Automatic voice onset time detection for unvoiced stops (/ p/,/ t/,/ k/) with application to accent classification

Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in Arslan and Hansen (1996, 1997), Voice Onset Time (VOT) can be used to classify mandarin, Turkish, German and American accented English. Our goal in this study is to...

Full description

Saved in:
Bibliographic Details
Published in:Speech communication Vol. 52; no. 10; pp. 777 - 789
Main Authors: Hansen, John H.L., Gray, Sharmistha S., Kim, Wooil
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.10.2010
Elsevier
Subjects:
ISSN:0167-6393, 1872-7182
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in Arslan and Hansen (1996, 1997), Voice Onset Time (VOT) can be used to classify mandarin, Turkish, German and American accented English. Our goal in this study is to develop an automatic system that classifies accents using VOT in unvoiced stops 1 A preliminary version of some of the work in this study was presented at the IEEE NORSIG-04 Symposium in Das (Gray) and Hansen (2004). 1 . VOT is an important temporal feature which is often overlooked in speech perception, speech recognition, as well as accent detection. Fixed length frame-based speech processing inherently ignores VOT. In this paper, a more effective VOT detection scheme using the non-linear energy tracking algorithm Teager Energy Operator (TEO), across a sub-frequency band partition for unvoiced stops (/ p/, / t/ and / k/), is introduced. The proposed VOT detection algorithm also incorporates spectral differences in the Voice Onset Region (VOR) and the succeeding vowel of a given stop-vowel sequence to classify speakers having accents due to different ethnic origin. The spectral cues are enhanced using one of the four types of feature parameter extractions – Discrete Mellin Transform (DMT), Discrete Mellin Fourier Transform (DMFT) and Discrete Wavelet Transform using the lowest and the highest frequency resolutions (DWTlfr and DWThfr). A Hidden Markov Model (HMM) classifier is employed with these extracted parameters and applied to the problem of accent classification. Three different language groups (American English, Chinese, and Indian) are used from the CU-Accent database. The VOT is detected with less than 10% error when compared to the manual detected VOT with a success rate of 79.90%, 87.32% and 47.73% for English, Chinese and Indian speakers (includes atypical cases for Indian case), respectively. It is noted that the DMT and DWTlfr features are good for parameterizing speech samples which exhibit substitution of succeeding vowel after the stop in accented speech. The successful accent classification rates of DMT and DWTlfr features are 66.13% and 71.67%, for / p/ and / t/ respectively, for pairwise accent detection. Alternatively, the DMFT feature works on all accent sensitive words considered, with a success rate of 70.63%. This study shows that effective VOT detection can be achieved using an integrated TEO processing with spectral difference analysis in the VOR that can be employed for accent classification.
AbstractList Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in (Arslan and Hansen, 1996) and (Arslan and Hansen, 1997), Voice Onset Time (VOT) can be used to classify mandarin, Turkish, German and American accented English. Our goal in this study is to develop an automatic system that classifies accents using VOT in unvoiced stops. VOT is an important temporal feature which is often overlooked in speech perception, speech recognition, as well as accent detection. Fixed length frame-based speech processing inherently ignores VOT. In this paper, a more effective VOT detection scheme using the non-linear energy tracking algorithm Teager Energy Operator (TEO), across a sub-frequency band partition for unvoiced stops (/p/, /t/ and /k/), is introduced. The proposed VOT detection algorithm also incorporates spectral differences in the Voice Onset Region (VOR) and the succeeding vowel of a given stop-vowel sequence to classify speakers having accents due to different ethnic origin. The spectral cues are enhanced using one of the four types of feature parameter extractions - Discrete Mellin Transform (DMT), Discrete Mellin Fourier Transform (DMFT) and Discrete Wavelet Transform using the lowest and the highest frequency resolutions (DWTlfr and DWThfr). A Hidden Markov Model (HMM) classifier is employed with these extracted parameters and applied to the problem of accent classification. Three different language groups (American English, Chinese, and Indian) are used from the CU-Accent database. The VOT is detected with less than 10% error when compared to the manual detected VOT with a success rate of 79.90%, 87.32% and 47.73% for English, Chinese and Indian speakers (includes atypical cases for Indian case), respectively. It is noted that the DMT and DWTlfr features are good for parameterizing speech samples which exhibit substitution of succeeding vowel after the stop in accented speech. The successful accent classification rates of DMT and DWTlfr features are 66.13% and 71.67%, for /p/ and /t/ respectively, for pairwise accent detection. Alternatively, the DMFT feature works on all accent sensitive words considered, with a success rate of 70.63%. This study shows that effective VOT detection can be achieved using an integrated TEO processing with spectral difference analysis in the VOR that can be employed for accent classification. [Copyright Elsevier B.V.]
Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in (Arslan and Hansen, 1996) and (Arslan and Hansen, 1997), Voice Onset Time (VOT) can be used to classify mandarin, Turkish, German and American accented English. Our goal in this study is to develop an automatic system that classifies accents using VOT in unvoiced stops super(1). VOT is an important temporal feature which is often overlooked in speech perception, speech recognition, as well as accent detection. Fixed length frame-based speech processing inherently ignores VOT. In this paper, a more effective VOT detection scheme using the non-linear energy tracking algorithm Teager Energy Operator (TEO), across a sub-frequency band partition for unvoiced stops (/p/, /t/ and /k/), is introduced. The proposed VOT detection algorithm also incorporates spectral differences in the Voice Onset Region (VOR) and the succeeding vowel of a given stop-vowel sequence to classify speakers having accents due to different ethnic origin. The spectral cues are enhanced using one of the four types of feature parameter extractions - Discrete Mellin Transform (DMT), Discrete Mellin Fourier Transform (DMFT) and Discrete Wavelet Transform using the lowest and the highest frequency resolutions (DWTlfr and DWThfr). A Hidden Markov Model (HMM) classifier is employed with these extracted parameters and applied to the problem of accent classification. Three different language groups (American English, Chinese, and Indian) are used from the CU-Accent database. The VOT is detected with less than 10% error when compared to the manual detected VOT with a success rate of 79.90%, 87.32% and 47.73% for English, Chinese and Indian speakers (includes atypical cases for Indian case), respectively. It is noted that the DMT and DWTlfr features are good for parameterizing speech samples which exhibit substitution of succeeding vowel after the stop in accented speech. The successful accent classification rates of DMT and DWTlfr features are 66.13% and 71.67%, for /p/ and /t/ respectively, for pairwise accent detection. Alternatively, the DMFT feature works on all accent sensitive words considered, with a success rate of 70.63%. This study shows that effective VOT detection can be achieved using an integrated TEO processing with spectral difference analysis in the VOR that can be employed for accent classification.
Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in Arslan and Hansen (1996, 1997), Voice Onset Time (VOT) can be used to classify mandarin, Turkish, German and American accented English. Our goal in this study is to develop an automatic system that classifies accents using VOT in unvoiced stops 1 A preliminary version of some of the work in this study was presented at the IEEE NORSIG-04 Symposium in Das (Gray) and Hansen (2004). 1 . VOT is an important temporal feature which is often overlooked in speech perception, speech recognition, as well as accent detection. Fixed length frame-based speech processing inherently ignores VOT. In this paper, a more effective VOT detection scheme using the non-linear energy tracking algorithm Teager Energy Operator (TEO), across a sub-frequency band partition for unvoiced stops (/ p/, / t/ and / k/), is introduced. The proposed VOT detection algorithm also incorporates spectral differences in the Voice Onset Region (VOR) and the succeeding vowel of a given stop-vowel sequence to classify speakers having accents due to different ethnic origin. The spectral cues are enhanced using one of the four types of feature parameter extractions – Discrete Mellin Transform (DMT), Discrete Mellin Fourier Transform (DMFT) and Discrete Wavelet Transform using the lowest and the highest frequency resolutions (DWTlfr and DWThfr). A Hidden Markov Model (HMM) classifier is employed with these extracted parameters and applied to the problem of accent classification. Three different language groups (American English, Chinese, and Indian) are used from the CU-Accent database. The VOT is detected with less than 10% error when compared to the manual detected VOT with a success rate of 79.90%, 87.32% and 47.73% for English, Chinese and Indian speakers (includes atypical cases for Indian case), respectively. It is noted that the DMT and DWTlfr features are good for parameterizing speech samples which exhibit substitution of succeeding vowel after the stop in accented speech. The successful accent classification rates of DMT and DWTlfr features are 66.13% and 71.67%, for / p/ and / t/ respectively, for pairwise accent detection. Alternatively, the DMFT feature works on all accent sensitive words considered, with a success rate of 70.63%. This study shows that effective VOT detection can be achieved using an integrated TEO processing with spectral difference analysis in the VOR that can be employed for accent classification.
Author Gray, Sharmistha S.
Hansen, John H.L.
Kim, Wooil
Author_xml – sequence: 1
  givenname: John H.L.
  surname: Hansen
  fullname: Hansen, John H.L.
  email: john.hansen@utdallas.edu
– sequence: 2
  givenname: Sharmistha S.
  surname: Gray
  fullname: Gray, Sharmistha S.
– sequence: 3
  givenname: Wooil
  surname: Kim
  fullname: Kim, Wooil
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23088378$$DView record in Pascal Francis
BookMark eNqFkUuLFDEURoOMYM_oP3CRjahgdd0kVamUC2EYfMGAG12HVB6Ytiopk_SI_970w40Le5MLuef7Fvdco6sQg0XoOYEtAcLb3TavVsdlS6F-Qb8F6B6hDREDbQYi6BXaVGxoOBvZE3Sd8w4qIQTdoHS7L3FRxWv8EL22OIZsCy5-sdjYYnXxMWAXE96HI2BwLnHN-FWL1_ZNi8vh-dG-xr98-Y7Vus5eq2OoRKy0tqFgPaucvTsvnqLHTs3ZPjvPG_Ttw_uvd5-a-y8fP9_d3je6Y7Q0ynEuwDlQPXUjGNIzSyY-8smosesHRh210BsyiYkM08DrTrFRdMYYUODYDXp56l1T_Lm3ucjFZ23nWQUb91kK3rGRU2CXyZ5ROjJ-mRx6QQgHAZV8cSZV1mp2SQXts1yTX1T6LSkDIdggKvf2xOkUc07WSe3L8U4lKT9LAvLgWO7kybE8OJbQy2qwhrt_wn_7L8TenWK2nv_B2ySz9jZUuT5V49JE__-CP38Iw9E
CODEN SCOMDH
CitedBy_id crossref_primary_10_1177_0023830920936321
crossref_primary_10_1016_j_proeng_2013_09_111
crossref_primary_10_1109_ACCESS_2020_3020506
crossref_primary_10_1016_j_cognition_2016_01_002
crossref_primary_10_1016_j_specom_2024_103168
crossref_primary_10_1121_1_4763995
crossref_primary_10_1088_1742_6596_1738_1_012111
crossref_primary_10_1121_1_4885768
crossref_primary_10_1121_10_0026235
crossref_primary_10_1134_S1063771024602838
crossref_primary_10_1016_j_specom_2011_06_003
crossref_primary_10_1109_TASL_2012_2191284
crossref_primary_10_1109_TASLP_2014_2329734
crossref_primary_10_1016_j_wocn_2017_05_002
crossref_primary_10_1121_1_3592233
crossref_primary_10_1016_j_wocn_2012_11_001
crossref_primary_10_1109_TASL_2012_2201474
crossref_primary_10_1007_s10772_018_9505_x
Cites_doi 10.1111/j.0083-2919.2004.00376.x
10.1109/ICASSP.2002.5743826
10.1117/12.7976683
10.1109/97.889636
10.1016/j.specom.2009.06.003
10.1109/ASRU.2005.1566480
10.1109/10.661155
10.21437/ICSLP.1996-442
10.1177/13670069020060030401
10.1121/1.1536169
10.1109/TASSP.1980.1163453
10.1121/1.1528172
10.1364/AO.36.003035
10.1109/TPAMI.1983.4767371
10.1016/S0167-6393(00)00100-X
10.1109/34.387491
10.1121/1.4782392
10.1364/AO.29.000704
10.21437/Interspeech.2006-249
10.21437/Eurospeech.1997-611
10.1121/1.419608
10.1109/ICASSP.2003.1198820
10.1121/1.390775
10.1121/1.410601
10.1121/1.4744788
10.1109/TASL.2008.2010884
10.1109/89.905995
10.1121/1.396876
10.1364/JOSAA.3.000885
10.1159/000068347
10.1109/78.277799
10.1177/002383098703000307
10.1016/0167-6393(96)00024-6
10.1080/07908310008666590
10.1121/1.391256
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7T9
8BM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.specom.2010.05.004
DatabaseName CrossRef
Pascal-Francis
Linguistics and Language Behavior Abstracts (LLBA)
ComDisDome
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Linguistics and Language Behavior Abstracts (LLBA)
ComDisDome
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Linguistics and Language Behavior Abstracts (LLBA)
ComDisDome
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Social Welfare & Social Work
Psychology
Applied Sciences
EISSN 1872-7182
EndPage 789
ExternalDocumentID 23088378
10_1016_j_specom_2010_05_004
S0167639310000956
GroupedDBID --K
--M
-~X
.DC
.~1
07C
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
9JO
AACTN
AADFP
AAEDT
AAEDW
AAFJI
AAGJA
AAGJQ
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABIVO
ABJNI
ABMAC
ABMMH
ABOYX
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACXNI
ACZNC
ADBBV
ADEZE
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFYLN
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSO
SST
SSV
SSY
SSZ
T5K
WUQ
XFK
XJE
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7T9
8BM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c432t-af6680ff0a52f90d153e1b696bda945732f2e05d1b8b17b76b69a3984ddd0a0f3
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000280917000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-6393
IngestDate Sun Sep 28 09:39:59 EDT 2025
Sun Sep 28 09:23:11 EDT 2025
Wed Oct 01 13:31:05 EDT 2025
Mon Jul 21 09:16:58 EDT 2025
Sat Nov 29 08:20:01 EST 2025
Tue Nov 18 21:57:36 EST 2025
Fri Feb 23 02:28:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Voice Onset Region (VOR)
Teager Energy Operator (TEO)
Voice Onset Time (VOT)
Accent classification
Speech analysis
Discrete Fourier transformation
German
Verbal perception
Parameter extraction
Frequency band
Vowel
Automatic system
Phoneme
Mellin transformation
Target tracking
Probabilistic approach
Discrete transformation
Acoustic signal detection
Discrete wavelet transforms
Algorithm
Signal classification
English
Onset time
Vocal signal
Speech recognition
Signal processing
Chinese
Feature extraction
Signal analysis
Speech processing
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c432t-af6680ff0a52f90d153e1b696bda945732f2e05d1b8b17b76b69a3984ddd0a0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 758116080
PQPubID 23478
PageCount 13
ParticipantIDs proquest_miscellaneous_864396203
proquest_miscellaneous_853229363
proquest_miscellaneous_758116080
pascalfrancis_primary_23088378
crossref_citationtrail_10_1016_j_specom_2010_05_004
crossref_primary_10_1016_j_specom_2010_05_004
elsevier_sciencedirect_doi_10_1016_j_specom_2010_05_004
PublicationCentury 2000
PublicationDate 2010-10-01
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Speech communication
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Arslan, Hansen (bib3) 1997; 102
Sundaram, N. , Smolenski, B.Y. , Yantorno, R., 2003. Instantaneous Nonlinear Teager Energy Operator for Robust Voiced–Unvoiced Speech Classification
Levkovitz, Oron, Tur (bib30) 1997; 36
Rosner (bib39) 1984; 75
Stouten, Van hamme (bib44) 2009; 51
Kazemzadeh, A., Tepperman, J., Silva, J., You, H., Lee, S., Alwan, A., Narayanan, S., 2006. Automatic detection of voice onset time contrasts for use in pronunciation assessment. In: Interspeech-2006.
NIST/SEMATECH, 2005. e-Handbook of Statistical Methods
Deller, Hansen, Proakis (bib12) 1999
McGory, Frieda, Nissen, Fox (bib35) 2001; 109
Gray, S.S., 2005. Ph.D. Thesis: Speech Science Modeling for Automatic Accent and Dialect Classification. Department of Speech, Language and Hearing Sciences, University of Colorado, Boulder.
Johnson, Wilson (bib24) 2002; 6
Arslan, Hansen (bib2) 1996; 18
Sheng, Duvernoy (bib41) 1986
Major (bib33) 2001
Teager (bib46) 1980; 28
.
now served at
Hansen, Gavidia-Ceballos, Kaiser (bib22) 1998; 45
Chen, Defrise, Deconinck (bib6) 1994; 16
Zwicke, Kiss (bib50) 1983; 5
Sheng, Arsenault (bib40) 1986
Mahadeva Prasanna, Sandeep Reddy, Krishnamoorthy (bib32) 2009; 17
Chan, Li (bib8) 2000; 13
Comrie (bib9) 1990
Ladefoged (bib29) 1993
Kumpf, K. King, R.W., 1996. Automatic accent classification of foreign accented Australian English speech. In: ICSLP-96, pp. 1740–1743.
Gray, S.S., Hansen, J.H.L., 2005. An integrated approach to the detection and classification of accents/dialects for a spoken document retrieval system. In: IEEE Automatic Speech Recognition and Understanding Workshop.
Allen, Miller, DeSteno (bib1) 2003; 113
Cairns, Hansen (bib7) 1994; 96
Torrence, C., Compo, G.P., 1998. A Practical Guide to Wavelet Analysis, Program in Atmospheric and Oceanic Sciences. University of Colorado, Boulder, Colorado.
Berkling (bib5) 2002; 35
Ghesquiere, P.J., Compernolle, D.V., 2002. Flemish accent identification based on formant and duration features. In: ICASSP-02, pp. 749–752.
Steinschneider, Volkov, Noh, Garell, Howard (bib43) 1999
Francis, Ciocca, Yu (bib16) 2003; 113
Esposito (bib13) 2002; 59
Grover, Jamieson, Dobrovolsky (bib21) 1987; 30
Das (Gray), S.S, Hansen, J.H.L., 2004. Detection of Voice Onset Time (VOT) for Unvoiced Stops (/p/, /t/, /k/) Using Teager Energy Operator (TEO) for Automatic Detection of Accented English. In: IEEE NORSIG-04: Nordic Signal Processing Symposium, pp. 344–347.
Hoshino, A. Yasuda, A., 2003. The evaluation of Chinese aspiration sounds uttered by Japanese students using VOT and power. In: IEEE ICASSP-03, pp. 472–475.
Flege (bib15) 1988; 84
Bahoura, Rouat (bib4) 2001; 8
Kaiser, J.F., 1990. On a Simple Algorithm to Calculate the ‘Energy’ of a Signal. In: IEEE ICASSP-90, pp. 381–384.
Flege (bib14) 1984; 76
Peng, Ann (bib37) 2004; 23
retrieved 2005-05-08>.
Kumpf, K. King, R.W., 1997. Foreign speaker accent classification using phoneme-dependent accent discrimination models and comparison with human perception benchmarks. In: EUROSPEECH-97.
Sheng, Lejeune, Arsenault (bib42) 1988
Poser, W.J., 2004. Language Log post of 2004-03-13T16:21.
Maragos, Kaiser, Quatieri (bib34) 1993; 41
CU-Accent, 2010. Formally at
Teager, Teager (bib47) 1983
Fang, Häusler (bib17) 1990; 29
Zhou, Hansen, Kaiser (bib49) 2001; 9
Lopez-Bascuas, Rosner, Garcia-Albea (bib31) 2004; 115
Berkling (10.1016/j.specom.2010.05.004_bib5) 2002; 35
Deller (10.1016/j.specom.2010.05.004_bib12) 1999
Flege (10.1016/j.specom.2010.05.004_bib14) 1984; 76
Chan (10.1016/j.specom.2010.05.004_bib8) 2000; 13
Sheng (10.1016/j.specom.2010.05.004_bib40) 1986
Ladefoged (10.1016/j.specom.2010.05.004_bib29) 1993
10.1016/j.specom.2010.05.004_bib20
10.1016/j.specom.2010.05.004_bib26
10.1016/j.specom.2010.05.004_bib25
10.1016/j.specom.2010.05.004_bib23
Mahadeva Prasanna (10.1016/j.specom.2010.05.004_bib32) 2009; 17
Arslan (10.1016/j.specom.2010.05.004_bib3) 1997; 102
10.1016/j.specom.2010.05.004_bib28
10.1016/j.specom.2010.05.004_bib27
Hansen (10.1016/j.specom.2010.05.004_bib22) 1998; 45
Sheng (10.1016/j.specom.2010.05.004_bib41) 1986
Lopez-Bascuas (10.1016/j.specom.2010.05.004_bib31) 2004; 115
Esposito (10.1016/j.specom.2010.05.004_bib13) 2002; 59
Steinschneider (10.1016/j.specom.2010.05.004_bib43) 1999
Levkovitz (10.1016/j.specom.2010.05.004_bib30) 1997; 36
10.1016/j.specom.2010.05.004_bib36
Francis (10.1016/j.specom.2010.05.004_bib16) 2003; 113
Zhou (10.1016/j.specom.2010.05.004_bib49) 2001; 9
Bahoura (10.1016/j.specom.2010.05.004_bib4) 2001; 8
10.1016/j.specom.2010.05.004_bib38
Rosner (10.1016/j.specom.2010.05.004_bib39) 1984; 75
Sheng (10.1016/j.specom.2010.05.004_bib42) 1988
Flege (10.1016/j.specom.2010.05.004_bib15) 1988; 84
Zwicke (10.1016/j.specom.2010.05.004_bib50) 1983; 5
Teager (10.1016/j.specom.2010.05.004_bib47) 1983
Major (10.1016/j.specom.2010.05.004_bib33) 2001
McGory (10.1016/j.specom.2010.05.004_bib35) 2001; 109
Johnson (10.1016/j.specom.2010.05.004_bib24) 2002; 6
Peng (10.1016/j.specom.2010.05.004_bib37) 2004; 23
Teager (10.1016/j.specom.2010.05.004_bib46) 1980; 28
10.1016/j.specom.2010.05.004_bib48
Cairns (10.1016/j.specom.2010.05.004_bib7) 1994; 96
Allen (10.1016/j.specom.2010.05.004_bib1) 2003; 113
10.1016/j.specom.2010.05.004_bib45
Chen (10.1016/j.specom.2010.05.004_bib6) 1994; 16
Grover (10.1016/j.specom.2010.05.004_bib21) 1987; 30
Fang (10.1016/j.specom.2010.05.004_bib17) 1990; 29
Maragos (10.1016/j.specom.2010.05.004_bib34) 1993; 41
Arslan (10.1016/j.specom.2010.05.004_bib2) 1996; 18
10.1016/j.specom.2010.05.004_bib11
10.1016/j.specom.2010.05.004_bib10
10.1016/j.specom.2010.05.004_bib19
10.1016/j.specom.2010.05.004_bib18
Comrie (10.1016/j.specom.2010.05.004_bib9) 1990
Stouten (10.1016/j.specom.2010.05.004_bib44) 2009; 51
References_xml – reference: Kumpf, K. King, R.W., 1996. Automatic accent classification of foreign accented Australian English speech. In: ICSLP-96, pp. 1740–1743.
– reference: Gray, S.S., Hansen, J.H.L., 2005. An integrated approach to the detection and classification of accents/dialects for a spoken document retrieval system. In: IEEE Automatic Speech Recognition and Understanding Workshop.
– reference: Kaiser, J.F., 1990. On a Simple Algorithm to Calculate the ‘Energy’ of a Signal. In: IEEE ICASSP-90, pp. 381–384.
– volume: 36
  start-page: 3035
  year: 1997
  end-page: 3042
  ident: bib30
  article-title: Position-invariant, rotation-invariant, and scale-invariant process for binary image recognition
  publication-title: Appl. Optics
– volume: 16
  start-page: 1156
  year: 1994
  end-page: 1168
  ident: bib6
  article-title: Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 1999
  ident: bib12
  article-title: Discrete-Time Processing of Speech Signals
– volume: 9
  start-page: 201
  year: 2001
  end-page: 216
  ident: bib49
  article-title: Nonlinear feature based classification of speech under stress
  publication-title: IEEE Trans. Speech Audio Process.
– reference: Hoshino, A. Yasuda, A., 2003. The evaluation of Chinese aspiration sounds uttered by Japanese students using VOT and power. In: IEEE ICASSP-03, pp. 472–475.
– year: 2001
  ident: bib33
  article-title: Foreign Accent: The Ontogeny and Phylogeny of Second Language Phonology
– year: 1988
  ident: bib42
  article-title: Frequency-domain Fourier-Mellin descriptors for invariant pattern recognition
  publication-title: Opt. Eng.
– reference: Kumpf, K. King, R.W., 1997. Foreign speaker accent classification using phoneme-dependent accent discrimination models and comparison with human perception benchmarks. In: EUROSPEECH-97.
– year: 1993
  ident: bib29
  article-title: A Course in Phonetics
– volume: 35
  start-page: 125
  year: 2002
  end-page: 138
  ident: bib5
  article-title: Scope, syllable core and periphery evaluation: Automatic syllabification and foreign accent identification
  publication-title: Speech Commun.
– volume: 29
  start-page: 704
  year: 1990
  end-page: 708
  ident: bib17
  article-title: Class of transforms invariant under shift, rotation, and scaling
  publication-title: Appl. Optics
– reference: , retrieved 2005-05-08>.
– reference: Ghesquiere, P.J., Compernolle, D.V., 2002. Flemish accent identification based on formant and duration features. In: ICASSP-02, pp. 749–752.
– volume: 5
  start-page: 191
  year: 1983
  end-page: 199
  ident: bib50
  article-title: A new implementation of the Mellin transform and its application to radar classification of ships
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 96
  start-page: 3392
  year: 1994
  end-page: 3400
  ident: bib7
  article-title: Nonlinear analysis and detection of speech under stressed conditions
  publication-title: J. Acoust. Soc. Amer.
– volume: 102
  start-page: 28
  year: 1997
  end-page: 40
  ident: bib3
  article-title: A study of temporal features and frequency characteristics in American English foreign accent
  publication-title: J. Acoust. Soc. Amer.
– start-page: 2346
  year: 1999
  end-page: 2357
  ident: bib43
  article-title: Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex
  publication-title: The Amer. Physiol. Soc.
– volume: 113
  start-page: 1025
  year: 2003
  end-page: 1032
  ident: bib16
  article-title: Accuracy and variability of acoustic measures of voicing onset
  publication-title: J. Acoust. Soc. Amer.
– reference: Das (Gray), S.S, Hansen, J.H.L., 2004. Detection of Voice Onset Time (VOT) for Unvoiced Stops (/p/, /t/, /k/) Using Teager Energy Operator (TEO) for Automatic Detection of Accented English. In: IEEE NORSIG-04: Nordic Signal Processing Symposium, pp. 344–347.
– reference: , now served at:
– reference: .
– volume: 18
  start-page: 353
  year: 1996
  end-page: 367
  ident: bib2
  article-title: Language accent classification in American English
  publication-title: Speech Commun.
– reference: Kazemzadeh, A., Tepperman, J., Silva, J., You, H., Lee, S., Alwan, A., Narayanan, S., 2006. Automatic detection of voice onset time contrasts for use in pronunciation assessment. In: Interspeech-2006.
– reference: NIST/SEMATECH, 2005. e-Handbook of Statistical Methods,
– volume: 30
  start-page: 277
  year: 1987
  end-page: 295
  ident: bib21
  article-title: Intonation in English, French, and German: Perception and production
  publication-title: Lang. Speech
– volume: 51
  start-page: 1194
  year: 2009
  end-page: 1205
  ident: bib44
  article-title: Automatic voice onset time estimation from reassignment spectra
  publication-title: Speech Commun.
– volume: 76
  start-page: 692
  year: 1984
  end-page: 707
  ident: bib14
  article-title: The selection of French accent by American listeners
  publication-title: J. Acoust. Soc. Amer.
– volume: 17
  start-page: 556
  year: 2009
  end-page: 565
  ident: bib32
  article-title: Vowel onset point detection using source, spectral peaks, and modulation spectrum energies
  publication-title: IEEE Trans. Audio, Signal, Lang. Process.
– year: 1990
  ident: bib9
  article-title: The World’s Major Languages
– volume: 13
  start-page: 67
  year: 2000
  end-page: 85
  ident: bib8
  article-title: English and Cantonese phonology in contrast: Explaining Cantonese ESL learners’ English pronunciation problems, language
  publication-title: Culture Curriculum
– volume: 23
  start-page: 535
  year: 2004
  end-page: 564
  ident: bib37
  article-title: Obstruent voicing and devoicing in the English of Cantonese speakers from Hong Kong
  publication-title: World Englishes
– reference: CU-Accent, 2010. Formally at:
– start-page: 73
  year: 1983
  end-page: 109
  ident: bib47
  article-title: A Phenomenological Model for Vowel Production in the Vocal Tract
  publication-title: Speech Science: Recent Advances
– volume: 6
  start-page: 271
  year: 2002
  end-page: 289
  ident: bib24
  article-title: Phonetic evidence for early language differentiation: Research issues and some preliminary data
  publication-title: The Int. J. Bilingualism
– reference: Torrence, C., Compo, G.P., 1998. A Practical Guide to Wavelet Analysis, Program in Atmospheric and Oceanic Sciences. University of Colorado, Boulder, Colorado.
– volume: 109
  start-page: 2474
  year: 2001
  ident: bib35
  article-title: Acquisition of dialectal differences in English by native Japanese speakers
  publication-title: J. Acoust. Soc. Amer.
– year: 1986
  ident: bib40
  article-title: Experiments on pattern recognition using invariant Fourier Mellin descriptors
  publication-title: J. Opt. Soc. Amer.
– volume: 8
  start-page: 10
  year: 2001
  end-page: 12
  ident: bib4
  article-title: Wavelet speech enhancement based on the Teager energy operator
  publication-title: IEEE Signal Process. Lett.
– reference: Sundaram, N. , Smolenski, B.Y. , Yantorno, R., 2003. Instantaneous Nonlinear Teager Energy Operator for Robust Voiced–Unvoiced Speech Classification,
– volume: 45
  start-page: 300
  year: 1998
  end-page: 313
  ident: bib22
  article-title: A nonlinear based speech feature analysis method with application to vocal fold pathology assessment
  publication-title: IEEE Trans. Biomed. Eng.
– year: 1986
  ident: bib41
  article-title: Circular Fourier radial Mellin transform descriptors for pattern recognition
  publication-title: J. Opt. Soc. Amer.
– volume: 115
  start-page: 2465
  year: 2004
  ident: bib31
  article-title: Voice-onset time and buzz-onset time identification: A ROC analysis
  publication-title: J. Acoust. Soc. Amer.
– volume: 75
  start-page: 1231
  year: 1984
  end-page: 1242
  ident: bib39
  article-title: Perception of voice-onset-time continua: A signal detection analysis
  publication-title: J. Acoust. Soc. Amer.
– volume: 84
  start-page: 70
  year: 1988
  end-page: 77
  ident: bib15
  article-title: Factor affecting degree of perceived foreign accent in English sentences
  publication-title: J. Acoust. Soc. Amer.
– volume: 113
  start-page: 544
  year: 2003
  end-page: 552
  ident: bib1
  article-title: Individual talker differences in voice-onset-time
  publication-title: J. Acoust. Soc. Amer.
– volume: 28
  start-page: 599
  year: 1980
  end-page: 601
  ident: bib46
  article-title: Some observations on oral air flow during phonation
  publication-title: IEEE Trans. Acoust. Speech, Signal Proc.
– reference: Gray, S.S., 2005. Ph.D. Thesis: Speech Science Modeling for Automatic Accent and Dialect Classification. Department of Speech, Language and Hearing Sciences, University of Colorado, Boulder.
– volume: 41
  start-page: 3024
  year: 1993
  end-page: 3051
  ident: bib34
  article-title: Energy separation in signal modulations with applications to speech analysis
  publication-title: IEEE Trans. Signal Process.
– volume: 59
  start-page: 197
  year: 2002
  end-page: 231
  ident: bib13
  article-title: On vowel height and consonantal voicing effects: Data from Italian, phonetica
  publication-title: Int. J. Phonetic Sci.
– reference: Poser, W.J., 2004. Language Log post of 2004-03-13T16:21.
– ident: 10.1016/j.specom.2010.05.004_bib10
– start-page: 2346
  year: 1999
  ident: 10.1016/j.specom.2010.05.004_bib43
  article-title: Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex
  publication-title: The Amer. Physiol. Soc.
– volume: 23
  start-page: 535
  issue: 4
  year: 2004
  ident: 10.1016/j.specom.2010.05.004_bib37
  article-title: Obstruent voicing and devoicing in the English of Cantonese speakers from Hong Kong
  publication-title: World Englishes
  doi: 10.1111/j.0083-2919.2004.00376.x
– ident: 10.1016/j.specom.2010.05.004_bib18
  doi: 10.1109/ICASSP.2002.5743826
– year: 1990
  ident: 10.1016/j.specom.2010.05.004_bib9
– ident: 10.1016/j.specom.2010.05.004_bib20
– year: 1988
  ident: 10.1016/j.specom.2010.05.004_bib42
  article-title: Frequency-domain Fourier-Mellin descriptors for invariant pattern recognition
  publication-title: Opt. Eng.
  doi: 10.1117/12.7976683
– volume: 8
  start-page: 10
  issue: 1
  year: 2001
  ident: 10.1016/j.specom.2010.05.004_bib4
  article-title: Wavelet speech enhancement based on the Teager energy operator
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/97.889636
– volume: 51
  start-page: 1194
  issue: 12
  year: 2009
  ident: 10.1016/j.specom.2010.05.004_bib44
  article-title: Automatic voice onset time estimation from reassignment spectra
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2009.06.003
– ident: 10.1016/j.specom.2010.05.004_bib19
  doi: 10.1109/ASRU.2005.1566480
– volume: 45
  start-page: 300
  issue: 3
  year: 1998
  ident: 10.1016/j.specom.2010.05.004_bib22
  article-title: A nonlinear based speech feature analysis method with application to vocal fold pathology assessment
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.661155
– ident: 10.1016/j.specom.2010.05.004_bib27
  doi: 10.21437/ICSLP.1996-442
– volume: 6
  start-page: 271
  issue: 3
  year: 2002
  ident: 10.1016/j.specom.2010.05.004_bib24
  article-title: Phonetic evidence for early language differentiation: Research issues and some preliminary data
  publication-title: The Int. J. Bilingualism
  doi: 10.1177/13670069020060030401
– volume: 113
  start-page: 1025
  issue: 2
  year: 2003
  ident: 10.1016/j.specom.2010.05.004_bib16
  article-title: Accuracy and variability of acoustic measures of voicing onset
  publication-title: J. Acoust. Soc. Amer.
  doi: 10.1121/1.1536169
– ident: 10.1016/j.specom.2010.05.004_bib38
– volume: 28
  start-page: 599
  issue: 5
  year: 1980
  ident: 10.1016/j.specom.2010.05.004_bib46
  article-title: Some observations on oral air flow during phonation
  publication-title: IEEE Trans. Acoust. Speech, Signal Proc.
  doi: 10.1109/TASSP.1980.1163453
– volume: 113
  start-page: 544
  issue: 1
  year: 2003
  ident: 10.1016/j.specom.2010.05.004_bib1
  article-title: Individual talker differences in voice-onset-time
  publication-title: J. Acoust. Soc. Amer.
  doi: 10.1121/1.1528172
– volume: 36
  start-page: 3035
  issue: 14
  year: 1997
  ident: 10.1016/j.specom.2010.05.004_bib30
  article-title: Position-invariant, rotation-invariant, and scale-invariant process for binary image recognition
  publication-title: Appl. Optics
  doi: 10.1364/AO.36.003035
– volume: 5
  start-page: 191
  issue: 2
  year: 1983
  ident: 10.1016/j.specom.2010.05.004_bib50
  article-title: A new implementation of the Mellin transform and its application to radar classification of ships
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1983.4767371
– ident: 10.1016/j.specom.2010.05.004_bib48
– year: 1999
  ident: 10.1016/j.specom.2010.05.004_bib12
– volume: 35
  start-page: 125
  year: 2002
  ident: 10.1016/j.specom.2010.05.004_bib5
  article-title: Scope, syllable core and periphery evaluation: Automatic syllabification and foreign accent identification
  publication-title: Speech Commun.
  doi: 10.1016/S0167-6393(00)00100-X
– volume: 16
  start-page: 1156
  issue: 12
  year: 1994
  ident: 10.1016/j.specom.2010.05.004_bib6
  article-title: Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.387491
– year: 1986
  ident: 10.1016/j.specom.2010.05.004_bib40
  article-title: Experiments on pattern recognition using invariant Fourier Mellin descriptors
  publication-title: J. Opt. Soc. Amer.
– volume: 115
  start-page: 2465
  issue: 5
  year: 2004
  ident: 10.1016/j.specom.2010.05.004_bib31
  article-title: Voice-onset time and buzz-onset time identification: A ROC analysis
  publication-title: J. Acoust. Soc. Amer.
  doi: 10.1121/1.4782392
– volume: 29
  start-page: 704
  issue: 5
  year: 1990
  ident: 10.1016/j.specom.2010.05.004_bib17
  article-title: Class of transforms invariant under shift, rotation, and scaling
  publication-title: Appl. Optics
  doi: 10.1364/AO.29.000704
– ident: 10.1016/j.specom.2010.05.004_bib26
  doi: 10.21437/Interspeech.2006-249
– start-page: 73
  year: 1983
  ident: 10.1016/j.specom.2010.05.004_bib47
  article-title: A Phenomenological Model for Vowel Production in the Vocal Tract
– ident: 10.1016/j.specom.2010.05.004_bib28
  doi: 10.21437/Eurospeech.1997-611
– volume: 102
  start-page: 28
  issue: 1
  year: 1997
  ident: 10.1016/j.specom.2010.05.004_bib3
  article-title: A study of temporal features and frequency characteristics in American English foreign accent
  publication-title: J. Acoust. Soc. Amer.
  doi: 10.1121/1.419608
– ident: 10.1016/j.specom.2010.05.004_bib23
  doi: 10.1109/ICASSP.2003.1198820
– year: 2001
  ident: 10.1016/j.specom.2010.05.004_bib33
– volume: 75
  start-page: 1231
  issue: 4
  year: 1984
  ident: 10.1016/j.specom.2010.05.004_bib39
  article-title: Perception of voice-onset-time continua: A signal detection analysis
  publication-title: J. Acoust. Soc. Amer.
  doi: 10.1121/1.390775
– ident: 10.1016/j.specom.2010.05.004_bib45
– volume: 96
  start-page: 3392
  issue: 6
  year: 1994
  ident: 10.1016/j.specom.2010.05.004_bib7
  article-title: Nonlinear analysis and detection of speech under stressed conditions
  publication-title: J. Acoust. Soc. Amer.
  doi: 10.1121/1.410601
– volume: 109
  start-page: 2474
  issue: 5
  year: 2001
  ident: 10.1016/j.specom.2010.05.004_bib35
  article-title: Acquisition of dialectal differences in English by native Japanese speakers
  publication-title: J. Acoust. Soc. Amer.
  doi: 10.1121/1.4744788
– volume: 17
  start-page: 556
  issue: 4
  year: 2009
  ident: 10.1016/j.specom.2010.05.004_bib32
  article-title: Vowel onset point detection using source, spectral peaks, and modulation spectrum energies
  publication-title: IEEE Trans. Audio, Signal, Lang. Process.
  doi: 10.1109/TASL.2008.2010884
– volume: 9
  start-page: 201
  issue: 2
  year: 2001
  ident: 10.1016/j.specom.2010.05.004_bib49
  article-title: Nonlinear feature based classification of speech under stress
  publication-title: IEEE Trans. Speech Audio Process.
  doi: 10.1109/89.905995
– year: 1993
  ident: 10.1016/j.specom.2010.05.004_bib29
– ident: 10.1016/j.specom.2010.05.004_bib11
– volume: 84
  start-page: 70
  year: 1988
  ident: 10.1016/j.specom.2010.05.004_bib15
  article-title: Factor affecting degree of perceived foreign accent in English sentences
  publication-title: J. Acoust. Soc. Amer.
  doi: 10.1121/1.396876
– year: 1986
  ident: 10.1016/j.specom.2010.05.004_bib41
  article-title: Circular Fourier radial Mellin transform descriptors for pattern recognition
  publication-title: J. Opt. Soc. Amer.
  doi: 10.1364/JOSAA.3.000885
– volume: 59
  start-page: 197
  issue: 4
  year: 2002
  ident: 10.1016/j.specom.2010.05.004_bib13
  article-title: On vowel height and consonantal voicing effects: Data from Italian, phonetica
  publication-title: Int. J. Phonetic Sci.
  doi: 10.1159/000068347
– ident: 10.1016/j.specom.2010.05.004_bib36
– volume: 41
  start-page: 3024
  issue: 10
  year: 1993
  ident: 10.1016/j.specom.2010.05.004_bib34
  article-title: Energy separation in signal modulations with applications to speech analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.277799
– volume: 30
  start-page: 277
  issue: 3
  year: 1987
  ident: 10.1016/j.specom.2010.05.004_bib21
  article-title: Intonation in English, French, and German: Perception and production
  publication-title: Lang. Speech
  doi: 10.1177/002383098703000307
– volume: 18
  start-page: 353
  year: 1996
  ident: 10.1016/j.specom.2010.05.004_bib2
  article-title: Language accent classification in American English
  publication-title: Speech Commun.
  doi: 10.1016/0167-6393(96)00024-6
– ident: 10.1016/j.specom.2010.05.004_bib25
– volume: 13
  start-page: 67
  issue: 1
  year: 2000
  ident: 10.1016/j.specom.2010.05.004_bib8
  article-title: English and Cantonese phonology in contrast: Explaining Cantonese ESL learners’ English pronunciation problems, language
  publication-title: Culture Curriculum
  doi: 10.1080/07908310008666590
– volume: 76
  start-page: 692
  year: 1984
  ident: 10.1016/j.specom.2010.05.004_bib14
  article-title: The selection of French accent by American listeners
  publication-title: J. Acoust. Soc. Amer.
  doi: 10.1121/1.391256
SSID ssj0004882
Score 2.1023479
Snippet Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in Arslan and Hansen...
Articulation characteristics of particular phonemes can provide cues to distinguish accents in spoken English. For example, as shown in (Arslan and Hansen,...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 777
SubjectTerms Accent classification
Algorithms
Applied sciences
Articulation
Classification
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Indian
Information, signal and communications theory
Mathematical models
Miscellaneous
Plugs
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Spectra
Spectral Analysis
Speech
Speech Perception
Speech processing
Stops
Teager Energy Operator (TEO)
Telecommunications and information theory
Voice
Voice Onset Region (VOR)
Voice Onset Time
Voice Onset Time (VOT)
Voicing
Title Automatic voice onset time detection for unvoiced stops (/ p/,/ t/,/ k/) with application to accent classification
URI https://dx.doi.org/10.1016/j.specom.2010.05.004
https://www.proquest.com/docview/758116080
https://www.proquest.com/docview/853229363
https://www.proquest.com/docview/864396203
Volume 52
WOSCitedRecordID wos000280917000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7182
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004882
  issn: 0167-6393
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKl8NKCEF5FZaVD2gFKqHOo3kcK9RlQVVBosv2FjmxI9iWJLRptfwJfjMzjpN0VS2FA4dEUeo0Vefz-PP4Gw8hL8Ap-nFgSsNj0jEc3-JGJBzTsCXyVWn5XNU6_DL2JhN_Ngs-tVq_qlyYzcJLU__qKsj_q6nhHhgbU2f_wdz1l8INuAajwxnMDue_MvxwXWTlPqybDLxAD-XShaoh3xOykHEtLlynqoHo4eYCKviKlXjhgL8dzkV9NVdXgc6Da1a8kbfyGOWdvRhJOKqOGkNrxvs5lzJGdftWIkrj9lIdAFICnrM6EP1uyUsNGm6sDUD8ypsQra7_fJFlWh2iYxao_2BVzEKHMcE9Azeyt_3wwNrGG9vyqp6u9FIO0F5Zc2jH95dhiMs3mKKafdeqPYyYOc1YV63vTz6Gp-fjcTgdzaYn-Q8Dq5Dhar0uyXKLHFgwkWJtcjB8P5p9aDJtfVV-rP79VTKmUgzuvvgmsnMn5yvogklZO2WHBihuM71H7upJCR2WYLpPWjLtkMdjHcpe0RM6rnffXnXIYT1q_uyQozLBm17IRcKXEtpWN7Ll_AHJajhShTaq4EgRjrSGIwU40gqOVMGRvuzn_df9Ao55_xVF6NEt6NEioyX06HXoPSTnp6Pp2zNDF_kwYse2CoMnruuzJGF8YCUBEzACSzNyAzcSPHAGnm0llmQDYUZ-ZHqR58Jn3A58RwjBOEvsR6SdZql8gio9AWTZtpBiOyLxI9eVjsNM6YhYxqbZJXZljTDWO-BjIZZFWEkdL8PShiHaMGSDEGzYJUb9VF7uALOnvVcZOtQstmSnIQB1z5PH13BRv86ygQvYnt8ltAJKCJ0Pl_Z4KrP1KgSwmqYLs7-bmwAvt4Dbu_YfmuD0xLWY_XR_k2fksOnZR6RdLNfyObkdb4pvq-Wx7je_AZHU6qw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+voice+onset+time+detection+for+unvoiced+stops+%28%2Fp%2F%2C%2Ft%2F%2C%2Fk%2F%29+with+application+to+accent+classification&rft.jtitle=Speech+communication&rft.au=Hansen%2C+John+HL&rft.au=Gray%2C+Sharmistha+S&rft.au=Kim%2C+Wooil&rft.date=2010-10-01&rft.issn=0167-6393&rft.volume=52&rft.issue=10&rft.spage=777&rft.epage=789&rft_id=info:doi/10.1016%2Fj.specom.2010.05.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6393&client=summon