Forward–backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators
In this paper, we construct a forward–backward splitting algorithm for approximating a zero of the sum of an α -inverse strongly monotone operator and a maximal monotone operator. The strong convergence theorem is then proved under mild conditions. Then, we add a nonexpansive mapping in the algorith...
Uloženo v:
| Vydáno v: | Arabian Journal of Mathematics Ročník 9; číslo 1; s. 89 - 99 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2020
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 2193-5343, 2193-5351, 2193-5351 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we construct a forward–backward splitting algorithm for approximating a zero of the sum of an
α
-inverse strongly monotone operator and a maximal monotone operator. The strong convergence theorem is then proved under mild conditions. Then, we add a nonexpansive mapping in the algorithm and prove that the generated sequence converges strongly to a common element of a fixed points set of a nonexpansive mapping and zero points set of the sum of monotone operators. We apply our main result both to equilibrium problems and convex programming. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2193-5343 2193-5351 2193-5351 |
| DOI: | 10.1007/s40065-018-0236-2 |