State-of-Charge Estimation of Medium- and High-Voltage Batteries Using LSTM Neural Networks Optimized with Genetic Algorithms

This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48–72 V) lithium-i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 25; číslo 15; s. 4632
Hlavní autoři: Carrera, Romel, Quiroz, Leonidas, Guevara, Cesar, Acosta-Vargas, Patricia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 26.07.2025
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48–72 V) lithium-ion battery packs under standardized driving cycles (NEDC and WLTP). The proposed method enhances prediction accuracy under dynamic conditions by recalibrating the LSTM output with CC estimates through a dynamic fusion parameter α. The novelty of this approach lies in the integration of machine learning and physical modeling, optimized via evolutionary algorithms, to address limitations of standalone methods in real-time applications. The hybrid model achieved a mean absolute error (MAE) of 0.181%, outperforming conventional estimation strategies. These findings contribute to more reliable battery management systems (BMS) for electric vehicles and second-life applications.
AbstractList This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48-72 V) lithium-ion battery packs under standardized driving cycles (NEDC and WLTP). The proposed method enhances prediction accuracy under dynamic conditions by recalibrating the LSTM output with CC estimates through a dynamic fusion parameter α. The novelty of this approach lies in the integration of machine learning and physical modeling, optimized via evolutionary algorithms, to address limitations of standalone methods in real-time applications. The hybrid model achieved a mean absolute error (MAE) of 0.181%, outperforming conventional estimation strategies. These findings contribute to more reliable battery management systems (BMS) for electric vehicles and second-life applications.This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48-72 V) lithium-ion battery packs under standardized driving cycles (NEDC and WLTP). The proposed method enhances prediction accuracy under dynamic conditions by recalibrating the LSTM output with CC estimates through a dynamic fusion parameter α. The novelty of this approach lies in the integration of machine learning and physical modeling, optimized via evolutionary algorithms, to address limitations of standalone methods in real-time applications. The hybrid model achieved a mean absolute error (MAE) of 0.181%, outperforming conventional estimation strategies. These findings contribute to more reliable battery management systems (BMS) for electric vehicles and second-life applications.
This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48–72 V) lithium-ion battery packs under standardized driving cycles (NEDC and WLTP). The proposed method enhances prediction accuracy under dynamic conditions by recalibrating the LSTM output with CC estimates through a dynamic fusion parameter α. The novelty of this approach lies in the integration of machine learning and physical modeling, optimized via evolutionary algorithms, to address limitations of standalone methods in real-time applications. The hybrid model achieved a mean absolute error (MAE) of 0.181%, outperforming conventional estimation strategies. These findings contribute to more reliable battery management systems (BMS) for electric vehicles and second-life applications.
Author Quiroz, Leonidas
Acosta-Vargas, Patricia
Carrera, Romel
Guevara, Cesar
AuthorAffiliation 1 Universidad de las Fuerzas Armadas ESPE, Departamento de Ciencias de la Energía y Mecánica Sede Latacunga, Av. General Rumiñahui S/N, Sangolquí 171103, Ecuador; rdcarrera@espe.edu.ec (R.C.); laquiroz@espe.edu.ec (L.Q.)
3 Intelligent and Interactive Systems Laboratory, Universidad de Las Américas, Quito 170125, Ecuador
2 Quantitative Methods Department, CUNEF Universidad, 28040 Madrid, Spain; cesar.guevara@cunef.edu
AuthorAffiliation_xml – name: 2 Quantitative Methods Department, CUNEF Universidad, 28040 Madrid, Spain; cesar.guevara@cunef.edu
– name: 3 Intelligent and Interactive Systems Laboratory, Universidad de Las Américas, Quito 170125, Ecuador
– name: 1 Universidad de las Fuerzas Armadas ESPE, Departamento de Ciencias de la Energía y Mecánica Sede Latacunga, Av. General Rumiñahui S/N, Sangolquí 171103, Ecuador; rdcarrera@espe.edu.ec (R.C.); laquiroz@espe.edu.ec (L.Q.)
Author_xml – sequence: 1
  givenname: Romel
  orcidid: 0000-0002-6936-1889
  surname: Carrera
  fullname: Carrera, Romel
– sequence: 2
  givenname: Leonidas
  orcidid: 0000-0003-3556-4079
  surname: Quiroz
  fullname: Quiroz, Leonidas
– sequence: 3
  givenname: Cesar
  orcidid: 0000-0003-1571-5829
  surname: Guevara
  fullname: Guevara, Cesar
– sequence: 4
  givenname: Patricia
  orcidid: 0000-0003-4210-0117
  surname: Acosta-Vargas
  fullname: Acosta-Vargas, Patricia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40807798$$D View this record in MEDLINE/PubMed
BookMark eNpdkktv1DAURiNURB-w4A8gS2xgEfAribNCZVTaSlO6aMvW8uMm4yGJp7ZDBRL_HdMpo5bVta6Pjr5r38Nib_ITFMVrgj8w1uKPkVak4jWjz4oDwikvBaV479F5vziMcY0xZYyJF8U-xwI3TSsOit9XSSUofVcuVir0gE5icqNKzk_Id-gCrJvHEqnJojPXr8pvfkgqY59VShAcRHQT3dSj5dX1BfoKc1BDLunOh-8RXW6yy_0Ci-5cWqFTmCA5g46H3ofcGOPL4nmnhgivHupRcfPl5HpxVi4vT88Xx8vScEZTqZQ2xjRgtBWKkLoj1lSm0VbpuukqzEBr3NrK4larjpvGMMypwrTWgmtB2VFxvvVar9ZyE_KE4af0ysn7hg-9VCFHG0BiwkxtNBGcM96KWhnFG0w7gjEHgC67Pm1dm1mPYA1MKQ_9RPr0ZnIr2fsfktAszMGy4d2DIfjbGWKSo4sGhkFN4OcoGWUtx6Su2oy-_Q9d-zlM-a3uKSwaLEim3jyOtMvy75sz8H4LmOBjDNDtEILl3xWSuxVifwA_JrkX
Cites_doi 10.3390/wevj14070197
10.3390/en15051747
10.3390/app13105840
10.1016/j.apenergy.2019.114471
10.3390/en11071636
10.1038/s41598-023-32027-3
10.3390/s24030913
10.1016/j.jer.2023.100113
10.1038/s41598-024-76178-3
10.1016/j.est.2023.108245
10.1016/j.apenergy.2021.116812
10.3390/wevj11010023
10.1016/j.apenergy.2024.123508
10.1109/ICWITE59797.2024.10503251
10.1038/s41598-025-90374-9
10.1016/j.compeleceng.2025.110185
10.3390/wevj13060105
10.1038/s41598-025-99270-8
10.3390/s23062924
10.1038/s41598-024-66997-9
10.1016/j.energy.2024.130541
10.1016/j.est.2022.104211
10.1038/s41598-024-80371-9
10.1109/TIA.2020.3004294
10.1109/TITS.2024.3445161
10.1016/j.aej.2022.02.067
10.56155/978-81-975670-5-6-10
10.1038/s41598-024-61596-0
10.1109/ACCESS.2020.3031340
10.7717/peerj-cs.2690
10.1016/j.est.2023.108314
10.1016/j.rineng.2023.101283
10.3390/en15176490
10.3390/en16041950
10.1016/j.est.2023.108392
10.3390/jlpea14040059
10.1109/SPEEDAM61530.2024.10609085
10.1109/I2CT57861.2023.10126329
10.1016/j.energy.2022.125188
10.1016/j.egyai.2024.100367
10.1016/j.jpowsour.2004.02.031
10.1038/s41598-021-98915-8
10.3390/en18051106
10.3390/batteries9080425
10.1109/TVT.2020.3032201
10.1038/s41598-025-99321-0
10.1016/j.est.2024.112884
10.1109/ICESC51422.2021.9532912
10.3390/electronics12214433
10.1016/j.est.2022.104098
10.1186/s42162-024-00453-w
10.1016/j.measurement.2025.117595
10.3390/batteries11010001
10.20517/jmi.2024.84
10.3390/wevj12010038
10.3390/wevj16030168
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s25154632
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_013c6cb184434986aca4702f1004eeef
PMC12349304
40807798
10_3390_s25154632
Genre Journal Article
GrantInformation_xml – fundername: Universidad de Las Américas
  grantid: 489.A.XIV.24
– fundername: Junta de Comunidades de Castilla-La Mancha/ERDF
  grantid: SBPLY/21/180501/000030
– fundername: University of Castilla-La Mancha
  grantid: 2022-GRIN-34436
– fundername: Universidad de Las Américas—Ecuador
  grantid: 489.A.XIV.24
– fundername: MCIU/AEI/10.13039/501100011033 and ERDF, EU
  grantid: PRE2020-094056
– fundername: R+D+i projects
  grantid: PID2019-108915RB-I00; PID2022-140907OB-I00
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c432t-aabccc7ecbd8a116f1dc5c7bdab67f503ebb09d5d09baf4c7c3042a026b84b823
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001549752500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:31:47 EST 2025
Tue Nov 04 02:05:00 EST 2025
Thu Oct 02 21:51:47 EDT 2025
Tue Oct 07 07:38:38 EDT 2025
Mon Aug 18 01:32:37 EDT 2025
Sat Nov 29 07:14:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords SOC estimation
genetic algorithms
monitoring system
vehicle range
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-aabccc7ecbd8a116f1dc5c7bdab67f503ebb09d5d09baf4c7c3042a026b84b823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6936-1889
0000-0003-3556-4079
0000-0003-1571-5829
0000-0003-4210-0117
OpenAccessLink https://www.proquest.com/docview/3239087081?pq-origsite=%requestingapplication%
PMID 40807798
PQID 3239087081
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_013c6cb184434986aca4702f1004eeef
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12349304
proquest_miscellaneous_3239401659
proquest_journals_3239087081
pubmed_primary_40807798
crossref_primary_10_3390_s25154632
PublicationCentury 2000
PublicationDate 2025-07-26
PublicationDateYYYYMMDD 2025-07-26
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-26
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Guevara (ref_24) 2025; 11
ref_14
Jlifi (ref_26) 2025; 123
ref_57
ref_12
ref_56
ref_11
ref_10
Wu (ref_22) 2025; 5
ref_18
Tang (ref_30) 2024; 7
ref_16
Wei (ref_47) 2020; 8
Jain (ref_7) 2024; 97
Tian (ref_13) 2021; 291
Siva (ref_55) 2022; 49
Xing (ref_59) 2020; 261
ref_28
ref_27
Nan (ref_39) 2022; 261
Lee (ref_3) 2023; 72
Bhattacharya (ref_20) 2025; 47
Kumar (ref_15) 2023; 45
ref_36
ref_35
ref_34
ref_33
He (ref_52) 2020; 69
ref_32
ref_31
Adedeji (ref_23) 2023; 19
Plett (ref_1) 2004; 134
Yi (ref_17) 2024; 292
ref_38
Wang (ref_29) 2024; 368
ref_37
Ali (ref_9) 2022; 61
Chen (ref_48) 2022; 53
Lu (ref_25) 2024; 17
Shi (ref_4) 2023; 72
ref_46
ref_45
ref_44
ref_43
ref_42
ref_41
Bui (ref_58) 2024; 25
ref_40
Kumari (ref_53) 2023; 11
Zhang (ref_54) 2022; 50
ref_2
ref_49
ref_8
Gok (ref_19) 2025; 253
Xiang (ref_21) 2023; 72
ref_5
How (ref_51) 2020; 56
ref_6
References_xml – ident: ref_28
  doi: 10.3390/wevj14070197
– ident: ref_38
  doi: 10.3390/en15051747
– ident: ref_6
  doi: 10.3390/app13105840
– volume: 261
  start-page: 114471
  year: 2020
  ident: ref_59
  article-title: Energy oriented driving behavior analysis and personalized prediction of vehicle states with joint time series modeling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114471
– ident: ref_10
  doi: 10.3390/en11071636
– ident: ref_31
  doi: 10.1038/s41598-023-32027-3
– ident: ref_36
  doi: 10.3390/s24030913
– volume: 11
  start-page: 158
  year: 2023
  ident: ref_53
  article-title: Electric vehicle battery state-of-charge estimation based on optimized deep learning strategy with varying temperature at different C Rate
  publication-title: J. Eng. Res.
  doi: 10.1016/j.jer.2023.100113
– ident: ref_32
  doi: 10.1038/s41598-024-76178-3
– volume: 72
  start-page: 108245
  year: 2023
  ident: ref_4
  article-title: An improved adaptive square root cubature Kalman filter method for estimating state-of-charge of lithium-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.108245
– volume: 291
  start-page: 116812
  year: 2021
  ident: ref_13
  article-title: State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116812
– ident: ref_41
  doi: 10.3390/wevj11010023
– volume: 368
  start-page: 123508
  year: 2024
  ident: ref_29
  article-title: State of charge estimation of lithium-ion battery based on GA-LSTM with improved IAKF
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123508
– ident: ref_56
  doi: 10.1109/ICWITE59797.2024.10503251
– volume: 45
  start-page: 10661
  year: 2023
  ident: ref_15
  article-title: Advanced Intelligent approach for state of charge estimation of lithium-ion battery
  publication-title: Energy Sources Part A Recover. Util. Environ. Eff.
– ident: ref_34
  doi: 10.1038/s41598-025-90374-9
– volume: 123
  start-page: 110185
  year: 2025
  ident: ref_26
  article-title: A Genetic Algorithm based Three HyperParameter optimization of Deep Long Short Term Memory (GA3P-DLSTM) for Predicting Electric Vehicles energy consumption
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2025.110185
– ident: ref_49
  doi: 10.3390/wevj13060105
– ident: ref_33
  doi: 10.1038/s41598-025-99270-8
– ident: ref_2
  doi: 10.3390/s23062924
– ident: ref_8
  doi: 10.1038/s41598-024-66997-9
– volume: 292
  start-page: 130541
  year: 2024
  ident: ref_17
  article-title: Lithium-ion battery expansion mechanism and Gaussian process regression based state of charge estimation with expansion characteristics
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130541
– volume: 50
  start-page: 104211
  year: 2022
  ident: ref_54
  article-title: Intelligent state of charge estimation of battery pack based on particle swarm optimization algorithm improved radical basis function neural network
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104211
– ident: ref_12
  doi: 10.1038/s41598-024-80371-9
– volume: 56
  start-page: 5565
  year: 2020
  ident: ref_51
  article-title: State-of-Charge Estimation of Li-Ion Battery in Electric Vehicles: A Deep Neural Network Approach
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2020.3004294
– volume: 25
  start-page: 18171
  year: 2024
  ident: ref_58
  article-title: Real-Time Prediction of Remaining Driving Range for Electric Motorcycle Applications
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2024.3445161
– volume: 61
  start-page: 9831
  year: 2022
  ident: ref_9
  article-title: On-line WSN SoC estimation using Gaussian Process Regression: An Adaptive Machine Learning Approach
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.02.067
– ident: ref_18
  doi: 10.56155/978-81-975670-5-6-10
– ident: ref_40
  doi: 10.1038/s41598-024-61596-0
– volume: 8
  start-page: 189236
  year: 2020
  ident: ref_47
  article-title: State of charge estimation of lithium-ion batteries using LSTM and NARX neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031340
– volume: 11
  start-page: e2690
  year: 2025
  ident: ref_24
  article-title: Stock market trading via actor-critic reinforcement learning and adaptable data structure
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.2690
– volume: 72
  start-page: 108314
  year: 2023
  ident: ref_21
  article-title: A comprehensive study on state-of-charge and state-of-health estimation of sodium-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.108314
– volume: 19
  start-page: 101283
  year: 2023
  ident: ref_23
  article-title: Electric vehicles survey and a multifunctional artificial neural network for predicting energy consumption in all-electric vehicles
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101283
– ident: ref_50
  doi: 10.3390/en15176490
– ident: ref_57
  doi: 10.3390/en16041950
– volume: 72
  start-page: 108392
  year: 2023
  ident: ref_3
  article-title: Battery state-of-charge estimation using data-driven Gaussian process Kalman filters
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.108392
– ident: ref_37
  doi: 10.3390/jlpea14040059
– ident: ref_14
  doi: 10.1109/SPEEDAM61530.2024.10609085
– ident: ref_16
  doi: 10.1109/I2CT57861.2023.10126329
– volume: 261
  start-page: 125188
  year: 2022
  ident: ref_39
  article-title: From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125188
– volume: 17
  start-page: 100367
  year: 2024
  ident: ref_25
  article-title: GA-LSTM speed prediction-based DDQN energy management for extended-range vehicles
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2024.100367
– volume: 134
  start-page: 252
  year: 2004
  ident: ref_1
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.02.031
– ident: ref_46
  doi: 10.1038/s41598-021-98915-8
– ident: ref_43
  doi: 10.3390/en18051106
– ident: ref_44
  doi: 10.3390/batteries9080425
– volume: 69
  start-page: 14618
  year: 2020
  ident: ref_52
  article-title: A Method of State-of-Charge Estimation for EV Power Lithium-Ion Battery Using a Novel Adaptive Extended Kalman Filter
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3032201
– ident: ref_35
  doi: 10.1038/s41598-025-99321-0
– volume: 97
  start-page: 112884
  year: 2024
  ident: ref_7
  article-title: Machine learning framework using on-road realtime data for battery SoC level prediction in electric two-wheelers
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.112884
– ident: ref_11
  doi: 10.1109/ICESC51422.2021.9532912
– ident: ref_27
  doi: 10.3390/electronics12214433
– volume: 49
  start-page: 104098
  year: 2022
  ident: ref_55
  article-title: Machine learning-based model development for battery state of charge–open circuit voltage relationship using regression techniques
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104098
– volume: 7
  start-page: 147
  year: 2024
  ident: ref_30
  article-title: Prediction of lithium-ion battery SOC based on IGA-GRU and the fusion of multi-head attention mechanism
  publication-title: Energy Inform.
  doi: 10.1186/s42162-024-00453-w
– volume: 253
  start-page: 117595
  year: 2025
  ident: ref_19
  article-title: Robust state of charge prediction for lithium-ion batteries in diverse operating environments via machine learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2025.117595
– volume: 47
  start-page: 9413
  year: 2025
  ident: ref_20
  article-title: Enhancing state of charge estimation accuracy in lithium-ion batteries through adaptive incremental learning under ambient temperature variability
  publication-title: Energy Sources Part A Recover. Util. Environ. Eff.
– ident: ref_45
  doi: 10.3390/batteries11010001
– volume: 5
  start-page: 18
  year: 2025
  ident: ref_22
  article-title: Advancements in the estimation of the state of charge of lithium-ion battery: A comprehensive review of traditional and deep learning approaches
  publication-title: J. Mater. Inf.
  doi: 10.20517/jmi.2024.84
– ident: ref_5
  doi: 10.3390/wevj12010038
– ident: ref_42
  doi: 10.3390/wevj16030168
– volume: 53
  start-page: 102614
  year: 2022
  ident: ref_48
  article-title: Density-based clustering multiple linear regression model of energy consumption for electric vehicles
  publication-title: Sustain. Energy Technol. Assess.
SSID ssj0023338
Score 2.4554312
Snippet This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4632
SubjectTerms Accuracy
Batteries
Deep learning
Electric vehicles
Embedded systems
Genetic algorithms
Lithium
Machine learning
monitoring system
Neural networks
Optimization
Parameter identification
SOC estimation
Support vector machines
vehicle range
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQ1QMcEN8EWmQQV6tO7MTOsVSteoAFiYJ6i-yxU1bqJmizywGJ_85MnF3tIiQuXG0rdjzj8Tx7_Iaxt0YCeFClaJUMCFBqELZoS1GBDFYq7UvlxmQTZjaz19f1p51UXxQTluiB08SdoIsCFXgEIlrp2lYOnDayaInpLMbYkvWVpt6AqQlqKUReiUdIIag_GXAXJ973Ym_3GUn6_-ZZ_hkgubPjXDxg9ydXkZ-mIT5kd2L3iN3bIRB8zH6NvqLoW0HX5jeRn-OKTY8Red9yuoVZLwR3XeAU0CG-9rcrNCA8sWoiSOZjyAB___nqAyeeDuxvlgLDB_4Rrcli_jMGToe1nAiqcST89PamX2LBYnjCvlycX51diimhggCtipVwzgOAieCDdXletXmAEowPzlemLaWK3ss6lEHW3rUaDNBhh0OY5q32tlBP2UHXd_E547mOhhgMgqdIUWWcCvjZAmIe0GJ4l7E3m4luvifejAbxBkmj2UojY-9IBNsGRHU9FqACNJMCNP9SgIwdbQTYTOtvaFSBHaEpsnnGXm-rceXQdYjrYr9ObTS95qoz9izJezsSjY60MbXNmN3ThL2h7td0828jOze6ArrGeXvxP37uJbtbUMJhaURRHbGD1XIdj9kh_FjNh-WrUed_A1wpCZo
  priority: 102
  providerName: Directory of Open Access Journals
Title State-of-Charge Estimation of Medium- and High-Voltage Batteries Using LSTM Neural Networks Optimized with Genetic Algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/40807798
https://www.proquest.com/docview/3239087081
https://www.proquest.com/docview/3239401659
https://pubmed.ncbi.nlm.nih.gov/PMC12349304
https://doaj.org/article/013c6cb184434986aca4702f1004eeef
Volume 25
WOSCitedRecordID wos001549752500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceD8CS2UQV2uT2ImdE9pFXYFESwULKqfIr3QrbZOlaTkgwW9nxkm7W4S4cMnBcZJR5uGZ8fgbQl7J2FpjecYqHjsIUArLVFplLLexUzEXJuM6NJuQ47GaTotJn3Br-7LKjU0Mhto1FnPkhzyF6ByESyWvL74x7BqFu6t9C43rZB_bZqOcy-llwMUh_urQhDg8fNjCWo7o7-nOGhSg-v_mX_5ZJnll3Tm5878U3yW3e4-THnUico9c8_V9cusKDuED8jO4nKypGO6-zzwdguJ3ZxppU1HczFkvGNW1o1gXwr405yuwQ7QD54RYm4bKA_r-0-mIItwHfG_c1Ze39AMYpcX8h3cUc74Uca6BEnp0PgNiV2eL9iH5fDI8ffOW9X0ZmBU8XTGtjbVWemuc0kmSV4mzmZXGaZPLKou5NyYuXObiwuhKWGkxZ6Ih2jNKGJXyR2Svbmr_hNBEeIlACM5gwSmXmjt4bWp94sDwGB2RlxtOlRcd_EYJYQuys9yyMyLHyMPtBETMDgPNclb2CliCq2tzayCgFVwUKtdWCxmnFSLmee-riBxsuFj2atyWlyyMyIvtbVBA3FXRtW_W3RyBh8KKiDzuBGZLiQB_XMpCRUTtiNIOqbt36vlZAPkGj0IU8N-e_puuZ-Rmih2JY8nS_IDsrZZr_5zcsN9X83Y5COoQrmpA9o-H48nHQcg6wHX0awhjk3ejydff34seVA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VBQk48P1hKLAgOK5qe9de-4BQgVatmgYkAurN3S-nkRq7xAkIJP4Sv5EZO0kbhLj1wNW27PH6-Xmed_YNwAsVWmusSHgpQocCJbc8i8uEpzZ0WSikSYRum02ofj87PMw_rMGvxVoYKqtccGJL1K629I98U8SozhFcWfT69AunrlE0u7poodHBYt9__4aSrXm19w6f78s43tkevN3l864C3EoRT7nWxlqrvDUu01GUlpGziVXGaZOqMgmFNybMXeLC3OhSWmVJ8WvUKiaTJiOjA6T8S8jjisSeOjwTeAL1XudeJDDYzQZzB3Kbj1e-eW1rgL_ls3-WZZ77zu3c-N9G6CZcn2fUbKt7BW7Bmq9uw7VzPot34GebUvO65FRdMPRsG4mtW7PJ6pLRZNVszJmuHKO6F_65Ppkiz7LOfHTkG9ZWVrDex8EBIzsTvF6_q59v2Hsk3fHoh3eM_mkz8vHGSNjWyRAHZ3o8bu7Cpwu5_3uwXtWVfwAskl6R0YMzVFArlBYOTxtbHzkkVqMDeL5ARnHa2YsUKMsIPsUSPgG8IcwsDyBH8HZDPRkWc4IpMJW3qTUo2KWQeZZqq6UK45IcAb33ZQAbC9QUc5pqijPIBPBsuRsJhmaNdOXrWXeMpEVveQD3O4AuI5GoN5TKswCyFeiuhLq6pxodtybmmDHJHMft4b_jegpXdgcHvaK3199_BFdj6r4cKh6nG7A-ncz8Y7hsv05HzeRJ-yoyOLpoZP8G9Np5Og
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VKUKw4P0wFBgQLEexPWOPvUCo0EZEbUMkCmpXZl5OIzV2iRMQSPwYX8e9foQGIXZdsLUt-3p8fHyP5865hDyXvjHa8Ijl3LcgUFLDkjCPWGx8m_hc6IirutmEHI2So6N0vEF-dmthsKyy48SaqG1p8B95n4egzgFcSdDP27KI8c7g1dlnhh2kcKa1a6fRQGTPffsK8q16OdyBZ_0iDAe7h2_esrbDADOChwumlDbGSGe0TVQQxHlgTWSktkrHMo987rT2UxtZP9UqF0YaVP8KdItOhE7Q9ADofxNSchH2yOZ4eDA-Xsk9Duqv8TLiEHq_gkwCvefDtS9g3Sjgb9ntn0Wa5756g-v_83jdINfaXJtuNy_HTbLhilvk6jkHxtvkR51sszJnWHcwcXQXKK9ZzUnLnOI01nLGqCosxYoY9rE8XQAD08aWdOoqWtdc0P33hwcUjU7geqOmsr6i74COZ9PvzlL8203R4RsiodunExicxcmsukM-XMj93yW9oizcfUID4SRaQFiNpbZcKm7htKFxgQXK1cojzzqUZGeN8UgGgg2hlK2g5JHXiJ_VAegVXm8o55OspZ4MknwTGw1SXnCRJrEySkg_zNEr0DmXe2SrQ1DWEliV_YaPR56udgP14HySKly5bI4RuBwu9ci9BqyrSAQoESnTxCPJGozXQl3fU0xPantzyKVECuP24N9xPSGXAdDZ_nC095BcCbEtsy9ZGG-R3mK-dI_IJfNlMa3mj9v3kpJPFw3tX973g4k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-Charge+Estimation+of+Medium-+and+High-Voltage+Batteries+Using+LSTM+Neural+Networks+Optimized+with+Genetic+Algorithms&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Carrera%2C+Romel&rft.au=Quiroz%2C+Leonidas&rft.au=Guevara%2C+Cesar&rft.au=Acosta-Vargas%2C+Patricia&rft.date=2025-07-26&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=15&rft_id=info:doi/10.3390%2Fs25154632&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon