A – volume: 57 start-page: 1100 year: 1906 ident: 10.1016/j.ecoenv.2017.01.043_bib18 article-title: Over the adsorption in solution publication-title: J. Phys. Chem. – volume: 83 start-page: 33 year: 2013 ident: 10.1016/j.ecoenv.2017.01.043_bib21 article-title: Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: kinetic, isotherm and thermodynamic studies publication-title: Int. Biodeter. Biodegr. doi: 10.1016/j.ibiod.2013.04.004 – volume: 3 start-page: 1019 year: 2012 ident: 10.1016/j.ecoenv.2017.01.043_bib16 article-title: Adsorptive removal of reactive Yellow 84 dye from aqueous solutions onto animal bone meal publication-title: J. Mater. Environ. Sci. – volume: 14 start-page: 51 year: 2013 ident: 10.1016/j.ecoenv.2017.01.043_bib15 article-title: Removal of two textile dyes from aqueous solutions onto calcined bones publication-title: J. Assoc. Arab. Univ. Basic Appl. Sci. – volume: 1 start-page: 143 year: 2008 ident: 10.1016/j.ecoenv.2017.01.043_bib1 article-title: Biosorption of crystal violet from water on leaf biomass of Calotropis procera publication-title: J. Environ. Sci. Technol. doi: 10.3923/jest.2008.143.150 – volume: 136 start-page: 681 year: 2006 ident: 10.1016/j.ecoenv.2017.01.043_bib20 article-title: Review of second-order models for adsorption systems publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2005.12.043 – volume: 6 start-page: 23599 year: 2016 ident: 10.1016/j.ecoenv.2017.01.043_bib3 article-title: Biosorption of Zn2+, Ni2+ and Co2+ from water samples onto Yarrowia lipolytica ISF7 using a response surface methodology, and analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) publication-title: RSC Adv. doi: 10.1039/C5RA27170C – volume: 44 start-page: 291 year: 2013 ident: 10.1016/j.ecoenv.2017.01.043_bib23 article-title: Optimization of malachite green biosorption by green microalgae—Scenedesmus quadricauda and Chlorella vulgaris: application of response surface methodology publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2012.10.009 – volume: 24 start-page: 1 year: 1898 ident: 10.1016/j.ecoenv.2017.01.043_bib24 article-title: About the theory of so-called adsorption of soluble substances publication-title: K. Sven. Vetensk. Handl. – volume: 158 start-page: 52 year: 2008 ident: 10.1016/j.ecoenv.2017.01.043_bib31 article-title: Adsorption of basic dyes from single and binary component systems onto bentonite: simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric analysis method publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.01.033 – volume: 33 start-page: 87 year: 2014 ident: 10.1016/j.ecoenv.2017.01.043_bib29 article-title: Adsorption of basic dye onto raw and surface-modified agricultural waste publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.11756 – volume: 43 start-page: 3712 year: 2008 ident: 10.1016/j.ecoenv.2017.01.043_bib32 article-title: Comparison of basic dye crystal violet removal from aqueous solution by low-cost biosorbents publication-title: Sep. Sci. Technol. doi: 10.1080/01496390802222640 – volume: 271 start-page: 80 year: 2011 ident: 10.1016/j.ecoenv.2017.01.043_bib8 article-title: Biosorption of basic dye from aqueous solutions by date stones and palm-trees waste: kinetic, equilibrium and thermodynamic studies publication-title: Desalination doi: 10.1016/j.desal.2010.12.009 – volume: 53 start-page: 80 year: 2015 ident: 10.1016/j.ecoenv.2017.01.043_bib4 article-title: Rapid removal of Auramine-O and Methylene blue by ZnS: Cu nanoparticles loaded on activated carbon: a response surface methodology approach publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2015.02.026 – volume: 20 start-page: 3550 year: 2014 ident: 10.1016/j.ecoenv.2017.01.043_bib34 article-title: Competitive adsorption of methylene blue and brilliant green onto graphite oxide nano particle following: derivative spectrophotometric and principal component-artificial neural network model methods for their simultaneous determination publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2013.12.048 – volume: 92 start-page: 263 year: 2002 ident: 10.1016/j.ecoenv.2017.01.043_bib2 article-title: Use of cellulose-based wastes for adsorption of dyes from aqueous solutions publication-title: J. Hazard. Mater. doi: 10.1016/S0304-3894(02)00017-1 – volume: 45 start-page: 1578 year: 2014 ident: 10.1016/j.ecoenv.2017.01.043_bib30 article-title: Calcined eggshells as a new biosorbent to remove basic dye from aqueous solutions: thermodynamics, kinetics, isotherms and error analysis publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2013.10.009 – volume: 195 start-page: 297 year: 2012 ident: 10.1016/j.ecoenv.2017.01.043_bib10 article-title: Biosorption of three acid dyes by the brown macroalga Stoechospermum marginatum: isotherm, kinetic and thermodynamic studies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.04.074 – volume: 121 start-page: 271 year: 2015 ident: 10.1016/j.ecoenv.2017.01.043_bib11 article-title: Response surface-optimized removal of Reactive Red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2014.12.041 – volume: 33 start-page: 2821 year: 2013 ident: 10.1016/j.ecoenv.2017.01.043_bib12 article-title: Dye removal by almond shell residues: studies on biosorption performance and process design publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2013.03.009 – volume: 45 start-page: 533 year: 2014 ident: 10.1016/j.ecoenv.2017.01.043_bib17 article-title: Calcined mussel shells as a new and eco-friendly biosorbent to remove textile dyes from aqueous solutions publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2013.05.002 – volume: 40 start-page: 1361 year: 1918 ident: 10.1016/j.ecoenv.2017.01.043_bib25 article-title: The adsorption of gases on plane surfaces of glass, mica and platinum publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02242a004 – volume: 203–204 start-page: 118 year: 2012 ident: 10.1016/j.ecoenv.2017.01.043_bib27 article-title: The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.11.083 – volume: 171 start-page: 976 year: 2011 ident: 10.1016/j.ecoenv.2017.01.043_bib33 article-title: Analysis of influence of process conditions on kinetics of malachite green biosorption onto beech sawdust publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.04.048 – volume: 167 start-page: 1089 year: 2009 ident: 10.1016/j.ecoenv.2017.01.043_bib22 article-title: Removal of malachite green from dye wastewater using neem sawdust by adsorption publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.01.101 – volume: 192 start-page: 141 year: 2008 ident: 10.1016/j.ecoenv.2017.01.043_bib14 article-title: Biosorption of methylene blue from aqueous solutions by hazelnut shells: equilibrium, parameters and isotherms publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-008-9641-z – volume: 32 start-page: 920 year: 2014 ident: 10.1016/j.ecoenv.2017.01.043_bib35 article-title: Yarrowia lipolytica and pollutants: interactions and applications publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2014.04.008 – volume: 19 start-page: 1350 year: 2013 ident: 10.1016/j.ecoenv.2017.01.043_bib6 article-title: Modeling and optimizing of electrochemical oxidation of C.I. Reactive Orange 7 on the Ti/Sb–SnO2 as anode via response surface methodology publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2012.12.039 – volume: 161 start-page: 1454 year: 2009 ident: 10.1016/j.ecoenv.2017.01.043_bib7 article-title: Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.04.125 |
| SSID | ssj0003055 |
| Score | 2.4820216 |
| Snippet | Simultaneous biosorption of malachite green (MG) and crystal violet (CV) on biosorbent Yarrowia lipolytica ISF7 was studied. An appropriate derivative... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 219 |
| SubjectTerms | Adsorption aqueous solutions Binary solutions Biomass biosorbents Biosorption Coloring Agents - chemistry correlation Crystal violet equations experimental design Fourier transform infrared spectroscopy gentian violet Gentian Violet - analysis Gentian Violet - chemistry Hydrogen-Ion Concentration Kinetics Malachite green Microscopy, Electron, Scanning mixing Models, Chemical prediction Research Design Response surface methodology Rosaniline Dyes - analysis Rosaniline Dyes - chemistry scanning electron microscopy Solutions - chemistry sorption isotherms Spectrophotometry - methods Spectroscopy, Fourier Transform Infrared system optimization Temperature Thermodynamics Yarrowia Yarrowia lipolytica Yarrowia lipolytica ISF7 |
| Title | Application of experimental design and derivative spectrophotometry methods in optimization and analysis of biosorption of binary mixtures of basic dyes from aqueous solutions |
| URI | https://dx.doi.org/10.1016/j.ecoenv.2017.01.043 https://www.ncbi.nlm.nih.gov/pubmed/28152403 https://www.proquest.com/docview/1865518142 https://www.proquest.com/docview/2000300349 |
| Volume | 139 |
| WOSCitedRecordID | wos000396640600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2414 dateEnd: 20201130 omitProxy: false ssIdentifier: ssj0003055 issn: 0147-6513 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSQkhGDcymUyEm8oqHHcXB4rVAY8TDwMqW-R64vaqU2qtFTd_hS_jzfOsZ2k3VTGHniJWjdxnZwvPsf2-T4T8t4wEWrF40CkcRxwEesgDUMTJCqWoeEyjGNlN5tIzs7S0Sj73un8rrkw61lSFOlmky3-q6mhDIyN1Nk7mLupFArgMxgdjmB2OP6T4QftkjRGgjsS_srma9gFAwWla6f6bdmWVbmYlKtyrlfVpd9X2qbKltCnzD1Z0yu7tjIm42m5LKtF_V9jR-6dTze4LuHOEACDD-oSvlkmiwA_hFm3zTPYWRqQ0ILNVLa6UFs8PCS2CONlSyxGl0ZUDs-DSiybee3TiQCPbGd69aQCiHvnbH_SV3oGbbKTSac4rp8Dwq5E6yEWuo7noQeV5fasCHjaJgexmShNgrjveK5NT-90k6711c7tMydRcMOjuMmNi49alnDLmAuYWJ1XJy61K-B9zbE26Y51Jt1F7mrJsZa8F-ZQywE5Ykk_gy76aPB1OPrWhBEoxebyb92N1LxPm5x4szX74qp94yYbP50_Jo_8wIcOHGCfkI4ujsn9obP1MXno5o-po8U9Jb-2YExLQ7dhTB2MKQCEtjCmN2BMPYzpFKrYgrG9sIYxVr4FY_cVYUxrGNsihDFFGFOEMfUwpg2Mn5Efn4fnn74EfnORQPKIrYIx72kYLalI8UwnkkEXIjD6TbnKpMp4X0SKSSF7fYPca4PaiyaTAhMPlOFx9JwcFmWhXxKaxjpJooiNIRrmIuuNY8M1y4xEfhwzskui2jS59Mr7uAHMLP8bMLokaK5aOOWZW85PaqvnPnp2UXEOUL7lync1SHJwLrhiKAp8iHmItHUYA3C2_xxmsYoyV13ywiGsaS9LYXjAe9GrO97La_KgfanfkMNV9VO_JffkejVdVifkIBmlJ_59-QP84Bdk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+experimental+design+and+derivative+spectrophotometry+methods+in+optimization+and+analysis+of+biosorption+of+binary+mixtures+of+basic+dyes+from+aqueous+solutions&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Asfaram%2C+Arash&rft.au=Ghaedi%2C+Mehrorang&rft.au=Ghezelbash%2C+Gholam+Reza&rft.au=Pepe%2C+Francesco&rft.date=2017-05-01&rft.issn=0147-6513&rft.volume=139&rft.spage=219&rft.epage=227&rft_id=info:doi/10.1016%2Fj.ecoenv.2017.01.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecoenv_2017_01_043 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |