An annual load forecasting model based on support vector regression with differential evolution algorithm

Annual load forecasting is very important for the electric power industry. As influenced by various factors, an annual load curve shows a non-linear characteristic, which demonstrates that the annual load forecasting is a non-linear problem. Support vector regression (SVR) is proven to be useful in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 94; S. 65 - 70
Hauptverfasser: Wang, Jianjun, Li, Li, Niu, Dongxiao, Tan, Zhongfu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.06.2012
Elsevier
Schlagworte:
ISSN:0306-2619, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Annual load forecasting is very important for the electric power industry. As influenced by various factors, an annual load curve shows a non-linear characteristic, which demonstrates that the annual load forecasting is a non-linear problem. Support vector regression (SVR) is proven to be useful in dealing with non-linear forecasting problems in recent years. The key point in using SVR for forecasting is how to determine the appropriate parameters. This paper proposes a hybrid load forecasting model combining differential evolution (DE) algorithm and support vector regression to deal with this problem, where the DE algorithm is used to choose the appropriate parameters for the SVR load forecasting model. The effectiveness of this model has been proved by the final simulation which shows that the proposed model outperforms the SVR model with default parameters, back propagation artificial neural network (BPNN) and regression forecasting models in the annual load forecasting.
AbstractList Annual load forecasting is very important for the electric power industry. As influenced by various factors, an annual load curve shows a non-linear characteristic, which demonstrates that the annual load forecasting is a non-linear problem. Support vector regression (SVR) is proven to be useful in dealing with non-linear forecasting problems in recent years. The key point in using SVR for forecasting is how to determine the appropriate parameters. This paper proposes a hybrid load forecasting model combining differential evolution (DE) algorithm and support vector regression to deal with this problem, where the DE algorithm is used to choose the appropriate parameters for the SVR load forecasting model. The effectiveness of this model has been proved by the final simulation which shows that the proposed model outperforms the SVR model with default parameters, back propagation artificial neural network (BPNN) and regression forecasting models in the annual load forecasting.
Author Niu, Dongxiao
Li, Li
Wang, Jianjun
Tan, Zhongfu
Author_xml – sequence: 1
  givenname: Jianjun
  surname: Wang
  fullname: Wang, Jianjun
  email: wangjianjunhd@gmail.com
  organization: School of Economic and Management Administration, North China Electric Power University, Beijing 102206, China
– sequence: 2
  givenname: Li
  surname: Li
  fullname: Li, Li
  organization: School of Economics & Business Administration, Beijing Information Science & Technology University, Beijing 100085, China
– sequence: 3
  givenname: Dongxiao
  surname: Niu
  fullname: Niu, Dongxiao
  organization: School of Economic and Management Administration, North China Electric Power University, Beijing 102206, China
– sequence: 4
  givenname: Zhongfu
  surname: Tan
  fullname: Tan, Zhongfu
  organization: School of Economic and Management Administration, North China Electric Power University, Beijing 102206, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25703636$$DView record in Pascal Francis
BookMark eNqFkU9vEzEQxS1UJNLCVwBfkLhs8J-Nd1fiQFUBrVSJA-VsTbzj4MixF9ubqt8er9JeuEQayYf5zXueN5fkIsSAhLznbM0ZV5_3a5gwYNo9rQXjYs14LfaKrHjfiWbgvL8gKyaZaoTiwxtymfOeMSa4YCvirgOFEGbw1EcYqY0JDeTiwo4e4oiebiHjSGOgeZ6mmAo9oikx0YS7hDm72nl05Q8dnbWYMBRXtfAY_VyWHvhdTLV_eEteW_AZ3z2_V-Th-7eHm9vm_uePu5vr-8a0UpSmZ13HsWs7Kwbbqi22vQEcRlAgpOlZy0wnuei3COPAWjEYaWRvQWw7Ya2SV-TTSXZK8e-MueiDywa9h4BxzlrU1RmXvWjPojVdLjhnglX04zMK2YC3CYJxWU_JHSA9abHpmFRycf9y4kyKOSe02rgCSxAlgfNVclFVeq9fbqaXm2nGay026r_xF4ezgx9Ogxaihl2qf_v9qwJq2XajNn0lvp4IrNkfHSadjcNgcHT14kWP0Z0z-Qfwh8HH
CODEN APENDX
CitedBy_id crossref_primary_10_3390_en12071331
crossref_primary_10_3390_ma8010117
crossref_primary_10_1155_2024_5587728
crossref_primary_10_1016_j_energy_2018_09_027
crossref_primary_10_1007_s11277_018_5324_2
crossref_primary_10_1016_j_apenergy_2017_07_009
crossref_primary_10_1016_j_eti_2023_103179
crossref_primary_10_1016_j_jobe_2025_113765
crossref_primary_10_1016_j_egypro_2018_09_245
crossref_primary_10_1016_j_energy_2020_118209
crossref_primary_10_1007_s00521_012_0980_8
crossref_primary_10_1016_j_jclepro_2021_129246
crossref_primary_10_1016_j_ijepes_2013_01_019
crossref_primary_10_1016_j_asoc_2024_112611
crossref_primary_10_1080_15435075_2020_1731816
crossref_primary_10_1155_2017_7427131
crossref_primary_10_52254_1857_0070_2025_1_65_02
crossref_primary_10_1007_s00366_016_0433_6
crossref_primary_10_3390_en11061561
crossref_primary_10_3390_en9100767
crossref_primary_10_1016_j_apenergy_2013_04_028
crossref_primary_10_1016_j_compstruc_2023_107002
crossref_primary_10_1016_j_jher_2021_12_003
crossref_primary_10_1016_j_apenergy_2017_03_070
crossref_primary_10_1016_j_energy_2019_116778
crossref_primary_10_3390_rs17111926
crossref_primary_10_1080_19392699_2022_2064454
crossref_primary_10_1016_j_asoc_2014_07_015
crossref_primary_10_1016_j_energy_2017_03_009
crossref_primary_10_3390_en5103948
crossref_primary_10_1002_er_8207
crossref_primary_10_1016_j_asoc_2017_07_017
crossref_primary_10_1016_j_cie_2016_07_012
crossref_primary_10_1016_j_marpetgeo_2022_105597
crossref_primary_10_1016_j_rser_2018_02_002
crossref_primary_10_1007_s12145_022_00830_7
crossref_primary_10_1007_s11063_017_9627_1
crossref_primary_10_1016_j_knosys_2022_108682
crossref_primary_10_1016_j_apenergy_2016_01_050
crossref_primary_10_1016_j_jclepro_2022_130407
crossref_primary_10_1109_JAS_2023_123192
crossref_primary_10_1016_j_apenergy_2014_12_020
crossref_primary_10_1016_j_egypro_2017_03_590
crossref_primary_10_1155_2013_374826
crossref_primary_10_1016_j_enconman_2017_04_077
crossref_primary_10_1016_j_asr_2024_06_018
crossref_primary_10_1007_s10878_016_0027_7
crossref_primary_10_3390_en16010285
crossref_primary_10_1016_j_jhydrol_2020_125423
crossref_primary_10_1016_j_enconman_2015_10_066
crossref_primary_10_1175_JHM_D_16_0109_1
crossref_primary_10_1155_2013_158056
crossref_primary_10_1016_j_engappai_2020_104000
crossref_primary_10_1016_j_apenergy_2014_07_064
crossref_primary_10_1049_iet_gtd_2019_0797
crossref_primary_10_3390_atmos12030336
crossref_primary_10_1051_matecconf_20167010010
crossref_primary_10_1155_2013_760860
crossref_primary_10_1016_j_enbuild_2016_05_028
crossref_primary_10_1016_j_apenergy_2019_01_046
crossref_primary_10_1016_j_enconman_2015_07_041
crossref_primary_10_1109_ACCESS_2023_3250110
crossref_primary_10_1016_j_jhydrol_2021_126929
crossref_primary_10_3390_en5114430
crossref_primary_10_1155_2015_798325
crossref_primary_10_3390_en9120994
crossref_primary_10_1088_1742_6596_1970_1_012002
crossref_primary_10_1016_j_enconman_2012_08_001
crossref_primary_10_1016_j_apenergy_2017_02_054
crossref_primary_10_1016_j_csite_2025_106005
crossref_primary_10_1016_j_energy_2018_04_078
crossref_primary_10_1016_j_ijepes_2013_07_017
crossref_primary_10_1016_j_ijepes_2019_03_069
crossref_primary_10_1109_ACCESS_2022_3192433
crossref_primary_10_1109_TIM_2021_3119129
crossref_primary_10_3390_en15207584
crossref_primary_10_1016_j_energy_2017_03_094
crossref_primary_10_1007_s00202_024_02273_3
crossref_primary_10_1016_j_combustflame_2021_111852
crossref_primary_10_1007_s00500_022_07437_6
crossref_primary_10_1186_s40537_023_00706_7
crossref_primary_10_3390_w13020241
crossref_primary_10_1016_j_rser_2020_109839
crossref_primary_10_3390_en9120987
crossref_primary_10_1007_s10706_017_0238_4
crossref_primary_10_1016_j_energy_2018_04_072
crossref_primary_10_1049_tje2_12146
crossref_primary_10_1016_j_energy_2016_09_065
crossref_primary_10_1016_j_energy_2018_10_113
crossref_primary_10_3390_math11214561
crossref_primary_10_1007_s10586_018_1927_3
crossref_primary_10_3390_rs15082188
crossref_primary_10_1016_j_energy_2016_11_034
crossref_primary_10_1038_s41598_022_19935_6
crossref_primary_10_1016_j_energy_2017_01_150
crossref_primary_10_1371_journal_pone_0238129
crossref_primary_10_3233_JIFS_169075
crossref_primary_10_1016_j_enbuild_2017_05_003
crossref_primary_10_1016_j_egyr_2020_11_171
crossref_primary_10_1016_j_energy_2016_04_009
crossref_primary_10_1016_j_jenvman_2021_113783
crossref_primary_10_1186_s42162_025_00552_2
crossref_primary_10_3390_rs12213620
crossref_primary_10_3233_ICA_160510
crossref_primary_10_1016_j_apenergy_2021_116452
crossref_primary_10_1016_j_asoc_2017_01_022
crossref_primary_10_1007_s11047_016_9601_2
crossref_primary_10_3390_en12244612
crossref_primary_10_3390_en14102779
crossref_primary_10_1016_j_enconman_2014_06_045
crossref_primary_10_1016_j_compchemeng_2017_11_020
crossref_primary_10_3390_app6020054
crossref_primary_10_1016_j_apenergy_2016_10_079
crossref_primary_10_1007_s00521_013_1357_3
crossref_primary_10_1109_TSTE_2018_2883393
crossref_primary_10_1007_s11071_022_07565_6
crossref_primary_10_3390_app10093224
crossref_primary_10_3390_pr12122909
crossref_primary_10_1007_s00202_020_01126_z
crossref_primary_10_1155_2015_918305
crossref_primary_10_1016_j_ejor_2018_11_003
crossref_primary_10_1371_journal_pone_0285456
crossref_primary_10_3390_app6010020
crossref_primary_10_1080_10106049_2021_1926558
crossref_primary_10_1002_ese3_439
crossref_primary_10_1016_j_cie_2021_107182
crossref_primary_10_1016_j_agrformet_2024_110038
crossref_primary_10_1016_j_egyr_2022_12_044
crossref_primary_10_1038_s41598_023_43496_x
crossref_primary_10_1016_j_apenergy_2022_118937
crossref_primary_10_1016_j_fuproc_2014_09_001
crossref_primary_10_1016_j_enconman_2022_116131
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123782
crossref_primary_10_1007_s13198_019_00879_6
crossref_primary_10_1016_j_jhydrol_2020_125033
crossref_primary_10_1007_s10489_016_0810_2
crossref_primary_10_1007_s11356_023_27799_0
crossref_primary_10_1109_ACCESS_2019_2914697
crossref_primary_10_1016_j_ijmecsci_2022_107820
crossref_primary_10_1016_j_compeleceng_2017_09_028
crossref_primary_10_1016_j_knosys_2012_08_015
crossref_primary_10_1016_j_apenergy_2016_02_114
crossref_primary_10_1007_s40747_023_01199_w
crossref_primary_10_1016_j_scs_2016_12_006
crossref_primary_10_1049_iet_gtd_2016_0340
crossref_primary_10_1080_02286203_2018_1564809
crossref_primary_10_3233_JIFS_190548
crossref_primary_10_1155_2016_9895639
crossref_primary_10_1016_j_energy_2016_09_015
crossref_primary_10_1080_21622515_2020_1836035
crossref_primary_10_3390_rs14081803
crossref_primary_10_1038_s41598_023_41113_5
crossref_primary_10_1155_2013_292575
crossref_primary_10_1016_j_apenergy_2016_07_113
crossref_primary_10_3233_JIFS_181717
crossref_primary_10_1109_TSG_2025_3538012
crossref_primary_10_1016_j_gsf_2020_10_009
crossref_primary_10_1016_j_apenergy_2019_01_127
crossref_primary_10_1016_j_apenergy_2023_122413
crossref_primary_10_3390_electronics7120431
crossref_primary_10_1016_j_apenergy_2021_117393
crossref_primary_10_3390_s22207900
crossref_primary_10_1007_s00500_023_08291_w
crossref_primary_10_1007_s00521_014_1685_y
crossref_primary_10_3390_chemosensors10030090
crossref_primary_10_1016_j_egypro_2019_01_931
crossref_primary_10_1016_j_jconhyd_2023_104195
Cites_doi 10.1016/j.ijforecast.2009.05.015
10.1016/S0142-0615(01)00086-2
10.1016/j.epsr.2005.01.006
10.1016/j.eswa.2009.12.031
10.1016/S0196-8904(02)00225-X
10.1016/j.eswa.2007.11.014
10.1016/j.eswa.2008.03.006
10.1016/j.eswa.2009.08.019
10.1016/j.epsr.2010.03.010
10.1109/TPWRS.2004.835679
10.1016/j.knosys.2010.02.003
10.1016/j.energy.2008.05.008
10.1016/j.epsr.2008.02.009
10.1016/S0378-7796(96)01114-5
10.1016/j.apm.2008.07.010
10.1016/S0196-8904(02)00148-6
10.1016/j.asoc.2007.12.008
10.1162/089976600300015565
10.1016/S0925-2312(98)00073-3
10.1016/j.patcog.2009.01.011
10.1016/j.enconman.2008.08.031
10.1109/TPWRS.2006.873410
10.1016/0378-7796(95)00977-1
10.1109/59.910780
10.1016/j.enconman.2004.01.006
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7ST
C1K
SOI
7S9
L.6
DOI 10.1016/j.apenergy.2012.01.010
DatabaseName AGRIS
CrossRef
Pascal-Francis
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Environment Abstracts

AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1872-9118
EndPage 70
ExternalDocumentID 25703636
10_1016_j_apenergy_2012_01_010
US201600005658
S0306261912000165
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZY4
~02
~G-
ABPIF
ABPTK
FBQ
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7ST
C1K
SOI
7S9
L.6
ID FETCH-LOGICAL-c432t-80771e747f29f46be48cae9da6a23c8040c73128bead90429c3c38fa2b72ff63
ISICitedReferencesCount 201
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302842800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Sep 28 05:55:21 EDT 2025
Tue Oct 07 09:10:00 EDT 2025
Mon Jul 21 09:16:52 EDT 2025
Tue Nov 18 22:44:00 EST 2025
Sat Nov 29 07:18:49 EST 2025
Wed Dec 27 18:45:46 EST 2023
Fri Feb 23 02:36:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Annual load forecasting
Support vector regression (SVR)
Differential evolution (DE)
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c432t-80771e747f29f46be48cae9da6a23c8040c73128bead90429c3c38fa2b72ff63
Notes http://dx.doi.org/10.1016/j.apenergy.2012.01.010
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1011211020
PQPubID 23462
PageCount 6
ParticipantIDs proquest_miscellaneous_2000013824
proquest_miscellaneous_1011211020
pascalfrancis_primary_25703636
crossref_citationtrail_10_1016_j_apenergy_2012_01_010
crossref_primary_10_1016_j_apenergy_2012_01_010
fao_agris_US201600005658
elsevier_sciencedirect_doi_10_1016_j_apenergy_2012_01_010
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied energy
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Mamlook, Badran, Abdulhadi (b0035) 2008; 1
Wu, Wang, Yuan, Zhou (b0125) 2010; 80
Kermanshahi (b0070) 1998; 23
Hsu, Chen (b0040) 2003; 44
Hippert, Pedreira, Souza (b0075) 2001; 16
Pappas, Ekonomou, Karamousantas, Chatzarakis, Katsikas, Liatsis (b0020) 2008; 33
Avci (b0080) 2009; 36
Yuan, Wang, Zhang, Yuan (b0135) 2009; 36
Maulik, Saha (b0110) 2009; 42
Rahman, Hazim (b0030) 1996; 39
Hong (b0050) 2009; 33
Bunn, Farmer (b0005) 1985
Vapnik (b0145) 1998
Hong (b0090) 2009; 50
Vapnik (b0140) 1995
dos Santos Coelho, Mariani (b0130) 2006; 21
Das, Konar (b0105) 2009; 9
Lu, Zhou, Qin, Li, Zhang (b0120) 2010; 37
Wang, Tai, Zhai, Ye, Zhu, Qi (b0025) 2008; 78
Beccali, Cellura, Lo Brano, Marvuglia (b0060) 2004; 45
Al-Obeidat, Belacel, Carretero, Mahanti (b0115) 2010; 23
Schölkopf, Smola, Williamson, Bartlett (b0150) 2000
Storn Rainer, Price Kenneth. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Berkley: International Computer Science Institute; 1995.
Goia, May, Fusai (b0010) 2010; 26
Chen, Chang, Lin (b0095) 2004; 19
Niu, Wang, Wu (b0045) 2010; 37
Kermanshahi, Iwamiya (b0065) 2002; 24
Vesterstrom J, Thomsen R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proceedings of the 2004 congress on evolutionary computation, 19–23 June 2004. Piscataway, NJ, USA: IEEE; 2004. p. 1980–7.
Chen, Wang, Huang (b0015) 1995; 34
Metaxiotis, Kagiannas, Askounis, Psarras (b0055) 2003; 44
Pai, Hong (b0085) 2005; 74
Mamlook (10.1016/j.apenergy.2012.01.010_b0035) 2008; 1
Das (10.1016/j.apenergy.2012.01.010_b0105) 2009; 9
Chen (10.1016/j.apenergy.2012.01.010_b0015) 1995; 34
Kermanshahi (10.1016/j.apenergy.2012.01.010_b0070) 1998; 23
Hsu (10.1016/j.apenergy.2012.01.010_b0040) 2003; 44
Hong (10.1016/j.apenergy.2012.01.010_b0050) 2009; 33
Kermanshahi (10.1016/j.apenergy.2012.01.010_b0065) 2002; 24
Wu (10.1016/j.apenergy.2012.01.010_b0125) 2010; 80
Vapnik (10.1016/j.apenergy.2012.01.010_b0140) 1995
10.1016/j.apenergy.2012.01.010_b0100
Vapnik (10.1016/j.apenergy.2012.01.010_b0145) 1998
Wang (10.1016/j.apenergy.2012.01.010_b0025) 2008; 78
Beccali (10.1016/j.apenergy.2012.01.010_b0060) 2004; 45
Goia (10.1016/j.apenergy.2012.01.010_b0010) 2010; 26
Chen (10.1016/j.apenergy.2012.01.010_b0095) 2004; 19
Pai (10.1016/j.apenergy.2012.01.010_b0085) 2005; 74
dos Santos Coelho (10.1016/j.apenergy.2012.01.010_b0130) 2006; 21
Maulik (10.1016/j.apenergy.2012.01.010_b0110) 2009; 42
Yuan (10.1016/j.apenergy.2012.01.010_b0135) 2009; 36
Rahman (10.1016/j.apenergy.2012.01.010_b0030) 1996; 39
Metaxiotis (10.1016/j.apenergy.2012.01.010_b0055) 2003; 44
Hong (10.1016/j.apenergy.2012.01.010_b0090) 2009; 50
Schölkopf (10.1016/j.apenergy.2012.01.010_b0150) 2000
Al-Obeidat (10.1016/j.apenergy.2012.01.010_b0115) 2010; 23
Avci (10.1016/j.apenergy.2012.01.010_b0080) 2009; 36
Pappas (10.1016/j.apenergy.2012.01.010_b0020) 2008; 33
10.1016/j.apenergy.2012.01.010_b0155
Niu (10.1016/j.apenergy.2012.01.010_b0045) 2010; 37
Bunn (10.1016/j.apenergy.2012.01.010_b0005) 1985
Hippert (10.1016/j.apenergy.2012.01.010_b0075) 2001; 16
Lu (10.1016/j.apenergy.2012.01.010_b0120) 2010; 37
References_xml – volume: 24
  start-page: 789
  year: 2002
  end-page: 797
  ident: b0065
  article-title: Up to year 2020 load forecasting using neural nets
  publication-title: Int J Electric Power Energy Syst
– volume: 23
  start-page: 418
  year: 2010
  end-page: 426
  ident: b0115
  article-title: Differential evolution for learning the classification method PROAFTN
  publication-title: Knowl-Based Syst
– volume: 33
  start-page: 2444
  year: 2009
  end-page: 2454
  ident: b0050
  article-title: Electric load forecasting by support vector model
  publication-title: Appl Math Model
– year: 1985
  ident: b0005
  article-title: Comparative models for electrical load forecasting
– volume: 78
  start-page: 1679
  year: 2008
  end-page: 1685
  ident: b0025
  article-title: A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting
  publication-title: Electric Power Syst Res
– volume: 21
  start-page: 989
  year: 2006
  end-page: 996
  ident: b0130
  article-title: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect
  publication-title: IEEE Trans Power Syst
– volume: 42
  start-page: 2135
  year: 2009
  end-page: 2149
  ident: b0110
  article-title: Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery
  publication-title: Pattern Recogn
– volume: 34
  start-page: 187
  year: 1995
  end-page: 196
  ident: b0015
  article-title: Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting
  publication-title: Electric Power Syst Res
– volume: 19
  start-page: 1821
  year: 2004
  end-page: 1830
  ident: b0095
  article-title: Load forecasting using support vector machines: a study on EUNITE Competition 2001
  publication-title: IEEE Trans Power Syst
– volume: 80
  start-page: 1171
  year: 2010
  end-page: 1181
  ident: b0125
  article-title: Environmental/economic power dispatch problem using multi-objective differential evolution algorithm
  publication-title: Electric Power Syst Res
– volume: 44
  start-page: 1525
  year: 2003
  end-page: 1534
  ident: b0055
  article-title: Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher
  publication-title: Energy Convers Manage
– volume: 26
  start-page: 700
  year: 2010
  end-page: 711
  ident: b0010
  article-title: Functional clustering and linear regression for peak load forecasting
  publication-title: Int J Forecast
– volume: 36
  start-page: 4042
  year: 2009
  end-page: 4048
  ident: b0135
  article-title: A hybrid differential evolution method for dynamic economic dispatch with valve-point effects
  publication-title: Expert Syst Appl
– volume: 33
  start-page: 1353
  year: 2008
  end-page: 1360
  ident: b0020
  article-title: Electricity demand loads modeling using Auto Regressive Moving Average (ARMA) models
  publication-title: Energy
– reference: Vesterstrom J, Thomsen R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proceedings of the 2004 congress on evolutionary computation, 19–23 June 2004. Piscataway, NJ, USA: IEEE; 2004. p. 1980–7.
– reference: Storn Rainer, Price Kenneth. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Berkley: International Computer Science Institute; 1995.
– volume: 23
  start-page: 125
  year: 1998
  end-page: 133
  ident: b0070
  article-title: Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities
  publication-title: Neurocomputing
– volume: 45
  start-page: 2879
  year: 2004
  end-page: 2900
  ident: b0060
  article-title: Forecasting daily urban electric load profiles using artificial neural networks
  publication-title: Energy Convers Manage
– volume: 36
  start-page: 1391
  year: 2009
  end-page: 1402
  ident: b0080
  article-title: Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM
  publication-title: Expert Syst Appl
– volume: 74
  start-page: 417
  year: 2005
  end-page: 425
  ident: b0085
  article-title: Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms
  publication-title: Electric Power Syst Res
– volume: 37
  start-page: 4842
  year: 2010
  end-page: 4849
  ident: b0120
  article-title: An adaptive hybrid differential evolution algorithm for dynamic economic dispatch with valve-point effects
  publication-title: Expert Syst Appl
– volume: 9
  start-page: 226
  year: 2009
  end-page: 236
  ident: b0105
  article-title: Automatic image pixel clustering with an improved differential evolution
  publication-title: Appl Soft Comput
– volume: 37
  start-page: 2531
  year: 2010
  end-page: 2539
  ident: b0045
  article-title: Power load forecasting using support vector machine and ant colony optimization
  publication-title: Expert Syst Appl
– year: 1995
  ident: b0140
  article-title: The nature of statistic learning theory
– start-page: 1207
  year: 2000
  end-page: 1245
  ident: b0150
  article-title: New support vector algorithms
  publication-title: Neural Comput
– volume: 1
  start-page: 1239
  year: 2008
  end-page: 1248
  ident: b0035
  article-title: A fuzzy inference model for short-term load forecasting
  publication-title: Energy Policy
– volume: 50
  start-page: 105
  year: 2009
  end-page: 117
  ident: b0090
  article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
  publication-title: Energy Convers Manage
– volume: 44
  start-page: 1941
  year: 2003
  end-page: 1949
  ident: b0040
  article-title: Regional load forecasting in Taiwan – applications of artificial neural networks
  publication-title: Energy Convers Manage
– volume: 16
  start-page: 44
  year: 2001
  end-page: 55
  ident: b0075
  article-title: Neural networks for short-term load forecasting: a review and evaluation
  publication-title: IEEE Trans Power Syst
– year: 1998
  ident: b0145
  article-title: Statistical learning theory
– volume: 39
  start-page: 161
  year: 1996
  end-page: 169
  ident: b0030
  article-title: Load forecasting for multiple sites: development of an expert system-based technique
  publication-title: Electric Power Syst Res
– year: 1995
  ident: 10.1016/j.apenergy.2012.01.010_b0140
– volume: 26
  start-page: 700
  year: 2010
  ident: 10.1016/j.apenergy.2012.01.010_b0010
  article-title: Functional clustering and linear regression for peak load forecasting
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2009.05.015
– volume: 24
  start-page: 789
  year: 2002
  ident: 10.1016/j.apenergy.2012.01.010_b0065
  article-title: Up to year 2020 load forecasting using neural nets
  publication-title: Int J Electric Power Energy Syst
  doi: 10.1016/S0142-0615(01)00086-2
– volume: 74
  start-page: 417
  year: 2005
  ident: 10.1016/j.apenergy.2012.01.010_b0085
  article-title: Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2005.01.006
– ident: 10.1016/j.apenergy.2012.01.010_b0100
– volume: 37
  start-page: 4842
  year: 2010
  ident: 10.1016/j.apenergy.2012.01.010_b0120
  article-title: An adaptive hybrid differential evolution algorithm for dynamic economic dispatch with valve-point effects
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.12.031
– year: 1998
  ident: 10.1016/j.apenergy.2012.01.010_b0145
– volume: 44
  start-page: 1941
  year: 2003
  ident: 10.1016/j.apenergy.2012.01.010_b0040
  article-title: Regional load forecasting in Taiwan – applications of artificial neural networks
  publication-title: Energy Convers Manage
  doi: 10.1016/S0196-8904(02)00225-X
– volume: 36
  start-page: 1391
  year: 2009
  ident: 10.1016/j.apenergy.2012.01.010_b0080
  article-title: Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.11.014
– volume: 1
  start-page: 1239
  year: 2008
  ident: 10.1016/j.apenergy.2012.01.010_b0035
  article-title: A fuzzy inference model for short-term load forecasting
  publication-title: Energy Policy
– volume: 36
  start-page: 4042
  year: 2009
  ident: 10.1016/j.apenergy.2012.01.010_b0135
  article-title: A hybrid differential evolution method for dynamic economic dispatch with valve-point effects
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.03.006
– volume: 37
  start-page: 2531
  year: 2010
  ident: 10.1016/j.apenergy.2012.01.010_b0045
  article-title: Power load forecasting using support vector machine and ant colony optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.08.019
– volume: 80
  start-page: 1171
  year: 2010
  ident: 10.1016/j.apenergy.2012.01.010_b0125
  article-title: Environmental/economic power dispatch problem using multi-objective differential evolution algorithm
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2010.03.010
– volume: 19
  start-page: 1821
  year: 2004
  ident: 10.1016/j.apenergy.2012.01.010_b0095
  article-title: Load forecasting using support vector machines: a study on EUNITE Competition 2001
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2004.835679
– volume: 23
  start-page: 418
  year: 2010
  ident: 10.1016/j.apenergy.2012.01.010_b0115
  article-title: Differential evolution for learning the classification method PROAFTN
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2010.02.003
– volume: 33
  start-page: 1353
  year: 2008
  ident: 10.1016/j.apenergy.2012.01.010_b0020
  article-title: Electricity demand loads modeling using Auto Regressive Moving Average (ARMA) models
  publication-title: Energy
  doi: 10.1016/j.energy.2008.05.008
– volume: 78
  start-page: 1679
  year: 2008
  ident: 10.1016/j.apenergy.2012.01.010_b0025
  article-title: A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2008.02.009
– volume: 39
  start-page: 161
  year: 1996
  ident: 10.1016/j.apenergy.2012.01.010_b0030
  article-title: Load forecasting for multiple sites: development of an expert system-based technique
  publication-title: Electric Power Syst Res
  doi: 10.1016/S0378-7796(96)01114-5
– volume: 33
  start-page: 2444
  year: 2009
  ident: 10.1016/j.apenergy.2012.01.010_b0050
  article-title: Electric load forecasting by support vector model
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2008.07.010
– volume: 44
  start-page: 1525
  year: 2003
  ident: 10.1016/j.apenergy.2012.01.010_b0055
  article-title: Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher
  publication-title: Energy Convers Manage
  doi: 10.1016/S0196-8904(02)00148-6
– volume: 9
  start-page: 226
  year: 2009
  ident: 10.1016/j.apenergy.2012.01.010_b0105
  article-title: Automatic image pixel clustering with an improved differential evolution
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.12.008
– start-page: 1207
  year: 2000
  ident: 10.1016/j.apenergy.2012.01.010_b0150
  article-title: New support vector algorithms
  publication-title: Neural Comput
  doi: 10.1162/089976600300015565
– volume: 23
  start-page: 125
  year: 1998
  ident: 10.1016/j.apenergy.2012.01.010_b0070
  article-title: Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(98)00073-3
– volume: 42
  start-page: 2135
  year: 2009
  ident: 10.1016/j.apenergy.2012.01.010_b0110
  article-title: Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.01.011
– volume: 50
  start-page: 105
  year: 2009
  ident: 10.1016/j.apenergy.2012.01.010_b0090
  article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2008.08.031
– volume: 21
  start-page: 989
  year: 2006
  ident: 10.1016/j.apenergy.2012.01.010_b0130
  article-title: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2006.873410
– volume: 34
  start-page: 187
  year: 1995
  ident: 10.1016/j.apenergy.2012.01.010_b0015
  article-title: Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting
  publication-title: Electric Power Syst Res
  doi: 10.1016/0378-7796(95)00977-1
– year: 1985
  ident: 10.1016/j.apenergy.2012.01.010_b0005
– volume: 16
  start-page: 44
  year: 2001
  ident: 10.1016/j.apenergy.2012.01.010_b0075
  article-title: Neural networks for short-term load forecasting: a review and evaluation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.910780
– volume: 45
  start-page: 2879
  year: 2004
  ident: 10.1016/j.apenergy.2012.01.010_b0060
  article-title: Forecasting daily urban electric load profiles using artificial neural networks
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2004.01.006
– ident: 10.1016/j.apenergy.2012.01.010_b0155
SSID ssj0002120
Score 2.4937084
SecondaryResourceType review_article
Snippet Annual load forecasting is very important for the electric power industry. As influenced by various factors, an annual load curve shows a non-linear...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65
SubjectTerms algorithms
Annual load forecasting
Applied sciences
Differential evolution (DE)
electric power
Energy
Exact sciences and technology
industry
neural networks
Support vector regression (SVR)
Title An annual load forecasting model based on support vector regression with differential evolution algorithm
URI https://dx.doi.org/10.1016/j.apenergy.2012.01.010
https://www.proquest.com/docview/1011211020
https://www.proquest.com/docview/2000013824
Volume 94
WOSCitedRecordID wos000302842800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYxgM8IBhMKx-TkRAvVUbrfDWPFeoEaCpIdFLFi-W4dmlVktC0Vf987mznYxrTxgNSFVVOnKS9n-9-Pp_vCHkXamDxUSS9qDdjXhAkqZeynvC06kdMyRmMdW2KTcTj8WA6Tb45n25pygnEWTbY75Piv4oa2kDYuHX2H8Rd3xQa4DsIHY4gdjjeS_BDDC82SfNXuZhhGKGSojTRzabsTRcN1wwXCcptgey7uzOe--5azW1QrN3ZXddO2aBTXe3cS3fFap6v4fyvNq-tyKwyWwkbL72L9wUMLrdN8I_dkb1o1kS2lstn8_1C5I0zwWjEHz-hXW_b7gmM86jCqKptWdCA07S2yk2CbnEehZ6tGeJ0p60Z4aywPXNDv1tXw_JcFPb3YGweM3lXXXDstYTa46_84urykk9G08n74reHtcZwTd4VXjkgRywOE9COR8PPo-mX2oIzl86zevXWzvK_P_o2UnOgRY7RtqKEAadtpZQbRt8wmclT8sRNQejQQucZeaCyY_K4lZjymJyMmv2PcKkzAOVzshhm1KKLIrpoC13UoIsadNE8ow5d1KKLNuiiiC7aRhet0UVrdL0gk4vR5OMnz1Xr8GTgsw1mtY77CmanmiU6iFIVDKRQyUxEgvlyAMZCxj6woRR0V4I0SPrSH2jB0phpHfkn5DDLM3VKqJCYEikF6ijRvjDoH0oWYuF5LYB-d0hY_dtcukz2WFBlxauQxSWvpMRRSrzXh0-vQz7U_Qqby-XOHkklTO4YqWWaHAB5Z99TkD4XczDW_Oo7w1SOOEMCyt8hZ9cgUb8Ns_nwog55W2GEg7rHNTyRqXxb4gMxKSNM8m6_hvVsAAILXt7jmlfkUTNuX5PDzXqr3pCHcrdZlOszNzT-AGDZ3BM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+annual+load+forecasting+model+based+on+support+vector+regression+with+differential+evolution+algorithm&rft.jtitle=Applied+energy&rft.au=Wang%2C+Jianjun&rft.au=Li%2C+Li&rft.au=Niu%2C+Dongxiao&rft.au=Tan%2C+Zhongfu&rft.date=2012-06-01&rft.issn=0306-2619&rft.volume=94+p.65-70&rft.spage=65&rft.epage=70&rft_id=info:doi/10.1016%2Fj.apenergy.2012.01.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon