Automatic voice onset time detection for unvoiced stops (/ p/,/ t/,/ k/) with application to accent classification
Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in Arslan and Hansen (1996, 1997), Voice Onset Time (VOT) can be used to classify mandarin, Turkish, German and American accented English. Our goal in this study is to...
Saved in:
| Published in: | Speech communication Vol. 52; no. 10; pp. 777 - 789 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.10.2010
Elsevier |
| Subjects: | |
| ISSN: | 0167-6393, 1872-7182 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in
Arslan and Hansen (1996, 1997), Voice Onset Time (VOT) can be used to classify mandarin, Turkish, German and American accented English. Our goal in this study is to develop an automatic system that classifies accents using VOT in unvoiced stops
1
A preliminary version of some of the work in this study was presented at the IEEE NORSIG-04 Symposium in
Das (Gray) and Hansen (2004).
1
. VOT is an important temporal feature which is often overlooked in speech perception, speech recognition, as well as accent detection. Fixed length frame-based speech processing inherently ignores VOT. In this paper, a more effective VOT detection scheme using the non-linear energy tracking algorithm Teager Energy Operator (TEO), across a sub-frequency band partition for unvoiced stops (/
p/, /
t/ and /
k/), is introduced. The proposed VOT detection algorithm also incorporates spectral differences in the Voice Onset Region (VOR) and the succeeding vowel of a given stop-vowel sequence to classify speakers having accents due to different ethnic origin. The spectral cues are enhanced using one of the four types of feature parameter extractions – Discrete Mellin Transform (DMT), Discrete Mellin Fourier Transform (DMFT) and Discrete Wavelet Transform using the lowest and the highest frequency resolutions (DWTlfr and DWThfr). A Hidden Markov Model (HMM) classifier is employed with these extracted parameters and applied to the problem of accent classification. Three different language groups (American English, Chinese, and Indian) are used from the CU-Accent database. The VOT is detected with less than 10% error when compared to the manual detected VOT with a success rate of 79.90%, 87.32% and 47.73% for English, Chinese and Indian speakers (includes atypical cases for Indian case), respectively. It is noted that the DMT and DWTlfr features are good for parameterizing speech samples which exhibit substitution of succeeding vowel after the stop in accented speech. The successful accent classification rates of DMT and DWTlfr features are 66.13% and 71.67%, for /
p/ and /
t/ respectively, for pairwise accent detection. Alternatively, the DMFT feature works on all accent sensitive words considered, with a success rate of 70.63%. This study shows that effective VOT detection can be achieved using an integrated TEO processing with spectral difference analysis in the VOR that can be employed for accent classification. |
|---|---|
| AbstractList | Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in (Arslan and Hansen, 1996) and (Arslan and Hansen, 1997), Voice Onset Time (VOT) can be used to classify mandarin, Turkish, German and American accented English. Our goal in this study is to develop an automatic system that classifies accents using VOT in unvoiced stops. VOT is an important temporal feature which is often overlooked in speech perception, speech recognition, as well as accent detection. Fixed length frame-based speech processing inherently ignores VOT. In this paper, a more effective VOT detection scheme using the non-linear energy tracking algorithm Teager Energy Operator (TEO), across a sub-frequency band partition for unvoiced stops (/p/, /t/ and /k/), is introduced. The proposed VOT detection algorithm also incorporates spectral differences in the Voice Onset Region (VOR) and the succeeding vowel of a given stop-vowel sequence to classify speakers having accents due to different ethnic origin. The spectral cues are enhanced using one of the four types of feature parameter extractions - Discrete Mellin Transform (DMT), Discrete Mellin Fourier Transform (DMFT) and Discrete Wavelet Transform using the lowest and the highest frequency resolutions (DWTlfr and DWThfr). A Hidden Markov Model (HMM) classifier is employed with these extracted parameters and applied to the problem of accent classification. Three different language groups (American English, Chinese, and Indian) are used from the CU-Accent database. The VOT is detected with less than 10% error when compared to the manual detected VOT with a success rate of 79.90%, 87.32% and 47.73% for English, Chinese and Indian speakers (includes atypical cases for Indian case), respectively. It is noted that the DMT and DWTlfr features are good for parameterizing speech samples which exhibit substitution of succeeding vowel after the stop in accented speech. The successful accent classification rates of DMT and DWTlfr features are 66.13% and 71.67%, for /p/ and /t/ respectively, for pairwise accent detection. Alternatively, the DMFT feature works on all accent sensitive words considered, with a success rate of 70.63%. This study shows that effective VOT detection can be achieved using an integrated TEO processing with spectral difference analysis in the VOR that can be employed for accent classification. [Copyright Elsevier B.V.] Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in (Arslan and Hansen, 1996) and (Arslan and Hansen, 1997), Voice Onset Time (VOT) can be used to classify mandarin, Turkish, German and American accented English. Our goal in this study is to develop an automatic system that classifies accents using VOT in unvoiced stops super(1). VOT is an important temporal feature which is often overlooked in speech perception, speech recognition, as well as accent detection. Fixed length frame-based speech processing inherently ignores VOT. In this paper, a more effective VOT detection scheme using the non-linear energy tracking algorithm Teager Energy Operator (TEO), across a sub-frequency band partition for unvoiced stops (/p/, /t/ and /k/), is introduced. The proposed VOT detection algorithm also incorporates spectral differences in the Voice Onset Region (VOR) and the succeeding vowel of a given stop-vowel sequence to classify speakers having accents due to different ethnic origin. The spectral cues are enhanced using one of the four types of feature parameter extractions - Discrete Mellin Transform (DMT), Discrete Mellin Fourier Transform (DMFT) and Discrete Wavelet Transform using the lowest and the highest frequency resolutions (DWTlfr and DWThfr). A Hidden Markov Model (HMM) classifier is employed with these extracted parameters and applied to the problem of accent classification. Three different language groups (American English, Chinese, and Indian) are used from the CU-Accent database. The VOT is detected with less than 10% error when compared to the manual detected VOT with a success rate of 79.90%, 87.32% and 47.73% for English, Chinese and Indian speakers (includes atypical cases for Indian case), respectively. It is noted that the DMT and DWTlfr features are good for parameterizing speech samples which exhibit substitution of succeeding vowel after the stop in accented speech. The successful accent classification rates of DMT and DWTlfr features are 66.13% and 71.67%, for /p/ and /t/ respectively, for pairwise accent detection. Alternatively, the DMFT feature works on all accent sensitive words considered, with a success rate of 70.63%. This study shows that effective VOT detection can be achieved using an integrated TEO processing with spectral difference analysis in the VOR that can be employed for accent classification. Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in Arslan and Hansen (1996, 1997), Voice Onset Time (VOT) can be used to classify mandarin, Turkish, German and American accented English. Our goal in this study is to develop an automatic system that classifies accents using VOT in unvoiced stops 1 A preliminary version of some of the work in this study was presented at the IEEE NORSIG-04 Symposium in Das (Gray) and Hansen (2004). 1 . VOT is an important temporal feature which is often overlooked in speech perception, speech recognition, as well as accent detection. Fixed length frame-based speech processing inherently ignores VOT. In this paper, a more effective VOT detection scheme using the non-linear energy tracking algorithm Teager Energy Operator (TEO), across a sub-frequency band partition for unvoiced stops (/ p/, / t/ and / k/), is introduced. The proposed VOT detection algorithm also incorporates spectral differences in the Voice Onset Region (VOR) and the succeeding vowel of a given stop-vowel sequence to classify speakers having accents due to different ethnic origin. The spectral cues are enhanced using one of the four types of feature parameter extractions – Discrete Mellin Transform (DMT), Discrete Mellin Fourier Transform (DMFT) and Discrete Wavelet Transform using the lowest and the highest frequency resolutions (DWTlfr and DWThfr). A Hidden Markov Model (HMM) classifier is employed with these extracted parameters and applied to the problem of accent classification. Three different language groups (American English, Chinese, and Indian) are used from the CU-Accent database. The VOT is detected with less than 10% error when compared to the manual detected VOT with a success rate of 79.90%, 87.32% and 47.73% for English, Chinese and Indian speakers (includes atypical cases for Indian case), respectively. It is noted that the DMT and DWTlfr features are good for parameterizing speech samples which exhibit substitution of succeeding vowel after the stop in accented speech. The successful accent classification rates of DMT and DWTlfr features are 66.13% and 71.67%, for / p/ and / t/ respectively, for pairwise accent detection. Alternatively, the DMFT feature works on all accent sensitive words considered, with a success rate of 70.63%. This study shows that effective VOT detection can be achieved using an integrated TEO processing with spectral difference analysis in the VOR that can be employed for accent classification. |
| Author | Gray, Sharmistha S. Hansen, John H.L. Kim, Wooil |
| Author_xml | – sequence: 1 givenname: John H.L. surname: Hansen fullname: Hansen, John H.L. email: john.hansen@utdallas.edu – sequence: 2 givenname: Sharmistha S. surname: Gray fullname: Gray, Sharmistha S. – sequence: 3 givenname: Wooil surname: Kim fullname: Kim, Wooil |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23088378$$DView record in Pascal Francis |
| BookMark | eNqFkUuLFDEURoOMYM_oP3CRjahgdd0kVamUC2EYfMGAG12HVB6Ytiopk_SI_970w40Le5MLuef7Fvdco6sQg0XoOYEtAcLb3TavVsdlS6F-Qb8F6B6hDREDbQYi6BXaVGxoOBvZE3Sd8w4qIQTdoHS7L3FRxWv8EL22OIZsCy5-sdjYYnXxMWAXE96HI2BwLnHN-FWL1_ZNi8vh-dG-xr98-Y7Vus5eq2OoRKy0tqFgPaucvTsvnqLHTs3ZPjvPG_Ttw_uvd5-a-y8fP9_d3je6Y7Q0ynEuwDlQPXUjGNIzSyY-8smosesHRh210BsyiYkM08DrTrFRdMYYUODYDXp56l1T_Lm3ucjFZ23nWQUb91kK3rGRU2CXyZ5ROjJ-mRx6QQgHAZV8cSZV1mp2SQXts1yTX1T6LSkDIdggKvf2xOkUc07WSe3L8U4lKT9LAvLgWO7kybE8OJbQy2qwhrt_wn_7L8TenWK2nv_B2ySz9jZUuT5V49JE__-CP38Iw9E |
| CODEN | SCOMDH |
| CitedBy_id | crossref_primary_10_1177_0023830920936321 crossref_primary_10_1016_j_proeng_2013_09_111 crossref_primary_10_1109_ACCESS_2020_3020506 crossref_primary_10_1016_j_cognition_2016_01_002 crossref_primary_10_1016_j_specom_2024_103168 crossref_primary_10_1121_1_4763995 crossref_primary_10_1088_1742_6596_1738_1_012111 crossref_primary_10_1121_1_4885768 crossref_primary_10_1121_10_0026235 crossref_primary_10_1134_S1063771024602838 crossref_primary_10_1016_j_specom_2011_06_003 crossref_primary_10_1109_TASL_2012_2191284 crossref_primary_10_1109_TASLP_2014_2329734 crossref_primary_10_1016_j_wocn_2017_05_002 crossref_primary_10_1121_1_3592233 crossref_primary_10_1016_j_wocn_2012_11_001 crossref_primary_10_1109_TASL_2012_2201474 crossref_primary_10_1007_s10772_018_9505_x |
| Cites_doi | 10.1111/j.0083-2919.2004.00376.x 10.1109/ICASSP.2002.5743826 10.1117/12.7976683 10.1109/97.889636 10.1016/j.specom.2009.06.003 10.1109/ASRU.2005.1566480 10.1109/10.661155 10.21437/ICSLP.1996-442 10.1177/13670069020060030401 10.1121/1.1536169 10.1109/TASSP.1980.1163453 10.1121/1.1528172 10.1364/AO.36.003035 10.1109/TPAMI.1983.4767371 10.1016/S0167-6393(00)00100-X 10.1109/34.387491 10.1121/1.4782392 10.1364/AO.29.000704 10.21437/Interspeech.2006-249 10.21437/Eurospeech.1997-611 10.1121/1.419608 10.1109/ICASSP.2003.1198820 10.1121/1.390775 10.1121/1.410601 10.1121/1.4744788 10.1109/TASL.2008.2010884 10.1109/89.905995 10.1121/1.396876 10.1364/JOSAA.3.000885 10.1159/000068347 10.1109/78.277799 10.1177/002383098703000307 10.1016/0167-6393(96)00024-6 10.1080/07908310008666590 10.1121/1.391256 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier B.V. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier B.V. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7T9 8BM 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.specom.2010.05.004 |
| DatabaseName | CrossRef Pascal-Francis Linguistics and Language Behavior Abstracts (LLBA) ComDisDome Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Linguistics and Language Behavior Abstracts (LLBA) ComDisDome Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Linguistics and Language Behavior Abstracts (LLBA) ComDisDome Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Languages & Literatures Social Welfare & Social Work Psychology Applied Sciences |
| EISSN | 1872-7182 |
| EndPage | 789 |
| ExternalDocumentID | 23088378 10_1016_j_specom_2010_05_004 S0167639310000956 |
| GroupedDBID | --K --M -~X .DC .~1 07C 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN 9JO AACTN AADFP AAEDT AAEDW AAFJI AAGJA AAGJQ AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABIVO ABJNI ABMAC ABMMH ABOYX ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACXNI ACZNC ADBBV ADEZE ADIYS ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFYLN AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OKEIE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSB SSO SST SSV SSY SSZ T5K WUQ XFK XJE ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7T9 8BM 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c432t-af6680ff0a52f90d153e1b696bda945732f2e05d1b8b17b76b69a3984ddd0a0f3 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000280917000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-6393 |
| IngestDate | Sun Sep 28 09:39:59 EDT 2025 Sun Sep 28 09:23:11 EDT 2025 Wed Oct 01 13:31:05 EDT 2025 Mon Jul 21 09:16:58 EDT 2025 Sat Nov 29 08:20:01 EST 2025 Tue Nov 18 21:57:36 EST 2025 Fri Feb 23 02:28:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Voice Onset Region (VOR) Teager Energy Operator (TEO) Voice Onset Time (VOT) Accent classification Speech analysis Discrete Fourier transformation German Verbal perception Parameter extraction Frequency band Vowel Automatic system Phoneme Mellin transformation Target tracking Probabilistic approach Discrete transformation Acoustic signal detection Discrete wavelet transforms Algorithm Signal classification English Onset time Vocal signal Speech recognition Signal processing Chinese Feature extraction Signal analysis Speech processing |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c432t-af6680ff0a52f90d153e1b696bda945732f2e05d1b8b17b76b69a3984ddd0a0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PQID | 758116080 |
| PQPubID | 23478 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_864396203 proquest_miscellaneous_853229363 proquest_miscellaneous_758116080 pascalfrancis_primary_23088378 crossref_citationtrail_10_1016_j_specom_2010_05_004 crossref_primary_10_1016_j_specom_2010_05_004 elsevier_sciencedirect_doi_10_1016_j_specom_2010_05_004 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-10-01 |
| PublicationDateYYYYMMDD | 2010-10-01 |
| PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Speech communication |
| PublicationYear | 2010 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Arslan, Hansen (bib3) 1997; 102 Sundaram, N. , Smolenski, B.Y. , Yantorno, R., 2003. Instantaneous Nonlinear Teager Energy Operator for Robust Voiced–Unvoiced Speech Classification Levkovitz, Oron, Tur (bib30) 1997; 36 Rosner (bib39) 1984; 75 Stouten, Van hamme (bib44) 2009; 51 Kazemzadeh, A., Tepperman, J., Silva, J., You, H., Lee, S., Alwan, A., Narayanan, S., 2006. Automatic detection of voice onset time contrasts for use in pronunciation assessment. In: Interspeech-2006. NIST/SEMATECH, 2005. e-Handbook of Statistical Methods Deller, Hansen, Proakis (bib12) 1999 McGory, Frieda, Nissen, Fox (bib35) 2001; 109 Gray, S.S., 2005. Ph.D. Thesis: Speech Science Modeling for Automatic Accent and Dialect Classification. Department of Speech, Language and Hearing Sciences, University of Colorado, Boulder. Johnson, Wilson (bib24) 2002; 6 Arslan, Hansen (bib2) 1996; 18 Sheng, Duvernoy (bib41) 1986 Major (bib33) 2001 Teager (bib46) 1980; 28 . now served at Hansen, Gavidia-Ceballos, Kaiser (bib22) 1998; 45 Chen, Defrise, Deconinck (bib6) 1994; 16 Zwicke, Kiss (bib50) 1983; 5 Sheng, Arsenault (bib40) 1986 Mahadeva Prasanna, Sandeep Reddy, Krishnamoorthy (bib32) 2009; 17 Chan, Li (bib8) 2000; 13 Comrie (bib9) 1990 Ladefoged (bib29) 1993 Kumpf, K. King, R.W., 1996. Automatic accent classification of foreign accented Australian English speech. In: ICSLP-96, pp. 1740–1743. Gray, S.S., Hansen, J.H.L., 2005. An integrated approach to the detection and classification of accents/dialects for a spoken document retrieval system. In: IEEE Automatic Speech Recognition and Understanding Workshop. Allen, Miller, DeSteno (bib1) 2003; 113 Cairns, Hansen (bib7) 1994; 96 Torrence, C., Compo, G.P., 1998. A Practical Guide to Wavelet Analysis, Program in Atmospheric and Oceanic Sciences. University of Colorado, Boulder, Colorado. Berkling (bib5) 2002; 35 Ghesquiere, P.J., Compernolle, D.V., 2002. Flemish accent identification based on formant and duration features. In: ICASSP-02, pp. 749–752. Steinschneider, Volkov, Noh, Garell, Howard (bib43) 1999 Francis, Ciocca, Yu (bib16) 2003; 113 Esposito (bib13) 2002; 59 Grover, Jamieson, Dobrovolsky (bib21) 1987; 30 Das (Gray), S.S, Hansen, J.H.L., 2004. Detection of Voice Onset Time (VOT) for Unvoiced Stops (/p/, /t/, /k/) Using Teager Energy Operator (TEO) for Automatic Detection of Accented English. In: IEEE NORSIG-04: Nordic Signal Processing Symposium, pp. 344–347. Hoshino, A. Yasuda, A., 2003. The evaluation of Chinese aspiration sounds uttered by Japanese students using VOT and power. In: IEEE ICASSP-03, pp. 472–475. Flege (bib15) 1988; 84 Bahoura, Rouat (bib4) 2001; 8 Kaiser, J.F., 1990. On a Simple Algorithm to Calculate the ‘Energy’ of a Signal. In: IEEE ICASSP-90, pp. 381–384. Flege (bib14) 1984; 76 Peng, Ann (bib37) 2004; 23 retrieved 2005-05-08>. Kumpf, K. King, R.W., 1997. Foreign speaker accent classification using phoneme-dependent accent discrimination models and comparison with human perception benchmarks. In: EUROSPEECH-97. Sheng, Lejeune, Arsenault (bib42) 1988 Poser, W.J., 2004. Language Log post of 2004-03-13T16:21. Maragos, Kaiser, Quatieri (bib34) 1993; 41 CU-Accent, 2010. Formally at Teager, Teager (bib47) 1983 Fang, Häusler (bib17) 1990; 29 Zhou, Hansen, Kaiser (bib49) 2001; 9 Lopez-Bascuas, Rosner, Garcia-Albea (bib31) 2004; 115 Berkling (10.1016/j.specom.2010.05.004_bib5) 2002; 35 Deller (10.1016/j.specom.2010.05.004_bib12) 1999 Flege (10.1016/j.specom.2010.05.004_bib14) 1984; 76 Chan (10.1016/j.specom.2010.05.004_bib8) 2000; 13 Sheng (10.1016/j.specom.2010.05.004_bib40) 1986 Ladefoged (10.1016/j.specom.2010.05.004_bib29) 1993 10.1016/j.specom.2010.05.004_bib20 10.1016/j.specom.2010.05.004_bib26 10.1016/j.specom.2010.05.004_bib25 10.1016/j.specom.2010.05.004_bib23 Mahadeva Prasanna (10.1016/j.specom.2010.05.004_bib32) 2009; 17 Arslan (10.1016/j.specom.2010.05.004_bib3) 1997; 102 10.1016/j.specom.2010.05.004_bib28 10.1016/j.specom.2010.05.004_bib27 Hansen (10.1016/j.specom.2010.05.004_bib22) 1998; 45 Sheng (10.1016/j.specom.2010.05.004_bib41) 1986 Lopez-Bascuas (10.1016/j.specom.2010.05.004_bib31) 2004; 115 Esposito (10.1016/j.specom.2010.05.004_bib13) 2002; 59 Steinschneider (10.1016/j.specom.2010.05.004_bib43) 1999 Levkovitz (10.1016/j.specom.2010.05.004_bib30) 1997; 36 10.1016/j.specom.2010.05.004_bib36 Francis (10.1016/j.specom.2010.05.004_bib16) 2003; 113 Zhou (10.1016/j.specom.2010.05.004_bib49) 2001; 9 Bahoura (10.1016/j.specom.2010.05.004_bib4) 2001; 8 10.1016/j.specom.2010.05.004_bib38 Rosner (10.1016/j.specom.2010.05.004_bib39) 1984; 75 Sheng (10.1016/j.specom.2010.05.004_bib42) 1988 Flege (10.1016/j.specom.2010.05.004_bib15) 1988; 84 Zwicke (10.1016/j.specom.2010.05.004_bib50) 1983; 5 Teager (10.1016/j.specom.2010.05.004_bib47) 1983 Major (10.1016/j.specom.2010.05.004_bib33) 2001 McGory (10.1016/j.specom.2010.05.004_bib35) 2001; 109 Johnson (10.1016/j.specom.2010.05.004_bib24) 2002; 6 Peng (10.1016/j.specom.2010.05.004_bib37) 2004; 23 Teager (10.1016/j.specom.2010.05.004_bib46) 1980; 28 10.1016/j.specom.2010.05.004_bib48 Cairns (10.1016/j.specom.2010.05.004_bib7) 1994; 96 Allen (10.1016/j.specom.2010.05.004_bib1) 2003; 113 10.1016/j.specom.2010.05.004_bib45 Chen (10.1016/j.specom.2010.05.004_bib6) 1994; 16 Grover (10.1016/j.specom.2010.05.004_bib21) 1987; 30 Fang (10.1016/j.specom.2010.05.004_bib17) 1990; 29 Maragos (10.1016/j.specom.2010.05.004_bib34) 1993; 41 Arslan (10.1016/j.specom.2010.05.004_bib2) 1996; 18 10.1016/j.specom.2010.05.004_bib11 10.1016/j.specom.2010.05.004_bib10 10.1016/j.specom.2010.05.004_bib19 10.1016/j.specom.2010.05.004_bib18 Comrie (10.1016/j.specom.2010.05.004_bib9) 1990 Stouten (10.1016/j.specom.2010.05.004_bib44) 2009; 51 |
| References_xml | – reference: Kumpf, K. King, R.W., 1996. Automatic accent classification of foreign accented Australian English speech. In: ICSLP-96, pp. 1740–1743. – reference: Gray, S.S., Hansen, J.H.L., 2005. An integrated approach to the detection and classification of accents/dialects for a spoken document retrieval system. In: IEEE Automatic Speech Recognition and Understanding Workshop. – reference: Kaiser, J.F., 1990. On a Simple Algorithm to Calculate the ‘Energy’ of a Signal. In: IEEE ICASSP-90, pp. 381–384. – volume: 36 start-page: 3035 year: 1997 end-page: 3042 ident: bib30 article-title: Position-invariant, rotation-invariant, and scale-invariant process for binary image recognition publication-title: Appl. Optics – volume: 16 start-page: 1156 year: 1994 end-page: 1168 ident: bib6 article-title: Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 1999 ident: bib12 article-title: Discrete-Time Processing of Speech Signals – volume: 9 start-page: 201 year: 2001 end-page: 216 ident: bib49 article-title: Nonlinear feature based classification of speech under stress publication-title: IEEE Trans. Speech Audio Process. – reference: Hoshino, A. Yasuda, A., 2003. The evaluation of Chinese aspiration sounds uttered by Japanese students using VOT and power. In: IEEE ICASSP-03, pp. 472–475. – year: 2001 ident: bib33 article-title: Foreign Accent: The Ontogeny and Phylogeny of Second Language Phonology – year: 1988 ident: bib42 article-title: Frequency-domain Fourier-Mellin descriptors for invariant pattern recognition publication-title: Opt. Eng. – reference: Kumpf, K. King, R.W., 1997. Foreign speaker accent classification using phoneme-dependent accent discrimination models and comparison with human perception benchmarks. In: EUROSPEECH-97. – year: 1993 ident: bib29 article-title: A Course in Phonetics – volume: 35 start-page: 125 year: 2002 end-page: 138 ident: bib5 article-title: Scope, syllable core and periphery evaluation: Automatic syllabification and foreign accent identification publication-title: Speech Commun. – volume: 29 start-page: 704 year: 1990 end-page: 708 ident: bib17 article-title: Class of transforms invariant under shift, rotation, and scaling publication-title: Appl. Optics – reference: , retrieved 2005-05-08>. – reference: Ghesquiere, P.J., Compernolle, D.V., 2002. Flemish accent identification based on formant and duration features. In: ICASSP-02, pp. 749–752. – volume: 5 start-page: 191 year: 1983 end-page: 199 ident: bib50 article-title: A new implementation of the Mellin transform and its application to radar classification of ships publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 96 start-page: 3392 year: 1994 end-page: 3400 ident: bib7 article-title: Nonlinear analysis and detection of speech under stressed conditions publication-title: J. Acoust. Soc. Amer. – volume: 102 start-page: 28 year: 1997 end-page: 40 ident: bib3 article-title: A study of temporal features and frequency characteristics in American English foreign accent publication-title: J. Acoust. Soc. Amer. – start-page: 2346 year: 1999 end-page: 2357 ident: bib43 article-title: Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex publication-title: The Amer. Physiol. Soc. – volume: 113 start-page: 1025 year: 2003 end-page: 1032 ident: bib16 article-title: Accuracy and variability of acoustic measures of voicing onset publication-title: J. Acoust. Soc. Amer. – reference: Das (Gray), S.S, Hansen, J.H.L., 2004. Detection of Voice Onset Time (VOT) for Unvoiced Stops (/p/, /t/, /k/) Using Teager Energy Operator (TEO) for Automatic Detection of Accented English. In: IEEE NORSIG-04: Nordic Signal Processing Symposium, pp. 344–347. – reference: , now served at: – reference: . – volume: 18 start-page: 353 year: 1996 end-page: 367 ident: bib2 article-title: Language accent classification in American English publication-title: Speech Commun. – reference: Kazemzadeh, A., Tepperman, J., Silva, J., You, H., Lee, S., Alwan, A., Narayanan, S., 2006. Automatic detection of voice onset time contrasts for use in pronunciation assessment. In: Interspeech-2006. – reference: NIST/SEMATECH, 2005. e-Handbook of Statistical Methods, – volume: 30 start-page: 277 year: 1987 end-page: 295 ident: bib21 article-title: Intonation in English, French, and German: Perception and production publication-title: Lang. Speech – volume: 51 start-page: 1194 year: 2009 end-page: 1205 ident: bib44 article-title: Automatic voice onset time estimation from reassignment spectra publication-title: Speech Commun. – volume: 76 start-page: 692 year: 1984 end-page: 707 ident: bib14 article-title: The selection of French accent by American listeners publication-title: J. Acoust. Soc. Amer. – volume: 17 start-page: 556 year: 2009 end-page: 565 ident: bib32 article-title: Vowel onset point detection using source, spectral peaks, and modulation spectrum energies publication-title: IEEE Trans. Audio, Signal, Lang. Process. – year: 1990 ident: bib9 article-title: The World’s Major Languages – volume: 13 start-page: 67 year: 2000 end-page: 85 ident: bib8 article-title: English and Cantonese phonology in contrast: Explaining Cantonese ESL learners’ English pronunciation problems, language publication-title: Culture Curriculum – volume: 23 start-page: 535 year: 2004 end-page: 564 ident: bib37 article-title: Obstruent voicing and devoicing in the English of Cantonese speakers from Hong Kong publication-title: World Englishes – reference: CU-Accent, 2010. Formally at: – start-page: 73 year: 1983 end-page: 109 ident: bib47 article-title: A Phenomenological Model for Vowel Production in the Vocal Tract publication-title: Speech Science: Recent Advances – volume: 6 start-page: 271 year: 2002 end-page: 289 ident: bib24 article-title: Phonetic evidence for early language differentiation: Research issues and some preliminary data publication-title: The Int. J. Bilingualism – reference: Torrence, C., Compo, G.P., 1998. A Practical Guide to Wavelet Analysis, Program in Atmospheric and Oceanic Sciences. University of Colorado, Boulder, Colorado. – volume: 109 start-page: 2474 year: 2001 ident: bib35 article-title: Acquisition of dialectal differences in English by native Japanese speakers publication-title: J. Acoust. Soc. Amer. – year: 1986 ident: bib40 article-title: Experiments on pattern recognition using invariant Fourier Mellin descriptors publication-title: J. Opt. Soc. Amer. – volume: 8 start-page: 10 year: 2001 end-page: 12 ident: bib4 article-title: Wavelet speech enhancement based on the Teager energy operator publication-title: IEEE Signal Process. Lett. – reference: Sundaram, N. , Smolenski, B.Y. , Yantorno, R., 2003. Instantaneous Nonlinear Teager Energy Operator for Robust Voiced–Unvoiced Speech Classification, – volume: 45 start-page: 300 year: 1998 end-page: 313 ident: bib22 article-title: A nonlinear based speech feature analysis method with application to vocal fold pathology assessment publication-title: IEEE Trans. Biomed. Eng. – year: 1986 ident: bib41 article-title: Circular Fourier radial Mellin transform descriptors for pattern recognition publication-title: J. Opt. Soc. Amer. – volume: 115 start-page: 2465 year: 2004 ident: bib31 article-title: Voice-onset time and buzz-onset time identification: A ROC analysis publication-title: J. Acoust. Soc. Amer. – volume: 75 start-page: 1231 year: 1984 end-page: 1242 ident: bib39 article-title: Perception of voice-onset-time continua: A signal detection analysis publication-title: J. Acoust. Soc. Amer. – volume: 84 start-page: 70 year: 1988 end-page: 77 ident: bib15 article-title: Factor affecting degree of perceived foreign accent in English sentences publication-title: J. Acoust. Soc. Amer. – volume: 113 start-page: 544 year: 2003 end-page: 552 ident: bib1 article-title: Individual talker differences in voice-onset-time publication-title: J. Acoust. Soc. Amer. – volume: 28 start-page: 599 year: 1980 end-page: 601 ident: bib46 article-title: Some observations on oral air flow during phonation publication-title: IEEE Trans. Acoust. Speech, Signal Proc. – reference: Gray, S.S., 2005. Ph.D. Thesis: Speech Science Modeling for Automatic Accent and Dialect Classification. Department of Speech, Language and Hearing Sciences, University of Colorado, Boulder. – volume: 41 start-page: 3024 year: 1993 end-page: 3051 ident: bib34 article-title: Energy separation in signal modulations with applications to speech analysis publication-title: IEEE Trans. Signal Process. – volume: 59 start-page: 197 year: 2002 end-page: 231 ident: bib13 article-title: On vowel height and consonantal voicing effects: Data from Italian, phonetica publication-title: Int. J. Phonetic Sci. – reference: Poser, W.J., 2004. Language Log post of 2004-03-13T16:21. – ident: 10.1016/j.specom.2010.05.004_bib10 – start-page: 2346 year: 1999 ident: 10.1016/j.specom.2010.05.004_bib43 article-title: Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex publication-title: The Amer. Physiol. Soc. – volume: 23 start-page: 535 issue: 4 year: 2004 ident: 10.1016/j.specom.2010.05.004_bib37 article-title: Obstruent voicing and devoicing in the English of Cantonese speakers from Hong Kong publication-title: World Englishes doi: 10.1111/j.0083-2919.2004.00376.x – ident: 10.1016/j.specom.2010.05.004_bib18 doi: 10.1109/ICASSP.2002.5743826 – year: 1990 ident: 10.1016/j.specom.2010.05.004_bib9 – ident: 10.1016/j.specom.2010.05.004_bib20 – year: 1988 ident: 10.1016/j.specom.2010.05.004_bib42 article-title: Frequency-domain Fourier-Mellin descriptors for invariant pattern recognition publication-title: Opt. Eng. doi: 10.1117/12.7976683 – volume: 8 start-page: 10 issue: 1 year: 2001 ident: 10.1016/j.specom.2010.05.004_bib4 article-title: Wavelet speech enhancement based on the Teager energy operator publication-title: IEEE Signal Process. Lett. doi: 10.1109/97.889636 – volume: 51 start-page: 1194 issue: 12 year: 2009 ident: 10.1016/j.specom.2010.05.004_bib44 article-title: Automatic voice onset time estimation from reassignment spectra publication-title: Speech Commun. doi: 10.1016/j.specom.2009.06.003 – ident: 10.1016/j.specom.2010.05.004_bib19 doi: 10.1109/ASRU.2005.1566480 – volume: 45 start-page: 300 issue: 3 year: 1998 ident: 10.1016/j.specom.2010.05.004_bib22 article-title: A nonlinear based speech feature analysis method with application to vocal fold pathology assessment publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.661155 – ident: 10.1016/j.specom.2010.05.004_bib27 doi: 10.21437/ICSLP.1996-442 – volume: 6 start-page: 271 issue: 3 year: 2002 ident: 10.1016/j.specom.2010.05.004_bib24 article-title: Phonetic evidence for early language differentiation: Research issues and some preliminary data publication-title: The Int. J. Bilingualism doi: 10.1177/13670069020060030401 – volume: 113 start-page: 1025 issue: 2 year: 2003 ident: 10.1016/j.specom.2010.05.004_bib16 article-title: Accuracy and variability of acoustic measures of voicing onset publication-title: J. Acoust. Soc. Amer. doi: 10.1121/1.1536169 – ident: 10.1016/j.specom.2010.05.004_bib38 – volume: 28 start-page: 599 issue: 5 year: 1980 ident: 10.1016/j.specom.2010.05.004_bib46 article-title: Some observations on oral air flow during phonation publication-title: IEEE Trans. Acoust. Speech, Signal Proc. doi: 10.1109/TASSP.1980.1163453 – volume: 113 start-page: 544 issue: 1 year: 2003 ident: 10.1016/j.specom.2010.05.004_bib1 article-title: Individual talker differences in voice-onset-time publication-title: J. Acoust. Soc. Amer. doi: 10.1121/1.1528172 – volume: 36 start-page: 3035 issue: 14 year: 1997 ident: 10.1016/j.specom.2010.05.004_bib30 article-title: Position-invariant, rotation-invariant, and scale-invariant process for binary image recognition publication-title: Appl. Optics doi: 10.1364/AO.36.003035 – volume: 5 start-page: 191 issue: 2 year: 1983 ident: 10.1016/j.specom.2010.05.004_bib50 article-title: A new implementation of the Mellin transform and its application to radar classification of ships publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1983.4767371 – ident: 10.1016/j.specom.2010.05.004_bib48 – year: 1999 ident: 10.1016/j.specom.2010.05.004_bib12 – volume: 35 start-page: 125 year: 2002 ident: 10.1016/j.specom.2010.05.004_bib5 article-title: Scope, syllable core and periphery evaluation: Automatic syllabification and foreign accent identification publication-title: Speech Commun. doi: 10.1016/S0167-6393(00)00100-X – volume: 16 start-page: 1156 issue: 12 year: 1994 ident: 10.1016/j.specom.2010.05.004_bib6 article-title: Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.387491 – year: 1986 ident: 10.1016/j.specom.2010.05.004_bib40 article-title: Experiments on pattern recognition using invariant Fourier Mellin descriptors publication-title: J. Opt. Soc. Amer. – volume: 115 start-page: 2465 issue: 5 year: 2004 ident: 10.1016/j.specom.2010.05.004_bib31 article-title: Voice-onset time and buzz-onset time identification: A ROC analysis publication-title: J. Acoust. Soc. Amer. doi: 10.1121/1.4782392 – volume: 29 start-page: 704 issue: 5 year: 1990 ident: 10.1016/j.specom.2010.05.004_bib17 article-title: Class of transforms invariant under shift, rotation, and scaling publication-title: Appl. Optics doi: 10.1364/AO.29.000704 – ident: 10.1016/j.specom.2010.05.004_bib26 doi: 10.21437/Interspeech.2006-249 – start-page: 73 year: 1983 ident: 10.1016/j.specom.2010.05.004_bib47 article-title: A Phenomenological Model for Vowel Production in the Vocal Tract – ident: 10.1016/j.specom.2010.05.004_bib28 doi: 10.21437/Eurospeech.1997-611 – volume: 102 start-page: 28 issue: 1 year: 1997 ident: 10.1016/j.specom.2010.05.004_bib3 article-title: A study of temporal features and frequency characteristics in American English foreign accent publication-title: J. Acoust. Soc. Amer. doi: 10.1121/1.419608 – ident: 10.1016/j.specom.2010.05.004_bib23 doi: 10.1109/ICASSP.2003.1198820 – year: 2001 ident: 10.1016/j.specom.2010.05.004_bib33 – volume: 75 start-page: 1231 issue: 4 year: 1984 ident: 10.1016/j.specom.2010.05.004_bib39 article-title: Perception of voice-onset-time continua: A signal detection analysis publication-title: J. Acoust. Soc. Amer. doi: 10.1121/1.390775 – ident: 10.1016/j.specom.2010.05.004_bib45 – volume: 96 start-page: 3392 issue: 6 year: 1994 ident: 10.1016/j.specom.2010.05.004_bib7 article-title: Nonlinear analysis and detection of speech under stressed conditions publication-title: J. Acoust. Soc. Amer. doi: 10.1121/1.410601 – volume: 109 start-page: 2474 issue: 5 year: 2001 ident: 10.1016/j.specom.2010.05.004_bib35 article-title: Acquisition of dialectal differences in English by native Japanese speakers publication-title: J. Acoust. Soc. Amer. doi: 10.1121/1.4744788 – volume: 17 start-page: 556 issue: 4 year: 2009 ident: 10.1016/j.specom.2010.05.004_bib32 article-title: Vowel onset point detection using source, spectral peaks, and modulation spectrum energies publication-title: IEEE Trans. Audio, Signal, Lang. Process. doi: 10.1109/TASL.2008.2010884 – volume: 9 start-page: 201 issue: 2 year: 2001 ident: 10.1016/j.specom.2010.05.004_bib49 article-title: Nonlinear feature based classification of speech under stress publication-title: IEEE Trans. Speech Audio Process. doi: 10.1109/89.905995 – year: 1993 ident: 10.1016/j.specom.2010.05.004_bib29 – ident: 10.1016/j.specom.2010.05.004_bib11 – volume: 84 start-page: 70 year: 1988 ident: 10.1016/j.specom.2010.05.004_bib15 article-title: Factor affecting degree of perceived foreign accent in English sentences publication-title: J. Acoust. Soc. Amer. doi: 10.1121/1.396876 – year: 1986 ident: 10.1016/j.specom.2010.05.004_bib41 article-title: Circular Fourier radial Mellin transform descriptors for pattern recognition publication-title: J. Opt. Soc. Amer. doi: 10.1364/JOSAA.3.000885 – volume: 59 start-page: 197 issue: 4 year: 2002 ident: 10.1016/j.specom.2010.05.004_bib13 article-title: On vowel height and consonantal voicing effects: Data from Italian, phonetica publication-title: Int. J. Phonetic Sci. doi: 10.1159/000068347 – ident: 10.1016/j.specom.2010.05.004_bib36 – volume: 41 start-page: 3024 issue: 10 year: 1993 ident: 10.1016/j.specom.2010.05.004_bib34 article-title: Energy separation in signal modulations with applications to speech analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.277799 – volume: 30 start-page: 277 issue: 3 year: 1987 ident: 10.1016/j.specom.2010.05.004_bib21 article-title: Intonation in English, French, and German: Perception and production publication-title: Lang. Speech doi: 10.1177/002383098703000307 – volume: 18 start-page: 353 year: 1996 ident: 10.1016/j.specom.2010.05.004_bib2 article-title: Language accent classification in American English publication-title: Speech Commun. doi: 10.1016/0167-6393(96)00024-6 – ident: 10.1016/j.specom.2010.05.004_bib25 – volume: 13 start-page: 67 issue: 1 year: 2000 ident: 10.1016/j.specom.2010.05.004_bib8 article-title: English and Cantonese phonology in contrast: Explaining Cantonese ESL learners’ English pronunciation problems, language publication-title: Culture Curriculum doi: 10.1080/07908310008666590 – volume: 76 start-page: 692 year: 1984 ident: 10.1016/j.specom.2010.05.004_bib14 article-title: The selection of French accent by American listeners publication-title: J. Acoust. Soc. Amer. doi: 10.1121/1.391256 |
| SSID | ssj0004882 |
| Score | 2.1023479 |
| Snippet | Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in
Arslan and Hansen... Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in (Arslan and Hansen,... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 777 |
| SubjectTerms | Accent classification Algorithms Applied sciences Articulation Classification Detection, estimation, filtering, equalization, prediction Exact sciences and technology Indian Information, signal and communications theory Mathematical models Miscellaneous Plugs Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Spectra Spectral Analysis Speech Speech Perception Speech processing Stops Teager Energy Operator (TEO) Telecommunications and information theory Voice Voice Onset Region (VOR) Voice Onset Time Voice Onset Time (VOT) Voicing |
| Title | Automatic voice onset time detection for unvoiced stops (/ p/,/ t/,/ k/) with application to accent classification |
| URI | https://dx.doi.org/10.1016/j.specom.2010.05.004 https://www.proquest.com/docview/758116080 https://www.proquest.com/docview/853229363 https://www.proquest.com/docview/864396203 |
| Volume | 52 |
| WOSCitedRecordID | wos000280917000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7182 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004882 issn: 0167-6393 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKl8NKCEF5FZaVD2gFKqHOo3kcK9RlQVVBosv2FjmxI9iWJLRptfwJfjMzjpN0VS2FA4dEUeo0Vefz-PP4Gw8hL8Ap-nFgSsNj0jEc3-JGJBzTsCXyVWn5XNU6_DL2JhN_Ngs-tVq_qlyYzcJLU__qKsj_q6nhHhgbU2f_wdz1l8INuAajwxnMDue_MvxwXWTlPqybDLxAD-XShaoh3xOykHEtLlynqoHo4eYCKviKlXjhgL8dzkV9NVdXgc6Da1a8kbfyGOWdvRhJOKqOGkNrxvs5lzJGdftWIkrj9lIdAFICnrM6EP1uyUsNGm6sDUD8ypsQra7_fJFlWh2iYxao_2BVzEKHMcE9Azeyt_3wwNrGG9vyqp6u9FIO0F5Zc2jH95dhiMs3mKKafdeqPYyYOc1YV63vTz6Gp-fjcTgdzaYn-Q8Dq5Dhar0uyXKLHFgwkWJtcjB8P5p9aDJtfVV-rP79VTKmUgzuvvgmsnMn5yvogklZO2WHBihuM71H7upJCR2WYLpPWjLtkMdjHcpe0RM6rnffXnXIYT1q_uyQozLBm17IRcKXEtpWN7Ll_AHJajhShTaq4EgRjrSGIwU40gqOVMGRvuzn_df9Ao55_xVF6NEt6NEioyX06HXoPSTnp6Pp2zNDF_kwYse2CoMnruuzJGF8YCUBEzACSzNyAzcSPHAGnm0llmQDYUZ-ZHqR58Jn3A58RwjBOEvsR6SdZql8gio9AWTZtpBiOyLxI9eVjsNM6YhYxqbZJXZljTDWO-BjIZZFWEkdL8PShiHaMGSDEGzYJUb9VF7uALOnvVcZOtQstmSnIQB1z5PH13BRv86ygQvYnt8ltAJKCJ0Pl_Z4KrP1KgSwmqYLs7-bmwAvt4Dbu_YfmuD0xLWY_XR_k2fksOnZR6RdLNfyObkdb4pvq-Wx7je_AZHU6qw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+voice+onset+time+detection+for+unvoiced+stops+%28%2Fp%2F%2C%2Ft%2F%2C%2Fk%2F%29+with+application+to+accent+classification&rft.jtitle=Speech+communication&rft.au=Hansen%2C+John+HL&rft.au=Gray%2C+Sharmistha+S&rft.au=Kim%2C+Wooil&rft.date=2010-10-01&rft.issn=0167-6393&rft.volume=52&rft.issue=10&rft.spage=777&rft.epage=789&rft_id=info:doi/10.1016%2Fj.specom.2010.05.004&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6393&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6393&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6393&client=summon |