An annual load forecasting model based on support vector regression with differential evolution algorithm
Annual load forecasting is very important for the electric power industry. As influenced by various factors, an annual load curve shows a non-linear characteristic, which demonstrates that the annual load forecasting is a non-linear problem. Support vector regression (SVR) is proven to be useful in...
Gespeichert in:
| Veröffentlicht in: | Applied energy Jg. 94; S. 65 - 70 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier Ltd
01.06.2012
Elsevier |
| Schlagworte: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Annual load forecasting is very important for the electric power industry. As influenced by various factors, an annual load curve shows a non-linear characteristic, which demonstrates that the annual load forecasting is a non-linear problem. Support vector regression (SVR) is proven to be useful in dealing with non-linear forecasting problems in recent years. The key point in using SVR for forecasting is how to determine the appropriate parameters. This paper proposes a hybrid load forecasting model combining differential evolution (DE) algorithm and support vector regression to deal with this problem, where the DE algorithm is used to choose the appropriate parameters for the SVR load forecasting model. The effectiveness of this model has been proved by the final simulation which shows that the proposed model outperforms the SVR model with default parameters, back propagation artificial neural network (BPNN) and regression forecasting models in the annual load forecasting. |
|---|---|
| AbstractList | Annual load forecasting is very important for the electric power industry. As influenced by various factors, an annual load curve shows a non-linear characteristic, which demonstrates that the annual load forecasting is a non-linear problem. Support vector regression (SVR) is proven to be useful in dealing with non-linear forecasting problems in recent years. The key point in using SVR for forecasting is how to determine the appropriate parameters. This paper proposes a hybrid load forecasting model combining differential evolution (DE) algorithm and support vector regression to deal with this problem, where the DE algorithm is used to choose the appropriate parameters for the SVR load forecasting model. The effectiveness of this model has been proved by the final simulation which shows that the proposed model outperforms the SVR model with default parameters, back propagation artificial neural network (BPNN) and regression forecasting models in the annual load forecasting. |
| Author | Niu, Dongxiao Li, Li Wang, Jianjun Tan, Zhongfu |
| Author_xml | – sequence: 1 givenname: Jianjun surname: Wang fullname: Wang, Jianjun email: wangjianjunhd@gmail.com organization: School of Economic and Management Administration, North China Electric Power University, Beijing 102206, China – sequence: 2 givenname: Li surname: Li fullname: Li, Li organization: School of Economics & Business Administration, Beijing Information Science & Technology University, Beijing 100085, China – sequence: 3 givenname: Dongxiao surname: Niu fullname: Niu, Dongxiao organization: School of Economic and Management Administration, North China Electric Power University, Beijing 102206, China – sequence: 4 givenname: Zhongfu surname: Tan fullname: Tan, Zhongfu organization: School of Economic and Management Administration, North China Electric Power University, Beijing 102206, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25703636$$DView record in Pascal Francis |
| BookMark | eNqFkU9vEzEQxS1UJNLCVwBfkLhs8J-Nd1fiQFUBrVSJA-VsTbzj4MixF9ubqt8er9JeuEQayYf5zXueN5fkIsSAhLznbM0ZV5_3a5gwYNo9rQXjYs14LfaKrHjfiWbgvL8gKyaZaoTiwxtymfOeMSa4YCvirgOFEGbw1EcYqY0JDeTiwo4e4oiebiHjSGOgeZ6mmAo9oikx0YS7hDm72nl05Q8dnbWYMBRXtfAY_VyWHvhdTLV_eEteW_AZ3z2_V-Th-7eHm9vm_uePu5vr-8a0UpSmZ13HsWs7Kwbbqi22vQEcRlAgpOlZy0wnuei3COPAWjEYaWRvQWw7Ya2SV-TTSXZK8e-MueiDywa9h4BxzlrU1RmXvWjPojVdLjhnglX04zMK2YC3CYJxWU_JHSA9abHpmFRycf9y4kyKOSe02rgCSxAlgfNVclFVeq9fbqaXm2nGay026r_xF4ezgx9Ogxaihl2qf_v9qwJq2XajNn0lvp4IrNkfHSadjcNgcHT14kWP0Z0z-Qfwh8HH |
| CODEN | APENDX |
| CitedBy_id | crossref_primary_10_3390_en12071331 crossref_primary_10_3390_ma8010117 crossref_primary_10_1155_2024_5587728 crossref_primary_10_1016_j_energy_2018_09_027 crossref_primary_10_1007_s11277_018_5324_2 crossref_primary_10_1016_j_apenergy_2017_07_009 crossref_primary_10_1016_j_eti_2023_103179 crossref_primary_10_1016_j_jobe_2025_113765 crossref_primary_10_1016_j_egypro_2018_09_245 crossref_primary_10_1016_j_energy_2020_118209 crossref_primary_10_1007_s00521_012_0980_8 crossref_primary_10_1016_j_jclepro_2021_129246 crossref_primary_10_1016_j_ijepes_2013_01_019 crossref_primary_10_1016_j_asoc_2024_112611 crossref_primary_10_1080_15435075_2020_1731816 crossref_primary_10_1155_2017_7427131 crossref_primary_10_52254_1857_0070_2025_1_65_02 crossref_primary_10_1007_s00366_016_0433_6 crossref_primary_10_3390_en11061561 crossref_primary_10_3390_en9100767 crossref_primary_10_1016_j_apenergy_2013_04_028 crossref_primary_10_1016_j_compstruc_2023_107002 crossref_primary_10_1016_j_jher_2021_12_003 crossref_primary_10_1016_j_apenergy_2017_03_070 crossref_primary_10_1016_j_energy_2019_116778 crossref_primary_10_3390_rs17111926 crossref_primary_10_1080_19392699_2022_2064454 crossref_primary_10_1016_j_asoc_2014_07_015 crossref_primary_10_1016_j_energy_2017_03_009 crossref_primary_10_3390_en5103948 crossref_primary_10_1002_er_8207 crossref_primary_10_1016_j_asoc_2017_07_017 crossref_primary_10_1016_j_cie_2016_07_012 crossref_primary_10_1016_j_marpetgeo_2022_105597 crossref_primary_10_1016_j_rser_2018_02_002 crossref_primary_10_1007_s12145_022_00830_7 crossref_primary_10_1007_s11063_017_9627_1 crossref_primary_10_1016_j_knosys_2022_108682 crossref_primary_10_1016_j_apenergy_2016_01_050 crossref_primary_10_1016_j_jclepro_2022_130407 crossref_primary_10_1109_JAS_2023_123192 crossref_primary_10_1016_j_apenergy_2014_12_020 crossref_primary_10_1016_j_egypro_2017_03_590 crossref_primary_10_1155_2013_374826 crossref_primary_10_1016_j_enconman_2017_04_077 crossref_primary_10_1016_j_asr_2024_06_018 crossref_primary_10_1007_s10878_016_0027_7 crossref_primary_10_3390_en16010285 crossref_primary_10_1016_j_jhydrol_2020_125423 crossref_primary_10_1016_j_enconman_2015_10_066 crossref_primary_10_1175_JHM_D_16_0109_1 crossref_primary_10_1155_2013_158056 crossref_primary_10_1016_j_engappai_2020_104000 crossref_primary_10_1016_j_apenergy_2014_07_064 crossref_primary_10_1049_iet_gtd_2019_0797 crossref_primary_10_3390_atmos12030336 crossref_primary_10_1051_matecconf_20167010010 crossref_primary_10_1155_2013_760860 crossref_primary_10_1016_j_enbuild_2016_05_028 crossref_primary_10_1016_j_apenergy_2019_01_046 crossref_primary_10_1016_j_enconman_2015_07_041 crossref_primary_10_1109_ACCESS_2023_3250110 crossref_primary_10_1016_j_jhydrol_2021_126929 crossref_primary_10_3390_en5114430 crossref_primary_10_1155_2015_798325 crossref_primary_10_3390_en9120994 crossref_primary_10_1088_1742_6596_1970_1_012002 crossref_primary_10_1016_j_enconman_2012_08_001 crossref_primary_10_1016_j_apenergy_2017_02_054 crossref_primary_10_1016_j_csite_2025_106005 crossref_primary_10_1016_j_energy_2018_04_078 crossref_primary_10_1016_j_ijepes_2013_07_017 crossref_primary_10_1016_j_ijepes_2019_03_069 crossref_primary_10_1109_ACCESS_2022_3192433 crossref_primary_10_1109_TIM_2021_3119129 crossref_primary_10_3390_en15207584 crossref_primary_10_1016_j_energy_2017_03_094 crossref_primary_10_1007_s00202_024_02273_3 crossref_primary_10_1016_j_combustflame_2021_111852 crossref_primary_10_1007_s00500_022_07437_6 crossref_primary_10_1186_s40537_023_00706_7 crossref_primary_10_3390_w13020241 crossref_primary_10_1016_j_rser_2020_109839 crossref_primary_10_3390_en9120987 crossref_primary_10_1007_s10706_017_0238_4 crossref_primary_10_1016_j_energy_2018_04_072 crossref_primary_10_1049_tje2_12146 crossref_primary_10_1016_j_energy_2016_09_065 crossref_primary_10_1016_j_energy_2018_10_113 crossref_primary_10_3390_math11214561 crossref_primary_10_1007_s10586_018_1927_3 crossref_primary_10_3390_rs15082188 crossref_primary_10_1016_j_energy_2016_11_034 crossref_primary_10_1038_s41598_022_19935_6 crossref_primary_10_1016_j_energy_2017_01_150 crossref_primary_10_1371_journal_pone_0238129 crossref_primary_10_3233_JIFS_169075 crossref_primary_10_1016_j_enbuild_2017_05_003 crossref_primary_10_1016_j_egyr_2020_11_171 crossref_primary_10_1016_j_energy_2016_04_009 crossref_primary_10_1016_j_jenvman_2021_113783 crossref_primary_10_1186_s42162_025_00552_2 crossref_primary_10_3390_rs12213620 crossref_primary_10_3233_ICA_160510 crossref_primary_10_1016_j_apenergy_2021_116452 crossref_primary_10_1016_j_asoc_2017_01_022 crossref_primary_10_1007_s11047_016_9601_2 crossref_primary_10_3390_en12244612 crossref_primary_10_3390_en14102779 crossref_primary_10_1016_j_enconman_2014_06_045 crossref_primary_10_1016_j_compchemeng_2017_11_020 crossref_primary_10_3390_app6020054 crossref_primary_10_1016_j_apenergy_2016_10_079 crossref_primary_10_1007_s00521_013_1357_3 crossref_primary_10_1109_TSTE_2018_2883393 crossref_primary_10_1007_s11071_022_07565_6 crossref_primary_10_3390_app10093224 crossref_primary_10_3390_pr12122909 crossref_primary_10_1007_s00202_020_01126_z crossref_primary_10_1155_2015_918305 crossref_primary_10_1016_j_ejor_2018_11_003 crossref_primary_10_1371_journal_pone_0285456 crossref_primary_10_3390_app6010020 crossref_primary_10_1080_10106049_2021_1926558 crossref_primary_10_1002_ese3_439 crossref_primary_10_1016_j_cie_2021_107182 crossref_primary_10_1016_j_agrformet_2024_110038 crossref_primary_10_1016_j_egyr_2022_12_044 crossref_primary_10_1038_s41598_023_43496_x crossref_primary_10_1016_j_apenergy_2022_118937 crossref_primary_10_1016_j_fuproc_2014_09_001 crossref_primary_10_1016_j_enconman_2022_116131 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123782 crossref_primary_10_1007_s13198_019_00879_6 crossref_primary_10_1016_j_jhydrol_2020_125033 crossref_primary_10_1007_s10489_016_0810_2 crossref_primary_10_1007_s11356_023_27799_0 crossref_primary_10_1109_ACCESS_2019_2914697 crossref_primary_10_1016_j_ijmecsci_2022_107820 crossref_primary_10_1016_j_compeleceng_2017_09_028 crossref_primary_10_1016_j_knosys_2012_08_015 crossref_primary_10_1016_j_apenergy_2016_02_114 crossref_primary_10_1007_s40747_023_01199_w crossref_primary_10_1016_j_scs_2016_12_006 crossref_primary_10_1049_iet_gtd_2016_0340 crossref_primary_10_1080_02286203_2018_1564809 crossref_primary_10_3233_JIFS_190548 crossref_primary_10_1155_2016_9895639 crossref_primary_10_1016_j_energy_2016_09_015 crossref_primary_10_1080_21622515_2020_1836035 crossref_primary_10_3390_rs14081803 crossref_primary_10_1038_s41598_023_41113_5 crossref_primary_10_1155_2013_292575 crossref_primary_10_1016_j_apenergy_2016_07_113 crossref_primary_10_3233_JIFS_181717 crossref_primary_10_1109_TSG_2025_3538012 crossref_primary_10_1016_j_gsf_2020_10_009 crossref_primary_10_1016_j_apenergy_2019_01_127 crossref_primary_10_1016_j_apenergy_2023_122413 crossref_primary_10_3390_electronics7120431 crossref_primary_10_1016_j_apenergy_2021_117393 crossref_primary_10_3390_s22207900 crossref_primary_10_1007_s00500_023_08291_w crossref_primary_10_1007_s00521_014_1685_y crossref_primary_10_3390_chemosensors10030090 crossref_primary_10_1016_j_egypro_2019_01_931 crossref_primary_10_1016_j_jconhyd_2023_104195 |
| Cites_doi | 10.1016/j.ijforecast.2009.05.015 10.1016/S0142-0615(01)00086-2 10.1016/j.epsr.2005.01.006 10.1016/j.eswa.2009.12.031 10.1016/S0196-8904(02)00225-X 10.1016/j.eswa.2007.11.014 10.1016/j.eswa.2008.03.006 10.1016/j.eswa.2009.08.019 10.1016/j.epsr.2010.03.010 10.1109/TPWRS.2004.835679 10.1016/j.knosys.2010.02.003 10.1016/j.energy.2008.05.008 10.1016/j.epsr.2008.02.009 10.1016/S0378-7796(96)01114-5 10.1016/j.apm.2008.07.010 10.1016/S0196-8904(02)00148-6 10.1016/j.asoc.2007.12.008 10.1162/089976600300015565 10.1016/S0925-2312(98)00073-3 10.1016/j.patcog.2009.01.011 10.1016/j.enconman.2008.08.031 10.1109/TPWRS.2006.873410 10.1016/0378-7796(95)00977-1 10.1109/59.910780 10.1016/j.enconman.2004.01.006 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Ltd 2014 INIST-CNRS |
| Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2014 INIST-CNRS |
| DBID | FBQ AAYXX CITATION IQODW 7ST C1K SOI 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2012.01.010 |
| DatabaseName | AGRIS CrossRef Pascal-Francis Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Environment Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences Applied Sciences |
| EISSN | 1872-9118 |
| EndPage | 70 |
| ExternalDocumentID | 25703636 10_1016_j_apenergy_2012_01_010 US201600005658 S0306261912000165 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYOK ABEFU ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZY4 ~02 ~G- ABPIF ABPTK FBQ 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7ST C1K SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c432t-80771e747f29f46be48cae9da6a23c8040c73128bead90429c3c38fa2b72ff63 |
| ISICitedReferencesCount | 201 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302842800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 05:55:21 EDT 2025 Tue Oct 07 09:10:00 EDT 2025 Mon Jul 21 09:16:52 EDT 2025 Tue Nov 18 22:44:00 EST 2025 Sat Nov 29 07:18:49 EST 2025 Wed Dec 27 18:45:46 EST 2023 Fri Feb 23 02:36:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Annual load forecasting Support vector regression (SVR) Differential evolution (DE) |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c432t-80771e747f29f46be48cae9da6a23c8040c73128bead90429c3c38fa2b72ff63 |
| Notes | http://dx.doi.org/10.1016/j.apenergy.2012.01.010 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1011211020 |
| PQPubID | 23462 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_2000013824 proquest_miscellaneous_1011211020 pascalfrancis_primary_25703636 crossref_citationtrail_10_1016_j_apenergy_2012_01_010 crossref_primary_10_1016_j_apenergy_2012_01_010 fao_agris_US201600005658 elsevier_sciencedirect_doi_10_1016_j_apenergy_2012_01_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-06-01 |
| PublicationDateYYYYMMDD | 2012-06-01 |
| PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Applied energy |
| PublicationYear | 2012 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Mamlook, Badran, Abdulhadi (b0035) 2008; 1 Wu, Wang, Yuan, Zhou (b0125) 2010; 80 Kermanshahi (b0070) 1998; 23 Hsu, Chen (b0040) 2003; 44 Hippert, Pedreira, Souza (b0075) 2001; 16 Pappas, Ekonomou, Karamousantas, Chatzarakis, Katsikas, Liatsis (b0020) 2008; 33 Avci (b0080) 2009; 36 Yuan, Wang, Zhang, Yuan (b0135) 2009; 36 Maulik, Saha (b0110) 2009; 42 Rahman, Hazim (b0030) 1996; 39 Hong (b0050) 2009; 33 Bunn, Farmer (b0005) 1985 Vapnik (b0145) 1998 Hong (b0090) 2009; 50 Vapnik (b0140) 1995 dos Santos Coelho, Mariani (b0130) 2006; 21 Das, Konar (b0105) 2009; 9 Lu, Zhou, Qin, Li, Zhang (b0120) 2010; 37 Wang, Tai, Zhai, Ye, Zhu, Qi (b0025) 2008; 78 Beccali, Cellura, Lo Brano, Marvuglia (b0060) 2004; 45 Al-Obeidat, Belacel, Carretero, Mahanti (b0115) 2010; 23 Schölkopf, Smola, Williamson, Bartlett (b0150) 2000 Storn Rainer, Price Kenneth. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Berkley: International Computer Science Institute; 1995. Goia, May, Fusai (b0010) 2010; 26 Chen, Chang, Lin (b0095) 2004; 19 Niu, Wang, Wu (b0045) 2010; 37 Kermanshahi, Iwamiya (b0065) 2002; 24 Vesterstrom J, Thomsen R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proceedings of the 2004 congress on evolutionary computation, 19–23 June 2004. Piscataway, NJ, USA: IEEE; 2004. p. 1980–7. Chen, Wang, Huang (b0015) 1995; 34 Metaxiotis, Kagiannas, Askounis, Psarras (b0055) 2003; 44 Pai, Hong (b0085) 2005; 74 Mamlook (10.1016/j.apenergy.2012.01.010_b0035) 2008; 1 Das (10.1016/j.apenergy.2012.01.010_b0105) 2009; 9 Chen (10.1016/j.apenergy.2012.01.010_b0015) 1995; 34 Kermanshahi (10.1016/j.apenergy.2012.01.010_b0070) 1998; 23 Hsu (10.1016/j.apenergy.2012.01.010_b0040) 2003; 44 Hong (10.1016/j.apenergy.2012.01.010_b0050) 2009; 33 Kermanshahi (10.1016/j.apenergy.2012.01.010_b0065) 2002; 24 Wu (10.1016/j.apenergy.2012.01.010_b0125) 2010; 80 Vapnik (10.1016/j.apenergy.2012.01.010_b0140) 1995 10.1016/j.apenergy.2012.01.010_b0100 Vapnik (10.1016/j.apenergy.2012.01.010_b0145) 1998 Wang (10.1016/j.apenergy.2012.01.010_b0025) 2008; 78 Beccali (10.1016/j.apenergy.2012.01.010_b0060) 2004; 45 Goia (10.1016/j.apenergy.2012.01.010_b0010) 2010; 26 Chen (10.1016/j.apenergy.2012.01.010_b0095) 2004; 19 Pai (10.1016/j.apenergy.2012.01.010_b0085) 2005; 74 dos Santos Coelho (10.1016/j.apenergy.2012.01.010_b0130) 2006; 21 Maulik (10.1016/j.apenergy.2012.01.010_b0110) 2009; 42 Yuan (10.1016/j.apenergy.2012.01.010_b0135) 2009; 36 Rahman (10.1016/j.apenergy.2012.01.010_b0030) 1996; 39 Metaxiotis (10.1016/j.apenergy.2012.01.010_b0055) 2003; 44 Hong (10.1016/j.apenergy.2012.01.010_b0090) 2009; 50 Schölkopf (10.1016/j.apenergy.2012.01.010_b0150) 2000 Al-Obeidat (10.1016/j.apenergy.2012.01.010_b0115) 2010; 23 Avci (10.1016/j.apenergy.2012.01.010_b0080) 2009; 36 Pappas (10.1016/j.apenergy.2012.01.010_b0020) 2008; 33 10.1016/j.apenergy.2012.01.010_b0155 Niu (10.1016/j.apenergy.2012.01.010_b0045) 2010; 37 Bunn (10.1016/j.apenergy.2012.01.010_b0005) 1985 Hippert (10.1016/j.apenergy.2012.01.010_b0075) 2001; 16 Lu (10.1016/j.apenergy.2012.01.010_b0120) 2010; 37 |
| References_xml | – volume: 24 start-page: 789 year: 2002 end-page: 797 ident: b0065 article-title: Up to year 2020 load forecasting using neural nets publication-title: Int J Electric Power Energy Syst – volume: 23 start-page: 418 year: 2010 end-page: 426 ident: b0115 article-title: Differential evolution for learning the classification method PROAFTN publication-title: Knowl-Based Syst – volume: 33 start-page: 2444 year: 2009 end-page: 2454 ident: b0050 article-title: Electric load forecasting by support vector model publication-title: Appl Math Model – year: 1985 ident: b0005 article-title: Comparative models for electrical load forecasting – volume: 78 start-page: 1679 year: 2008 end-page: 1685 ident: b0025 article-title: A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting publication-title: Electric Power Syst Res – volume: 21 start-page: 989 year: 2006 end-page: 996 ident: b0130 article-title: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect publication-title: IEEE Trans Power Syst – volume: 42 start-page: 2135 year: 2009 end-page: 2149 ident: b0110 article-title: Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery publication-title: Pattern Recogn – volume: 34 start-page: 187 year: 1995 end-page: 196 ident: b0015 article-title: Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting publication-title: Electric Power Syst Res – volume: 19 start-page: 1821 year: 2004 end-page: 1830 ident: b0095 article-title: Load forecasting using support vector machines: a study on EUNITE Competition 2001 publication-title: IEEE Trans Power Syst – volume: 80 start-page: 1171 year: 2010 end-page: 1181 ident: b0125 article-title: Environmental/economic power dispatch problem using multi-objective differential evolution algorithm publication-title: Electric Power Syst Res – volume: 44 start-page: 1525 year: 2003 end-page: 1534 ident: b0055 article-title: Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher publication-title: Energy Convers Manage – volume: 26 start-page: 700 year: 2010 end-page: 711 ident: b0010 article-title: Functional clustering and linear regression for peak load forecasting publication-title: Int J Forecast – volume: 36 start-page: 4042 year: 2009 end-page: 4048 ident: b0135 article-title: A hybrid differential evolution method for dynamic economic dispatch with valve-point effects publication-title: Expert Syst Appl – volume: 33 start-page: 1353 year: 2008 end-page: 1360 ident: b0020 article-title: Electricity demand loads modeling using Auto Regressive Moving Average (ARMA) models publication-title: Energy – reference: Vesterstrom J, Thomsen R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proceedings of the 2004 congress on evolutionary computation, 19–23 June 2004. Piscataway, NJ, USA: IEEE; 2004. p. 1980–7. – reference: Storn Rainer, Price Kenneth. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Berkley: International Computer Science Institute; 1995. – volume: 23 start-page: 125 year: 1998 end-page: 133 ident: b0070 article-title: Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities publication-title: Neurocomputing – volume: 45 start-page: 2879 year: 2004 end-page: 2900 ident: b0060 article-title: Forecasting daily urban electric load profiles using artificial neural networks publication-title: Energy Convers Manage – volume: 36 start-page: 1391 year: 2009 end-page: 1402 ident: b0080 article-title: Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM publication-title: Expert Syst Appl – volume: 74 start-page: 417 year: 2005 end-page: 425 ident: b0085 article-title: Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms publication-title: Electric Power Syst Res – volume: 37 start-page: 4842 year: 2010 end-page: 4849 ident: b0120 article-title: An adaptive hybrid differential evolution algorithm for dynamic economic dispatch with valve-point effects publication-title: Expert Syst Appl – volume: 9 start-page: 226 year: 2009 end-page: 236 ident: b0105 article-title: Automatic image pixel clustering with an improved differential evolution publication-title: Appl Soft Comput – volume: 37 start-page: 2531 year: 2010 end-page: 2539 ident: b0045 article-title: Power load forecasting using support vector machine and ant colony optimization publication-title: Expert Syst Appl – year: 1995 ident: b0140 article-title: The nature of statistic learning theory – start-page: 1207 year: 2000 end-page: 1245 ident: b0150 article-title: New support vector algorithms publication-title: Neural Comput – volume: 1 start-page: 1239 year: 2008 end-page: 1248 ident: b0035 article-title: A fuzzy inference model for short-term load forecasting publication-title: Energy Policy – volume: 50 start-page: 105 year: 2009 end-page: 117 ident: b0090 article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model publication-title: Energy Convers Manage – volume: 44 start-page: 1941 year: 2003 end-page: 1949 ident: b0040 article-title: Regional load forecasting in Taiwan – applications of artificial neural networks publication-title: Energy Convers Manage – volume: 16 start-page: 44 year: 2001 end-page: 55 ident: b0075 article-title: Neural networks for short-term load forecasting: a review and evaluation publication-title: IEEE Trans Power Syst – year: 1998 ident: b0145 article-title: Statistical learning theory – volume: 39 start-page: 161 year: 1996 end-page: 169 ident: b0030 article-title: Load forecasting for multiple sites: development of an expert system-based technique publication-title: Electric Power Syst Res – year: 1995 ident: 10.1016/j.apenergy.2012.01.010_b0140 – volume: 26 start-page: 700 year: 2010 ident: 10.1016/j.apenergy.2012.01.010_b0010 article-title: Functional clustering and linear regression for peak load forecasting publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2009.05.015 – volume: 24 start-page: 789 year: 2002 ident: 10.1016/j.apenergy.2012.01.010_b0065 article-title: Up to year 2020 load forecasting using neural nets publication-title: Int J Electric Power Energy Syst doi: 10.1016/S0142-0615(01)00086-2 – volume: 74 start-page: 417 year: 2005 ident: 10.1016/j.apenergy.2012.01.010_b0085 article-title: Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms publication-title: Electric Power Syst Res doi: 10.1016/j.epsr.2005.01.006 – ident: 10.1016/j.apenergy.2012.01.010_b0100 – volume: 37 start-page: 4842 year: 2010 ident: 10.1016/j.apenergy.2012.01.010_b0120 article-title: An adaptive hybrid differential evolution algorithm for dynamic economic dispatch with valve-point effects publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.12.031 – year: 1998 ident: 10.1016/j.apenergy.2012.01.010_b0145 – volume: 44 start-page: 1941 year: 2003 ident: 10.1016/j.apenergy.2012.01.010_b0040 article-title: Regional load forecasting in Taiwan – applications of artificial neural networks publication-title: Energy Convers Manage doi: 10.1016/S0196-8904(02)00225-X – volume: 36 start-page: 1391 year: 2009 ident: 10.1016/j.apenergy.2012.01.010_b0080 article-title: Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.11.014 – volume: 1 start-page: 1239 year: 2008 ident: 10.1016/j.apenergy.2012.01.010_b0035 article-title: A fuzzy inference model for short-term load forecasting publication-title: Energy Policy – volume: 36 start-page: 4042 year: 2009 ident: 10.1016/j.apenergy.2012.01.010_b0135 article-title: A hybrid differential evolution method for dynamic economic dispatch with valve-point effects publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.03.006 – volume: 37 start-page: 2531 year: 2010 ident: 10.1016/j.apenergy.2012.01.010_b0045 article-title: Power load forecasting using support vector machine and ant colony optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.08.019 – volume: 80 start-page: 1171 year: 2010 ident: 10.1016/j.apenergy.2012.01.010_b0125 article-title: Environmental/economic power dispatch problem using multi-objective differential evolution algorithm publication-title: Electric Power Syst Res doi: 10.1016/j.epsr.2010.03.010 – volume: 19 start-page: 1821 year: 2004 ident: 10.1016/j.apenergy.2012.01.010_b0095 article-title: Load forecasting using support vector machines: a study on EUNITE Competition 2001 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2004.835679 – volume: 23 start-page: 418 year: 2010 ident: 10.1016/j.apenergy.2012.01.010_b0115 article-title: Differential evolution for learning the classification method PROAFTN publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2010.02.003 – volume: 33 start-page: 1353 year: 2008 ident: 10.1016/j.apenergy.2012.01.010_b0020 article-title: Electricity demand loads modeling using Auto Regressive Moving Average (ARMA) models publication-title: Energy doi: 10.1016/j.energy.2008.05.008 – volume: 78 start-page: 1679 year: 2008 ident: 10.1016/j.apenergy.2012.01.010_b0025 article-title: A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting publication-title: Electric Power Syst Res doi: 10.1016/j.epsr.2008.02.009 – volume: 39 start-page: 161 year: 1996 ident: 10.1016/j.apenergy.2012.01.010_b0030 article-title: Load forecasting for multiple sites: development of an expert system-based technique publication-title: Electric Power Syst Res doi: 10.1016/S0378-7796(96)01114-5 – volume: 33 start-page: 2444 year: 2009 ident: 10.1016/j.apenergy.2012.01.010_b0050 article-title: Electric load forecasting by support vector model publication-title: Appl Math Model doi: 10.1016/j.apm.2008.07.010 – volume: 44 start-page: 1525 year: 2003 ident: 10.1016/j.apenergy.2012.01.010_b0055 article-title: Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher publication-title: Energy Convers Manage doi: 10.1016/S0196-8904(02)00148-6 – volume: 9 start-page: 226 year: 2009 ident: 10.1016/j.apenergy.2012.01.010_b0105 article-title: Automatic image pixel clustering with an improved differential evolution publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.12.008 – start-page: 1207 year: 2000 ident: 10.1016/j.apenergy.2012.01.010_b0150 article-title: New support vector algorithms publication-title: Neural Comput doi: 10.1162/089976600300015565 – volume: 23 start-page: 125 year: 1998 ident: 10.1016/j.apenergy.2012.01.010_b0070 article-title: Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities publication-title: Neurocomputing doi: 10.1016/S0925-2312(98)00073-3 – volume: 42 start-page: 2135 year: 2009 ident: 10.1016/j.apenergy.2012.01.010_b0110 article-title: Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery publication-title: Pattern Recogn doi: 10.1016/j.patcog.2009.01.011 – volume: 50 start-page: 105 year: 2009 ident: 10.1016/j.apenergy.2012.01.010_b0090 article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2008.08.031 – volume: 21 start-page: 989 year: 2006 ident: 10.1016/j.apenergy.2012.01.010_b0130 article-title: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2006.873410 – volume: 34 start-page: 187 year: 1995 ident: 10.1016/j.apenergy.2012.01.010_b0015 article-title: Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting publication-title: Electric Power Syst Res doi: 10.1016/0378-7796(95)00977-1 – year: 1985 ident: 10.1016/j.apenergy.2012.01.010_b0005 – volume: 16 start-page: 44 year: 2001 ident: 10.1016/j.apenergy.2012.01.010_b0075 article-title: Neural networks for short-term load forecasting: a review and evaluation publication-title: IEEE Trans Power Syst doi: 10.1109/59.910780 – volume: 45 start-page: 2879 year: 2004 ident: 10.1016/j.apenergy.2012.01.010_b0060 article-title: Forecasting daily urban electric load profiles using artificial neural networks publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2004.01.006 – ident: 10.1016/j.apenergy.2012.01.010_b0155 |
| SSID | ssj0002120 |
| Score | 2.4937084 |
| SecondaryResourceType | review_article |
| Snippet | Annual load forecasting is very important for the electric power industry. As influenced by various factors, an annual load curve shows a non-linear... |
| SourceID | proquest pascalfrancis crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 65 |
| SubjectTerms | algorithms Annual load forecasting Applied sciences Differential evolution (DE) electric power Energy Exact sciences and technology industry neural networks Support vector regression (SVR) |
| Title | An annual load forecasting model based on support vector regression with differential evolution algorithm |
| URI | https://dx.doi.org/10.1016/j.apenergy.2012.01.010 https://www.proquest.com/docview/1011211020 https://www.proquest.com/docview/2000013824 |
| Volume | 94 |
| WOSCitedRecordID | wos000302842800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYxgM8IBhMKx-TkRAvVUbrfDWPFeoEaCpIdFLFi-W4dmlVktC0Vf987mznYxrTxgNSFVVOnKS9n-9-Pp_vCHkXamDxUSS9qDdjXhAkqZeynvC06kdMyRmMdW2KTcTj8WA6Tb45n25pygnEWTbY75Piv4oa2kDYuHX2H8Rd3xQa4DsIHY4gdjjeS_BDDC82SfNXuZhhGKGSojTRzabsTRcN1wwXCcptgey7uzOe--5azW1QrN3ZXddO2aBTXe3cS3fFap6v4fyvNq-tyKwyWwkbL72L9wUMLrdN8I_dkb1o1kS2lstn8_1C5I0zwWjEHz-hXW_b7gmM86jCqKptWdCA07S2yk2CbnEehZ6tGeJ0p60Z4aywPXNDv1tXw_JcFPb3YGweM3lXXXDstYTa46_84urykk9G08n74reHtcZwTd4VXjkgRywOE9COR8PPo-mX2oIzl86zevXWzvK_P_o2UnOgRY7RtqKEAadtpZQbRt8wmclT8sRNQejQQucZeaCyY_K4lZjymJyMmv2PcKkzAOVzshhm1KKLIrpoC13UoIsadNE8ow5d1KKLNuiiiC7aRhet0UVrdL0gk4vR5OMnz1Xr8GTgsw1mtY77CmanmiU6iFIVDKRQyUxEgvlyAMZCxj6woRR0V4I0SPrSH2jB0phpHfkn5DDLM3VKqJCYEikF6ijRvjDoH0oWYuF5LYB-d0hY_dtcukz2WFBlxauQxSWvpMRRSrzXh0-vQz7U_Qqby-XOHkklTO4YqWWaHAB5Z99TkD4XczDW_Oo7w1SOOEMCyt8hZ9cgUb8Ns_nwog55W2GEg7rHNTyRqXxb4gMxKSNM8m6_hvVsAAILXt7jmlfkUTNuX5PDzXqr3pCHcrdZlOszNzT-AGDZ3BM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+annual+load+forecasting+model+based+on+support+vector+regression+with+differential+evolution+algorithm&rft.jtitle=Applied+energy&rft.au=Wang%2C+Jianjun&rft.au=Li%2C+Li&rft.au=Niu%2C+Dongxiao&rft.au=Tan%2C+Zhongfu&rft.date=2012-06-01&rft.issn=0306-2619&rft.volume=94+p.65-70&rft.spage=65&rft.epage=70&rft_id=info:doi/10.1016%2Fj.apenergy.2012.01.010&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |