Unveiling the IoT's dark corners: anomaly detection enhanced by ensemble modelling

The growing Internet of Things (IoT) landscape requires robust security; traditional rule-based systems are insufficient, driving the integration of machine learning (ML) for effective intrusion detection. This paper provides an inclusive overview of research efforts focused on harnessing ML methodo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Automatika Ročník 65; číslo 2; s. 584 - 596
Hlavní autori: Jose, Jisha, Judith, J. E.
Médium: Journal Article Paper
Jazyk:English
Vydavateľské údaje: Ljubljana Taylor & Francis Ltd 02.04.2024
KoREMA - Hrvatsko društvo za komunikacije,računarstvo, elektroniku, mjerenja i automatiku
Taylor & Francis Group
Predmet:
ISSN:0005-1144, 1848-3380
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The growing Internet of Things (IoT) landscape requires robust security; traditional rule-based systems are insufficient, driving the integration of machine learning (ML) for effective intrusion detection. This paper provides an inclusive overview of research efforts focused on harnessing ML methodologies to fortify intrusion detection within IoT. Tailored feature extraction techniques are pivotal for achieving high detection accuracy while minimizing false positives. The study employs the IoT23 dataset from Kaggle and incorporates four optimization algorithms – Particle Swarm Optimizer, Whale-Pearson optimization algorithm, Harris-Hawks Optimizer, and Support Vector Machine with Particle Swarm optimization algorithm (SVM-PSO) – for feature extraction and selection. A comparison with ML algorithms such as logistic regression, decision tree and naïve Bayes classifier highlights Harris-Hawks Optimizer as the most effective. Furthermore, ensemble methods, particularly the fusion of random forest with HHO optimization, yield an impressive accuracy of 99.97%, surpassing AdaBoost and XGBoost approaches. This paper underscores the application of diverse ensemble learning techniques to enhance intrusion detection precision and efficiency within the intricate IoT landscape, effectively tackling the challenges posed by its complex and ever-changing nature.
AbstractList The growing Internet of Things (IoT) landscape requires robust security; traditional rule-based systems are insufficient, driving the integration of machine learning (ML) for effective intrusion detection. This paper provides an inclusive overview of research efforts focused on harnessing ML methodologies to fortify intrusion detection within IoT. Tailored feature extraction techniques are pivotal for achieving high detection accuracy while minimizing false positives. The study employs the IoT23 dataset from Kaggle and incorporates four optimization algorithms – Particle Swarm Optimizer, Whale-Pearson optimization algorithm, Harris-Hawks Optimizer, and Support Vector Machine with Particle Swarm optimization algorithm (SVM-PSO) – for feature extraction and selection. A comparison with ML algorithms such as logistic regression, decision tree and naïve Bayes classifier highlights Harris-Hawks Optimizer as the most effective. Furthermore, ensemble methods, particularly the fusion of random forest with HHO optimization, yield an impressive accuracy of 99.97%, surpassing AdaBoost and XGBoost approaches. This paper underscores the application of diverse ensemble learning techniques to enhance intrusion detection precision and efficiency within the intricate IoT landscape, effectively tackling the challenges posed by its complex and ever-changing nature.
The growing Internet of Things (IoT) landscape requires robust security; traditional rule-based systems are insufficient, driving the integration of machine learning (ML) for effective intrusion detection. This paper provides an inclusive overview of research efforts focused on harnessing ML methodologies to fortify intrusion detection within IoT. Tailored feature extraction techniques are pivotal for achieving high detection accuracy while minimizing false positives. The study employs the IoT23 dataset from Kaggle and incorporates four optimization algorithms – Particle Swarm Optimizer, Whale-Pearson optimization algorithm, Harris-Hawks Optimizer, and Support Vector Machine with Particle Swarm optimization algorithm (SVM-PSO) – for feature extraction and selection. A comparison with ML algorithms such as logistic regression, decision tree and naïve Bayes classifier highlights Harris-Hawks Optimizer as the most effective. Furthermore, ensemble methods, particularly the fusion of random forest with HHO optimization, yield an impressive accuracy of 99.97%, surpassing AdaBoost and XGBoost approaches. This paper underscores the application of diverse ensemble learning techniques to enhance intrusion detection precision and efficiency within the intricate IoT landscape, effectively tackling the challenges posed by its complex and ever-changing nature.
Author Judith, J. E.
Jose, Jisha
Author_xml – sequence: 1
  givenname: Jisha
  surname: Jose
  fullname: Jose, Jisha
  organization: Department of Computer Science and Engineering, Noorul Islam Centre for Higher Education, Kumarakovil, India
– sequence: 2
  givenname: J. E.
  surname: Judith
  fullname: Judith, J. E.
  organization: Department of Computer Science and Engineering, Noorul Islam Centre for Higher Education, Kumarakovil, India
BookMark eNqFkU1r3DAQhkVJoZu0P6Fg6KEnJ_qyLLWnEtpmIVAoyVmMR-OsN14plZzA_vvadVpoL71Io-GZBzTvKTuJKRJjbwU_F9zyC855I4TW55LL-VBcK-NesI2w2tZKWX7CNgtTL9ArdlrKfn4ZZfiGfb-NTzSMQ7yrph1V23TzvlQB8n2FKUfK5UMFMR1gPFaBJsJpSLGiuIOIFKruONeFDt1I1SEFGhfRa_ayh7HQm-f7jN1--XxzeVVff_u6vfx0XaNWcqq1orY3IQTCtrfGAQdnrRAGOq6kQ-Nk6DWarm-R21YEYTB0jdEUWkeiVWdsu3pDgr1_yMMB8tEnGPyvRsp3HvI04EhecdmBEIIDogaUoFE0QhHZIHkvcXbVq2uXEe7_kq2dkpHm0qtlvW7m3638Q04_HqlMfp8ec5y_66WTLW-c0mammpXCnErJ1P8RC-6X6Pzv6PwSnX-Obp77-M8cDhMsq58yDON_pn8C0SufgA
CitedBy_id crossref_primary_10_1088_2631_8695_ad66b2
crossref_primary_10_1016_j_compeleceng_2024_109949
crossref_primary_10_1016_j_iot_2024_101307
crossref_primary_10_1002_ett_70218
Cites_doi 10.1016/j.comcom.2021.05.024
10.1145/3409801
10.1109/JIOT.2020.3037733
10.3390/su14148707
10.1016/j.chaos.2021.111318
10.1109/TSE.2020.3030745
10.38094/jastt20165
10.1007/s11277-019-06986-8
10.1016/j.inpa.2016.08.002
10.1504/IJMHEUR.2018.091880
10.1109/ACCESS.2022.3178301
10.1016/j.aej.2022.02.063
10.1109/ICCMC48092.2020.ICCMC-00068
10.1109/CEC48606.2020.9185887
10.1016/j.applthermaleng.2020.115020
10.1016/j.jnca.2019.102526
10.1007/978-3-030-18732-3_8
10.1109/ITAIC.2019.8785556
10.1109/ISMSIT50672.2020.9254304
10.1109/CCWC.2019.8666588
10.1016/j.future.2019.02.028
10.1016/j.comcom.2022.01.022
10.1016/j.icte.2021.04.012
10.1016/j.swevo.2021.100868
10.1109/ICCSNT47585.2019.8962457
10.1109/ACCESS.2019.2933048
10.36548/jismac.2020.4.002
10.1007/s13369-020-05181-3
10.1002/ett.3803
ContentType Journal Article
Paper
Copyright 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8FD
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
JQ2
L7M
L~C
L~D
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
VP8
DOA
DOI 10.1080/00051144.2024.2304369
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Portal of Croatian Scientific and Professional Journals – HRČAK
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
Computer and Information Systems Abstracts Professional
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1848-3380
EndPage 596
ExternalDocumentID oai_doaj_org_article_302ba1110acc4ac2a4c1513ee8d20f2c
oai_hrcak_srce_hr_323049
10_1080_00051144_2024_2304369
GroupedDBID .4S
.DC
0YH
2WC
8G5
AAYXX
ABUWG
ACGFS
ADBBV
AENEX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BCNDV
BENPR
BLEHA
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
EBS
EDO
EN8
EOJEC
GNUQQ
GROUPED_DOAJ
GUQSH
H13
I-F
KTTOD
M2O
M4Z
OBODZ
OK1
PHGZM
PHGZT
PQQKQ
PROAC
QZIEQ
TFW
TUS
3V.
7SC
7XB
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
C1A
EJD
M~E
VP8
ID FETCH-LOGICAL-c432t-43e7f6dddec7f869a0a988116ab0329c692df4c6bf7c0871d16cdb564ed79e173
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001159757900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0005-1144
IngestDate Tue Oct 14 19:02:59 EDT 2025
Fri Dec 06 04:15:30 EST 2024
Fri Jul 25 23:27:14 EDT 2025
Sat Nov 29 06:32:27 EST 2025
Tue Nov 18 22:40:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License openAccess
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-43e7f6dddec7f869a0a988116ab0329c692df4c6bf7c0871d16cdb564ed79e173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
323049
OpenAccessLink https://doaj.org/article/302ba1110acc4ac2a4c1513ee8d20f2c
PQID 2927059346
PQPubID 3933318
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_302ba1110acc4ac2a4c1513ee8d20f2c
hrcak_primary_oai_hrcak_srce_hr_323049
proquest_journals_2927059346
crossref_primary_10_1080_00051144_2024_2304369
crossref_citationtrail_10_1080_00051144_2024_2304369
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Ljubljana
PublicationPlace_xml – name: Ljubljana
PublicationTitle Automatika
PublicationTitle_FL Automatika
PublicationYear 2024
Publisher Taylor & Francis Ltd
KoREMA - Hrvatsko društvo za komunikacije,računarstvo, elektroniku, mjerenja i automatiku
Taylor & Francis Group
Publisher_xml – sequence: 0
  name: KoREMA - Hrvatsko društvo za komunikacije,računarstvo, elektroniku, mjerenja i automatiku
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
Li J (e_1_3_2_14_1) 2020; 14
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_3_1
e_1_3_2_15_1
References_xml – ident: e_1_3_2_22_1
  doi: 10.1016/j.comcom.2021.05.024
– ident: e_1_3_2_13_1
  doi: 10.1145/3409801
– ident: e_1_3_2_30_1
  doi: 10.1109/JIOT.2020.3037733
– ident: e_1_3_2_12_1
  doi: 10.3390/su14148707
– ident: e_1_3_2_15_1
  doi: 10.1016/j.chaos.2021.111318
– ident: e_1_3_2_26_1
  doi: 10.1109/TSE.2020.3030745
– ident: e_1_3_2_5_1
  doi: 10.38094/jastt20165
– ident: e_1_3_2_25_1
  doi: 10.1007/s11277-019-06986-8
– ident: e_1_3_2_4_1
  doi: 10.1016/j.inpa.2016.08.002
– ident: e_1_3_2_7_1
  doi: 10.1504/IJMHEUR.2018.091880
– ident: e_1_3_2_27_1
  doi: 10.1109/ACCESS.2022.3178301
– ident: e_1_3_2_21_1
  doi: 10.1016/j.aej.2022.02.063
– ident: e_1_3_2_2_1
  doi: 10.1109/ICCMC48092.2020.ICCMC-00068
– ident: e_1_3_2_20_1
  doi: 10.1109/CEC48606.2020.9185887
– ident: e_1_3_2_6_1
  doi: 10.1016/j.applthermaleng.2020.115020
– ident: e_1_3_2_8_1
  doi: 10.1016/j.jnca.2019.102526
– ident: e_1_3_2_3_1
  doi: 10.1007/978-3-030-18732-3_8
– ident: e_1_3_2_29_1
  doi: 10.1109/ITAIC.2019.8785556
– ident: e_1_3_2_16_1
  doi: 10.1109/ISMSIT50672.2020.9254304
– ident: e_1_3_2_19_1
  doi: 10.1109/CCWC.2019.8666588
– ident: e_1_3_2_11_1
  doi: 10.1016/j.future.2019.02.028
– ident: e_1_3_2_9_1
  doi: 10.1016/j.comcom.2022.01.022
– ident: e_1_3_2_17_1
  doi: 10.1016/j.icte.2021.04.012
– ident: e_1_3_2_10_1
  doi: 10.1016/j.swevo.2021.100868
– ident: e_1_3_2_31_1
  doi: 10.1109/ICCSNT47585.2019.8962457
– ident: e_1_3_2_24_1
  doi: 10.1109/ACCESS.2019.2933048
– ident: e_1_3_2_23_1
  doi: 10.36548/jismac.2020.4.002
– volume: 14
  start-page: 4246
  issue: 11
  year: 2020
  ident: e_1_3_2_14_1
  article-title: Network traffic classification based on deep learning
  publication-title: KSII Trans Internet Inf Syst
– ident: e_1_3_2_28_1
  doi: 10.1007/s13369-020-05181-3
– ident: e_1_3_2_18_1
  doi: 10.1002/ett.3803
SSID ssj0056360
Score 2.3300347
Snippet The growing Internet of Things (IoT) landscape requires robust security; traditional rule-based systems are insufficient, driving the integration of machine...
The growing Internet of Things (IoT) landscape requires robust security; traditional rule-based systems are insufficient, driving the integration of machine...
SourceID doaj
hrcak
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 584
SubjectTerms Algorithms
Anomalies
Cybersecurity
Decision trees
Feature extraction
Harris-Hawks optimizer
Internet of Things
Intrusion detection systems
logistic regression
Machine learning
Naïve Bayes classifier
Optimization algorithms
Particle swarm optimization
particle swarm optimizer
Support vector machines
System effectiveness
Whale-Pearson optimization algorithm
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BlgMcKF8VCy3yAcEpkNiOE3NBtGoFl1VVtVJvlr9Cq26TkiyV-u8ZO87SCgkO3CIntqzM-PmNM3kD8LY2uG_juslqJ_MsBBCZbjzLamZMLSRHDutisYlqsahPT-VhOnAbUlrlhIkRqF1nwxn5RyppFcrPcfH56kcWqkaFr6uphMZ92AhKZXwGG7v7i8OjCYvLoIY1EuAyQ-bPp394grp28EdswhiR8pAPzVnIer61O0URfyStZ73VF39gddyADjb_d-pP4HGinuTL6CtP4Z5vn8GjW4KEz-HopL325-EPdYLEkHzrjt8PxOn-gmCQ2iJT_ER0213q5Q1xfhWzuFri27OYRkDMDV4P_tIsPYkVdsJAL-DkYP9472uWqi5kljO6yjjzVSMcwp6tGjSXzrWs66IQ2uSMSiskdQ23wjSVzTHccoWwzpSCe1dJX1RsC2Zt1_qXQKTQVZM7hAWMfY3EQLz0DuOnUhqMk3wzBz69bWWTJHmojLFUxVq5dDSSCkZSyUhz-LDudjVqcvyrw24w5frhIKkdG7r-u0orVLGcGo3In2trubZUc4tsiHlfO5o31M7hXXSEO6OMLUNvPV4qFj9azmF7cgOVAGFQv33g1d9vv4aHYeoxOYhuw2zV__Q78MBer86H_k3y71-lhv53
  priority: 102
  providerName: ProQuest
Title Unveiling the IoT's dark corners: anomaly detection enhanced by ensemble modelling
URI https://www.proquest.com/docview/2927059346
https://hrcak.srce.hr/323049
https://doaj.org/article/302ba1110acc4ac2a4c1513ee8d20f2c
Volume 65
WOSCitedRecordID wos001159757900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1848-3380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056360
  issn: 0005-1144
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1848-3380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056360
  issn: 0005-1144
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1848-3380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056360
  issn: 0005-1144
  databaseCode: M2O
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1848-3380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056360
  issn: 0005-1144
  databaseCode: TFW
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1848-3380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056360
  issn: 0005-1144
  databaseCode: 0YH
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VtAd6qAql6haKfEDtKTSxHSfurVSg9tAtQiBxs_wxEYglWyVbJP49Yye7WsSBSy-RZcVWMp4Zz5PHbwAOakf7NtlNVgedZxFAZLZBkdXCuVppSTFsSMUmqum0vrzUp2ulvmJO2EAPPAjuq8i5s2SQufVeWs-t9LRJCcQ68LzhPnpfinqWYGrwwWVkwRoC3zKjiF8u7-5EVu2oh9RF2JDLmActRcx2XtuVEnk_BatXnbc3T3x02nhO3sKbMWJk34cv3YIX2G7D6zUewXdwdtHe4XW8WM4onmO_5udfehZsd8MIW7YU4H1jtp3f2tk9C7hIyVctw_Yqnf4zd0_tHm_dDFkqjBMn2oGLk-PzHz-zsVhC5qXgi0wKrBoVyFv5qiEp29zqui4KZV0uuPZK89BIr1xT-ZxQUiiUD65UEkOlsajEe9ho5y1-AKaVrZo8kDUTZHWa8HOJgWBPqR3BG2wmIJfCMn5kEo8FLWamWBGODjI2UcZmlPEEDlfD_g5UGs8NOIorsXo5MmGnDtIPM-qHeU4_JvA5reOjWYaevvNITSPSWeME9pYLbUY77g3XvIpFD6X6-D8-Zhc24w-mzB--BxuL7h9-glf-bnHdd_vw8uh4enq2n1SZnr_5nwcju_H_
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBYlyYEcMFPCB5ZSS2M5iJITYqo5aBoSmUm_GW9qq06QkQ9H8KX4jz04yFCHBqQdukRNbcfy95Yuf3wN4XGi02yg3UWFFHHkCEanSsahgWheZ4OjD2lBsIp9Mir098WkFfgxnYXxY5aATg6K2tfH_yJ9TQXNffo5nr06-Rr5qlN9dHUpodLDYdovvSNnal-N3uL5PKN18P327FfVVBSLDGZ1HnLm8zCyKtclLfB0VK1EUSZIpHTMqTCaoLbnJdJmbGOmETTJjdZpxZ3PhkpzhuBfgIveZxXyoIP04aP7U597q3O00Qp7BhxNDPpe3Rz82ISOl3Edfc-ZjrM_YwlAyAF3kg8aooz8sQzB3m9f-tw91Ha72jjV53UnCDVhx1U24cibd4i34vFudukN__p6g20vG9fRZS6xqjghS8Ar94BdEVfWxmi2IdfMQo1YRVx2EIAmiF3jdumM9cyTUD_ID3Ybdc5nUHVit6srdBSIylZexRaWHzF6LTMSps8gOU6GRBbpyBHxYXWn6hOu-7sdMJsu8rB0opAeF7EExgo1lt5Mu48i_Orzx0Fk-7BOGh4a62Ze9_pEsplqhXYuVMVwZqrhBX485V1gal9SM4GkA3m-jdC1tYxxeSha2ZEewPsBO9uqulb8wd-_vtx_B5a3phx25M55s34c1P40QBkXXYXXefHMP4JI5nR-2zcMgWQS-nDdCfwINhVs0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+the+IoT%27s+dark+corners%3A+anomaly+detection+enhanced+by+ensemble+modelling&rft.jtitle=Automatika&rft.au=Jisha+Jose&rft.au=J.+E.+Judith&rft.date=2024-04-02&rft.pub=Taylor+%26+Francis+Group&rft.issn=0005-1144&rft.eissn=1848-3380&rft.volume=65&rft.issue=2&rft.spage=584&rft.epage=596&rft_id=info:doi/10.1080%2F00051144.2024.2304369&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_302ba1110acc4ac2a4c1513ee8d20f2c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1144&client=summon