Forward–backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators

In this paper, we construct a forward–backward splitting algorithm for approximating a zero of the sum of an α -inverse strongly monotone operator and a maximal monotone operator. The strong convergence theorem is then proved under mild conditions. Then, we add a nonexpansive mapping in the algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian Journal of Mathematics Jg. 9; H. 1; S. 89 - 99
Hauptverfasser: Dadashi, Vahid, Postolache, Mihai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2020
Springer
Springer Nature B.V
Schlagworte:
ISSN:2193-5343, 2193-5351, 2193-5351
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we construct a forward–backward splitting algorithm for approximating a zero of the sum of an α -inverse strongly monotone operator and a maximal monotone operator. The strong convergence theorem is then proved under mild conditions. Then, we add a nonexpansive mapping in the algorithm and prove that the generated sequence converges strongly to a common element of a fixed points set of a nonexpansive mapping and zero points set of the sum of monotone operators. We apply our main result both to equilibrium problems and convex programming.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2193-5343
2193-5351
2193-5351
DOI:10.1007/s40065-018-0236-2