Application of multi-objective controller to optimal tuning of PID gains for a hydraulic turbine regulating system using adaptive grid particle swam optimization

A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS syst...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ISA transactions Ročník 56; s. 173 - 187
Hlavní autoři: Chen, Zhihuan, Yuan, Yanbin, Yuan, Xiaohui, Huang, Yuehua, Li, Xianshan, Li, Wenwu
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.05.2015
Témata:
ISSN:0019-0578, 1879-2022, 1879-2022
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. •A kind of the nonlinear hydraulic turbine regulating system (HTRS) model is studied.•Multi-objective optimization framework for controller design in HTRS is done.•Hyperbolic tangent function is used to approximate the saturation function in HTRS.•Adaptive grid PSO (AGPSO) is applied to the parameters optimization of the HTRS system.•NSGAII and SPEAII are employed to the parameters tuning in HTRS as a comparison.
AbstractList A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions.
A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. •A kind of the nonlinear hydraulic turbine regulating system (HTRS) model is studied.•Multi-objective optimization framework for controller design in HTRS is done.•Hyperbolic tangent function is used to approximate the saturation function in HTRS.•Adaptive grid PSO (AGPSO) is applied to the parameters optimization of the HTRS system.•NSGAII and SPEAII are employed to the parameters tuning in HTRS as a comparison.
A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions.A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions.
Author Huang, Yuehua
Yuan, Xiaohui
Chen, Zhihuan
Yuan, Yanbin
Li, Xianshan
Li, Wenwu
Author_xml – sequence: 1
  givenname: Zhihuan
  surname: Chen
  fullname: Chen, Zhihuan
  organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
– sequence: 2
  givenname: Yanbin
  surname: Yuan
  fullname: Yuan, Yanbin
  organization: School of Resource and Environmental Engineering, Wuhan University of Technology, 430070 Wuhan, China
– sequence: 3
  givenname: Xiaohui
  surname: Yuan
  fullname: Yuan, Xiaohui
  email: yxh71@163.com
  organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
– sequence: 4
  givenname: Yuehua
  surname: Huang
  fullname: Huang, Yuehua
  organization: College of Electrical Engineering and New Energy, China Three Gorges University, 443002 Yichang, China
– sequence: 5
  givenname: Xianshan
  surname: Li
  fullname: Li, Xianshan
  organization: College of Electrical Engineering and New Energy, China Three Gorges University, 443002 Yichang, China
– sequence: 6
  givenname: Wenwu
  surname: Li
  fullname: Li, Wenwu
  organization: College of Electrical Engineering and New Energy, China Three Gorges University, 443002 Yichang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25481821$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u3CAUhVGVqJmkfYOqYtmNXcA2truoFKV_kSKli3aNAF9PGWFwASeavk3ftMw42XSRiAVC-s65l3PO0YnzDhB6Q0lJCeXvd6WJMgVZMkLrktKSkOoF2tCu7QtGGDtBG0JoX5Cm7c7QeYw7Qghr-u4lOmNN3dGO0Q36eznP1miZjHfYj3habDKFVzvQydwB1t6l4K2FgJPHfk5mkhanxRm3PfDfrz_hrTQu4tEHLPGv_RDkkh0zE5RxgANsF5v9Mx_3McGEl3h4yEHOxxHbYAY8y5CMtoDjvZzWOebPcatX6HSUNsLrh_sC_fzy-cfVt-Lm9uv11eVNoeuKpaImCkAp0krZ9hTGjjfjqHrF6xGU5LxtBs5BVaSuKsr6mtdcM-D5jAMZKqgu0LvVdw7-9wIxiclEDdZKB36JgvKO9pRUbZXRtw_ooiYYxBxyKmEvHmPNwIcV0MHHGGAU2qTjb3JhxgpKxKFDsRNrh-LQoaBU5A6zuP5P_Oj_jOzjKoMc0p2BIKI24DQMJuQyxeDN0wb_AJkDvLU
CitedBy_id crossref_primary_10_1111_exsy_12366
crossref_primary_10_1016_j_isatra_2018_12_007
crossref_primary_10_1016_j_ijepes_2019_04_033
crossref_primary_10_1016_j_renene_2018_10_061
crossref_primary_10_3233_JIFS_232155
crossref_primary_10_1080_21642583_2016_1275990
crossref_primary_10_1109_ACCESS_2018_2847641
crossref_primary_10_1016_j_isatra_2017_07_022
crossref_primary_10_1016_j_asoc_2020_106342
crossref_primary_10_3390_en11051141
crossref_primary_10_53759_acims_978_9914_9946_6_7_13
crossref_primary_10_1177_1748006X19869114
crossref_primary_10_3390_fractalfract8030126
crossref_primary_10_1016_j_renene_2018_08_100
crossref_primary_10_1155_2020_6161784
crossref_primary_10_1080_00207721_2025_2506007
crossref_primary_10_1109_ACCESS_2019_2951628
crossref_primary_10_3390_en14248484
crossref_primary_10_1002_asjc_2432
crossref_primary_10_1109_ACCESS_2018_2871069
crossref_primary_10_1111_itor_12720
crossref_primary_10_1016_j_energy_2016_07_164
crossref_primary_10_1016_j_isatra_2017_01_009
crossref_primary_10_1016_j_isatra_2018_03_017
crossref_primary_10_1016_j_mechmachtheory_2018_04_007
crossref_primary_10_1016_j_renene_2023_02_091
crossref_primary_10_1016_j_renene_2023_01_019
crossref_primary_10_1002_ente_202301170
crossref_primary_10_3390_act13080296
crossref_primary_10_1109_ACCESS_2020_2979810
crossref_primary_10_1016_j_enconman_2018_10_004
crossref_primary_10_3390_machines9090181
crossref_primary_10_1016_j_ifacol_2018_06_113
crossref_primary_10_1016_j_ymssp_2018_03_028
crossref_primary_10_1016_j_isatra_2016_04_020
crossref_primary_10_1049_iet_rpg_2019_1186
crossref_primary_10_3390_en12173220
crossref_primary_10_1109_ACCESS_2021_3064584
crossref_primary_10_3390_en15134771
crossref_primary_10_1016_j_energy_2024_130916
crossref_primary_10_1016_j_renene_2020_05_071
crossref_primary_10_1016_j_enconman_2019_04_068
crossref_primary_10_1109_ACCESS_2021_3095057
crossref_primary_10_3390_su151712810
crossref_primary_10_1007_s12665_019_8257_5
crossref_primary_10_1016_j_energy_2017_02_174
crossref_primary_10_3390_en11010035
crossref_primary_10_1016_j_eswa_2025_128120
crossref_primary_10_1016_j_isatra_2020_09_014
crossref_primary_10_1051_meca_2024002
crossref_primary_10_3390_en11010151
crossref_primary_10_1016_j_est_2022_104315
crossref_primary_10_1109_TPWRS_2016_2639293
crossref_primary_10_1016_j_engappai_2021_104453
crossref_primary_10_1016_j_neucom_2016_05_007
crossref_primary_10_1177_1077546317740013
crossref_primary_10_1155_2019_5826873
crossref_primary_10_1177_10775463211062332
crossref_primary_10_1680_jener_23_00067
crossref_primary_10_1016_j_energy_2024_131798
crossref_primary_10_1016_j_jfranklin_2019_08_006
crossref_primary_10_1016_j_renene_2018_12_082
crossref_primary_10_1016_j_asoc_2021_108192
crossref_primary_10_1016_j_asoc_2016_10_035
crossref_primary_10_1016_j_energy_2018_10_028
Cites_doi 10.1007/978-3-642-23878-9_16
10.1016/j.enconman.2014.04.052
10.1016/j.eswa.2011.02.050
10.1016/j.protcy.2012.05.139
10.1016/j.energy.2008.09.010
10.1016/j.amc.2013.06.074
10.1007/s00500-010-0541-y
10.1016/S0019-0578(07)60102-5
10.1109/TCST.2012.2185698
10.1016/j.enconman.2010.11.005
10.1016/j.eswa.2008.10.047
10.1016/j.isatra.2011.06.006
10.1016/j.isatra.2013.07.002
10.1016/j.ijepes.2014.02.005
10.1016/j.ijepes.2012.06.034
10.1016/j.conengprac.2013.02.015
10.1016/j.isatra.2012.05.004
10.1016/j.ijepes.2009.11.006
10.1016/j.isatra.2012.09.004
10.1016/j.ijepes.2013.09.029
10.1016/j.ins.2014.04.015
10.1016/j.rser.2005.06.003
10.1016/j.asoc.2014.07.009
10.1016/j.isatra.2013.05.003
10.1109/ICNC.2010.5583639
10.1016/j.enconman.2005.07.009
10.1109/MHS.1995.494215
10.12785/amis/080619
10.1016/j.isatra.2013.04.004
10.1016/j.ijepes.2011.06.002
10.1109/TEVC.2004.826067
10.1007/978-3-642-20499-9_6
10.1016/j.enconman.2013.10.060
ContentType Journal Article
Copyright 2014 ISA
Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 ISA
– notice: Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.isatra.2014.11.003
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
EndPage 187
ExternalDocumentID 25481821
10_1016_j_isatra_2014_11_003
S0019057814002602
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
NPM
SSH
7X8
ID FETCH-LOGICAL-c432t-40beebb07aa791ef865ffb9b64feba6675d66eb304331294646c2e6e6efd0d3e3
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356128000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0019-0578
1879-2022
IngestDate Thu Oct 02 07:03:21 EDT 2025
Thu Apr 03 07:00:33 EDT 2025
Tue Nov 18 21:19:01 EST 2025
Sat Nov 29 02:28:32 EST 2025
Fri Feb 23 02:32:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydraulic turbine regulating system
Non-dominated Sorting Genetic Algorithm II (NSGAII)
Strength Pareto Evolutionary Algorithm II (SPEAII)
Multi-objective
Adaptive grid particle swarm optimization
Language English
License Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c432t-40beebb07aa791ef865ffb9b64feba6675d66eb304331294646c2e6e6efd0d3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25481821
PQID 1681910373
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_1681910373
pubmed_primary_25481821
crossref_citationtrail_10_1016_j_isatra_2014_11_003
crossref_primary_10_1016_j_isatra_2014_11_003
elsevier_sciencedirect_doi_10_1016_j_isatra_2014_11_003
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ISA transactions
PublicationTitleAlternate ISA Trans
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kanasottu AN, Pullabhatla S, Mettu VR. IMC design based optimal tuning of a PID-filter governor controller for hydro power plant. In: Proceedings of the advances in power electronics and instrumentation engineering. Springer 2011. p. 34–42.
Zitzler, Laumanns, Thiele (bib35) 2002
Kou P, Zhou J, Li C, He Y, He H. Identification of hydraulic turbine governor system parameters based on bacterial foraging optimization algorithm. In: Proceedings of the 2010 sixth international conference on natural computation (ICNC), IEEE 2010. P. 3339–343.
Yuan, Su, Nie, Yuan, Wang (bib29) 2011; 15
Deb, Agrawal, Pratap, Meyarivan (bib33) 1917; 2000
Hušek (bib12) 2014; 55
Yuan, Nie, Su, Wang, Yuan (bib28) 2009; 36
Chen, Yuan, Tian, Ji (bib21) 2014; 78
Reynoso-Meza, Sanchis, Blasco, García-Nieto (bib25) 2014; 24
Kishor, Saini, Singh (bib20) 2007; 11
Shigang, Qian (bib36) 2007; 33
Tavakkoli-Moghaddam, Azarkish, Sadeghnejad-Barkousaraie (bib38) 2011; 38
Modares, Naghibi Sistani, Lewis (bib1) 2013; 52
Naik, Srikanth, Negi (bib11) 2012; 4
Chen, Yuan, Ji, Wang, Tian (bib19) 2014; 84
Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. New York, NY 1995. p. 39–43.
Wang, Wang, Wu (bib31) 2013; 221
Fang, Chen, Shen (bib15) 2011; 52
Zhao, Chai, Wang, Fu (bib6) 2014; 22
Panda, Multi-objective (bib32) 2011; 33
Kang, Wang (bib2) 2013; 52
Jin M, Hu W, Liu F, Mei S, Lu Q. Nonlinear co-ordinated control of excitation and governor for hydraulic power plants. In: Proceedings of the IEE – generation, transmission and distribution. 2005, 152, p. 544–48.
García, Quintana, Galván, Isasi (bib37) 2011; 6936
Kuhm, Knittel, Bueno (bib3) 2012; 51
Pan, Das (bib17) 2012; 43
Jiang, Ma, Wang (bib16) 2006; 47
Reynoso-Meza, Garcia-Nieto, Sanchis, Blasco (bib24) 2013; 21
Das, Das, Pan (bib34) 2013; 52
Tuba, Bacanin (bib30) 2014; 8
Herreros, Baeyens, Perán (bib23) 2002; 41
Yuan, Su, Yuan, Nie, Wang (bib27) 2009; 34
Zhang, Jiang, Ren, Hou, Xu (bib4) 2013; 52
Juang, Liu, Lin (bib5) 2011; 50
Coello, Pulido, Lechuga (bib18) 2004; 8
Letcher (bib9) 2008
Khodabakhshian, Hooshmand (bib13) 2010; 32
Chekkal, Lahaçani, Aouzellag, Ghedamsi (bib7) 2014; 59
Castillo, Melin (bib8) 2014; 279
Fang (10.1016/j.isatra.2014.11.003_bib15) 2011; 52
Zitzler (10.1016/j.isatra.2014.11.003_bib35) 2002
Modares (10.1016/j.isatra.2014.11.003_bib1) 2013; 52
Hušek (10.1016/j.isatra.2014.11.003_bib12) 2014; 55
Kuhm (10.1016/j.isatra.2014.11.003_bib3) 2012; 51
Zhang (10.1016/j.isatra.2014.11.003_bib4) 2013; 52
Reynoso-Meza (10.1016/j.isatra.2014.11.003_bib25) 2014; 24
Zhao (10.1016/j.isatra.2014.11.003_bib6) 2014; 22
Tavakkoli-Moghaddam (10.1016/j.isatra.2014.11.003_bib38) 2011; 38
Kang (10.1016/j.isatra.2014.11.003_bib2) 2013; 52
10.1016/j.isatra.2014.11.003_bib22
Deb (10.1016/j.isatra.2014.11.003_bib33) 1917; 2000
Juang (10.1016/j.isatra.2014.11.003_bib5) 2011; 50
10.1016/j.isatra.2014.11.003_bib26
Chekkal (10.1016/j.isatra.2014.11.003_bib7) 2014; 59
Tuba (10.1016/j.isatra.2014.11.003_bib30) 2014; 8
Naik (10.1016/j.isatra.2014.11.003_bib11) 2012; 4
Shigang (10.1016/j.isatra.2014.11.003_bib36) 2007; 33
Letcher (10.1016/j.isatra.2014.11.003_bib9) 2008
10.1016/j.isatra.2014.11.003_bib10
Kishor (10.1016/j.isatra.2014.11.003_bib20) 2007; 11
Wang (10.1016/j.isatra.2014.11.003_bib31) 2013; 221
Yuan (10.1016/j.isatra.2014.11.003_bib29) 2011; 15
Yuan (10.1016/j.isatra.2014.11.003_bib28) 2009; 36
10.1016/j.isatra.2014.11.003_bib14
Panda (10.1016/j.isatra.2014.11.003_bib32) 2011; 33
García (10.1016/j.isatra.2014.11.003_bib37) 2011; 6936
Pan (10.1016/j.isatra.2014.11.003_bib17) 2012; 43
Coello (10.1016/j.isatra.2014.11.003_bib18) 2004; 8
Jiang (10.1016/j.isatra.2014.11.003_bib16) 2006; 47
Chen (10.1016/j.isatra.2014.11.003_bib21) 2014; 78
Khodabakhshian (10.1016/j.isatra.2014.11.003_bib13) 2010; 32
Das (10.1016/j.isatra.2014.11.003_bib34) 2013; 52
Yuan (10.1016/j.isatra.2014.11.003_bib27) 2009; 34
Castillo (10.1016/j.isatra.2014.11.003_bib8) 2014; 279
Chen (10.1016/j.isatra.2014.11.003_bib19) 2014; 84
Reynoso-Meza (10.1016/j.isatra.2014.11.003_bib24) 2013; 21
Herreros (10.1016/j.isatra.2014.11.003_bib23) 2002; 41
References_xml – volume: 221
  start-page: 296
  year: 2013
  end-page: 305
  ident: bib31
  article-title: Particle swarm optimization with adaptive mutation for multimodal optimization
  publication-title: Appl Math Comput
– reference: Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. New York, NY 1995. p. 39–43.
– volume: 8
  start-page: 2831
  year: 2014
  end-page: 2844
  ident: bib30
  article-title: Artificial bee colony algorithm hybridized with firefly algorithm for cardinality constrained mean-variance portfolio selection problem
  publication-title: Appl Math Inf Sci
– volume: 84
  start-page: 390
  year: 2014
  end-page: 404
  ident: bib19
  article-title: Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II
  publication-title: Energy Convers Manag
– volume: 78
  start-page: 306
  year: 2014
  end-page: 315
  ident: bib21
  article-title: Improved gravitational search algorithm for parameter identification of water turbine regulation system
  publication-title: Energy Convers Manag
– volume: 38
  start-page: 10812
  year: 2011
  end-page: 10821
  ident: bib38
  article-title: A new hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop scheduling problem
  publication-title: Expert Syst Appl
– volume: 55
  start-page: 460
  year: 2014
  end-page: 466
  ident: bib12
  article-title: controller design for hydraulic turbine based on sensitivity margin specifications
  publication-title: Int J Electr Power Energy Syst
– volume: 2000
  start-page: 849
  year: 1917
  end-page: 858
  ident: bib33
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: Lect Notes Comput Sci
– volume: 36
  start-page: 8049
  year: 2009
  end-page: 8055
  ident: bib28
  article-title: An improved binary particle swarm optimization for unit commitment problem
  publication-title: Expert Syst Appl
– volume: 11
  start-page: 776
  year: 2007
  end-page: 796
  ident: bib20
  article-title: A review on hydropower plant models and control
  publication-title: Renew Sustain Energy Rev
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: bib18
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans Evol Comput
– volume: 15
  start-page: 139
  year: 2011
  end-page: 148
  ident: bib29
  article-title: Unit commitment problem using enhanced particle swarm optimization algorithm
  publication-title: Soft Comput
– volume: 279
  start-page: 615
  year: 2014
  end-page: 631
  ident: bib8
  article-title: A review on interval type-2 fuzzy logic applications in intelligent control
  publication-title: Inf Sci
– volume: 32
  start-page: 375
  year: 2010
  end-page: 382
  ident: bib13
  article-title: A new PID controller design for automatic generation control of hydro power systems
  publication-title: Int J Electr Power Energy Syst
– volume: 33
  start-page: 1296
  year: 2011
  end-page: 1308
  ident: bib32
  article-title: controller tuning for a FACTS-based damping stabilizer using non-dominated sorting genetic algorithm-II
  publication-title: Int J Electric Power Energy Syst
– volume: 22
  start-page: 217
  year: 2014
  end-page: 230
  ident: bib6
  article-title: Hybrid intelligent control for regrinding process in hematite beneficiation
  publication-title: Control Eng Pract
– volume: 43
  start-page: 393
  year: 2012
  end-page: 407
  ident: bib17
  article-title: Chaotic multi-objective optimization based design of fractional order controller
  publication-title: Int J Electr Power Energy Syst
– volume: 34
  start-page: 67
  year: 2009
  end-page: 74
  ident: bib27
  article-title: An improved PSO for dynamic load dispatch of generators with valve-point effects
  publication-title: Energy
– year: 2008
  ident: bib9
  article-title: Future energy: improved, sustainable and clean options for our planet
– reference: Kanasottu AN, Pullabhatla S, Mettu VR. IMC design based optimal tuning of a PID-filter governor controller for hydro power plant. In: Proceedings of the advances in power electronics and instrumentation engineering. Springer 2011. p. 34–42.
– volume: 6936
  start-page: 127
  year: 2011
  end-page: 134
  ident: bib37
  article-title: Portfolio optimization using SPEA2 with resampling. Intelligent data engineering and automated learning-IDEAL 2011
  publication-title: Lecture notes in computer science
– volume: 52
  start-page: 611
  year: 2013
  end-page: 621
  ident: bib1
  article-title: A policy iteration approach to online optimal control of continuous-time constrained-input systems
  publication-title: ISA Trans
– volume: 52
  start-page: 844
  year: 2013
  end-page: 852
  ident: bib2
  article-title: Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety
  publication-title: ISA Trans
– reference: Jin M, Hu W, Liu F, Mei S, Lu Q. Nonlinear co-ordinated control of excitation and governor for hydraulic power plants. In: Proceedings of the IEE – generation, transmission and distribution. 2005, 152, p. 544–48.
– volume: 50
  start-page: 609
  year: 2011
  end-page: 619
  ident: bib5
  article-title: A hybrid intelligent controller for a twin rotor MIMO system and its hardware implementation
  publication-title: ISA Trans
– volume: 52
  start-page: 752
  year: 2013
  end-page: 758
  ident: bib4
  article-title: Improved single neuron controller for multivariable stochastic systems with non-Gaussianities and unmodeled dynamics
  publication-title: ISA Trans
– start-page: 95
  year: 2002
  end-page: 100
  ident: bib35
  article-title: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. Evolutionary methods for design, optimisation and control with application to industrial problems (EUROGEN 2001)
– volume: 24
  start-page: 341
  year: 2014
  end-page: 362
  ident: bib25
  article-title: Physical programming for preference driven evolutionary multi-objective optimization
  publication-title: Appl Soft Comput
– volume: 41
  start-page: 457
  year: 2002
  end-page: 472
  ident: bib23
  article-title: Design of PID-type controllers using multiobjective genetic algorithms
  publication-title: ISA Trans
– volume: 21
  start-page: 445
  year: 2013
  end-page: 458
  ident: bib24
  article-title: Controller tuning by means of multi-objective optimization algorithms: a global tuning framework
  publication-title: IEEE Trans Control Syst Technol
– volume: 47
  start-page: 1222
  year: 2006
  end-page: 1230
  ident: bib16
  article-title: controller parameters optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming (DCMEP)
  publication-title: Energy Convers Manag
– volume: 33
  start-page: 115
  year: 2007
  end-page: 119
  ident: bib36
  article-title: Multi-objective reactive power optimization using SPEA2
  publication-title: High Volt Eng
– volume: 52
  start-page: 1763
  year: 2011
  end-page: 1770
  ident: bib15
  article-title: Application of an improved PSO algorithm to optimal tuning of PID gains for water turbine governor
  publication-title: Energy Convers Manag
– volume: 59
  start-page: 166
  year: 2014
  end-page: 175
  ident: bib7
  article-title: Fuzzy logic control strategy of wind generator based on the dual-stator induction generator
  publication-title: Int J Electr Power Energy Syst
– reference: Kou P, Zhou J, Li C, He Y, He H. Identification of hydraulic turbine governor system parameters based on bacterial foraging optimization algorithm. In: Proceedings of the 2010 sixth international conference on natural computation (ICNC), IEEE 2010. P. 3339–343.
– volume: 51
  start-page: 732
  year: 2012
  end-page: 742
  ident: bib3
  article-title: Robust control strategies for an electric motor driven accumulator with elastic webs
  publication-title: ISA Trans
– volume: 4
  start-page: 845
  year: 2012
  end-page: 853
  ident: bib11
  article-title: IMC tuned PID governor controller for hydro power plant with water hammer effect
  publication-title: Procedia Technol
– volume: 52
  start-page: 56
  year: 2013
  end-page: 77
  ident: bib34
  article-title: Multi-objective optimization framework for networked predictive controller design
  publication-title: ISA Trans
– volume: 6936
  start-page: 127
  year: 2011
  ident: 10.1016/j.isatra.2014.11.003_bib37
  article-title: Portfolio optimization using SPEA2 with resampling. Intelligent data engineering and automated learning-IDEAL 2011
  publication-title: Lecture notes in computer science
  doi: 10.1007/978-3-642-23878-9_16
– ident: 10.1016/j.isatra.2014.11.003_bib14
– volume: 84
  start-page: 390
  year: 2014
  ident: 10.1016/j.isatra.2014.11.003_bib19
  article-title: Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.04.052
– volume: 2000
  start-page: 849
  year: 1917
  ident: 10.1016/j.isatra.2014.11.003_bib33
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: Lect Notes Comput Sci
– volume: 38
  start-page: 10812
  year: 2011
  ident: 10.1016/j.isatra.2014.11.003_bib38
  article-title: A new hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop scheduling problem
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.02.050
– volume: 4
  start-page: 845
  year: 2012
  ident: 10.1016/j.isatra.2014.11.003_bib11
  article-title: IMC tuned PID governor controller for hydro power plant with water hammer effect
  publication-title: Procedia Technol
  doi: 10.1016/j.protcy.2012.05.139
– volume: 34
  start-page: 67
  year: 2009
  ident: 10.1016/j.isatra.2014.11.003_bib27
  article-title: An improved PSO for dynamic load dispatch of generators with valve-point effects
  publication-title: Energy
  doi: 10.1016/j.energy.2008.09.010
– volume: 221
  start-page: 296
  year: 2013
  ident: 10.1016/j.isatra.2014.11.003_bib31
  article-title: Particle swarm optimization with adaptive mutation for multimodal optimization
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2013.06.074
– volume: 15
  start-page: 139
  year: 2011
  ident: 10.1016/j.isatra.2014.11.003_bib29
  article-title: Unit commitment problem using enhanced particle swarm optimization algorithm
  publication-title: Soft Comput
  doi: 10.1007/s00500-010-0541-y
– volume: 41
  start-page: 457
  year: 2002
  ident: 10.1016/j.isatra.2014.11.003_bib23
  article-title: Design of PID-type controllers using multiobjective genetic algorithms
  publication-title: ISA Trans
  doi: 10.1016/S0019-0578(07)60102-5
– volume: 21
  start-page: 445
  year: 2013
  ident: 10.1016/j.isatra.2014.11.003_bib24
  article-title: Controller tuning by means of multi-objective optimization algorithms: a global tuning framework
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2012.2185698
– volume: 52
  start-page: 1763
  year: 2011
  ident: 10.1016/j.isatra.2014.11.003_bib15
  article-title: Application of an improved PSO algorithm to optimal tuning of PID gains for water turbine governor
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.11.005
– volume: 36
  start-page: 8049
  year: 2009
  ident: 10.1016/j.isatra.2014.11.003_bib28
  article-title: An improved binary particle swarm optimization for unit commitment problem
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.10.047
– volume: 50
  start-page: 609
  year: 2011
  ident: 10.1016/j.isatra.2014.11.003_bib5
  article-title: A hybrid intelligent controller for a twin rotor MIMO system and its hardware implementation
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2011.06.006
– volume: 52
  start-page: 752
  year: 2013
  ident: 10.1016/j.isatra.2014.11.003_bib4
  article-title: Improved single neuron controller for multivariable stochastic systems with non-Gaussianities and unmodeled dynamics
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2013.07.002
– volume: 59
  start-page: 166
  year: 2014
  ident: 10.1016/j.isatra.2014.11.003_bib7
  article-title: Fuzzy logic control strategy of wind generator based on the dual-stator induction generator
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.02.005
– volume: 43
  start-page: 393
  year: 2012
  ident: 10.1016/j.isatra.2014.11.003_bib17
  article-title: Chaotic multi-objective optimization based design of fractional order controller PIλDμ in AVR system
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.06.034
– volume: 22
  start-page: 217
  year: 2014
  ident: 10.1016/j.isatra.2014.11.003_bib6
  article-title: Hybrid intelligent control for regrinding process in hematite beneficiation
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2013.02.015
– year: 2008
  ident: 10.1016/j.isatra.2014.11.003_bib9
– volume: 33
  start-page: 115
  year: 2007
  ident: 10.1016/j.isatra.2014.11.003_bib36
  article-title: Multi-objective reactive power optimization using SPEA2
  publication-title: High Volt Eng
– volume: 51
  start-page: 732
  year: 2012
  ident: 10.1016/j.isatra.2014.11.003_bib3
  article-title: Robust control strategies for an electric motor driven accumulator with elastic webs
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2012.05.004
– volume: 32
  start-page: 375
  year: 2010
  ident: 10.1016/j.isatra.2014.11.003_bib13
  article-title: A new PID controller design for automatic generation control of hydro power systems
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2009.11.006
– volume: 52
  start-page: 56
  year: 2013
  ident: 10.1016/j.isatra.2014.11.003_bib34
  article-title: Multi-objective optimization framework for networked predictive controller design
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2012.09.004
– volume: 55
  start-page: 460
  year: 2014
  ident: 10.1016/j.isatra.2014.11.003_bib12
  article-title: controller design for hydraulic turbine based on sensitivity margin specifications
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.09.029
– volume: 279
  start-page: 615
  year: 2014
  ident: 10.1016/j.isatra.2014.11.003_bib8
  article-title: A review on interval type-2 fuzzy logic applications in intelligent control
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.04.015
– volume: 11
  start-page: 776
  year: 2007
  ident: 10.1016/j.isatra.2014.11.003_bib20
  article-title: A review on hydropower plant models and control
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2005.06.003
– volume: 24
  start-page: 341
  year: 2014
  ident: 10.1016/j.isatra.2014.11.003_bib25
  article-title: Physical programming for preference driven evolutionary multi-objective optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.07.009
– volume: 52
  start-page: 844
  year: 2013
  ident: 10.1016/j.isatra.2014.11.003_bib2
  article-title: Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2013.05.003
– ident: 10.1016/j.isatra.2014.11.003_bib22
  doi: 10.1109/ICNC.2010.5583639
– volume: 47
  start-page: 1222
  year: 2006
  ident: 10.1016/j.isatra.2014.11.003_bib16
  article-title: controller parameters optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming (DCMEP)
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2005.07.009
– ident: 10.1016/j.isatra.2014.11.003_bib26
  doi: 10.1109/MHS.1995.494215
– start-page: 95
  year: 2002
  ident: 10.1016/j.isatra.2014.11.003_bib35
– volume: 8
  start-page: 2831
  year: 2014
  ident: 10.1016/j.isatra.2014.11.003_bib30
  article-title: Artificial bee colony algorithm hybridized with firefly algorithm for cardinality constrained mean-variance portfolio selection problem
  publication-title: Appl Math Inf Sci
  doi: 10.12785/amis/080619
– volume: 52
  start-page: 611
  year: 2013
  ident: 10.1016/j.isatra.2014.11.003_bib1
  article-title: A policy iteration approach to online optimal control of continuous-time constrained-input systems
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2013.04.004
– volume: 33
  start-page: 1296
  year: 2011
  ident: 10.1016/j.isatra.2014.11.003_bib32
  article-title: controller tuning for a FACTS-based damping stabilizer using non-dominated sorting genetic algorithm-II
  publication-title: Int J Electric Power Energy Syst
  doi: 10.1016/j.ijepes.2011.06.002
– volume: 8
  start-page: 256
  year: 2004
  ident: 10.1016/j.isatra.2014.11.003_bib18
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826067
– ident: 10.1016/j.isatra.2014.11.003_bib10
  doi: 10.1007/978-3-642-20499-9_6
– volume: 78
  start-page: 306
  year: 2014
  ident: 10.1016/j.isatra.2014.11.003_bib21
  article-title: Improved gravitational search algorithm for parameter identification of water turbine regulation system
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.10.060
SSID ssj0002598
Score 2.3364322
Snippet A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 173
SubjectTerms Adaptive grid particle swarm optimization
Hydraulic turbine regulating system
Multi-objective
Non-dominated Sorting Genetic Algorithm II (NSGAII)
Strength Pareto Evolutionary Algorithm II (SPEAII)
Title Application of multi-objective controller to optimal tuning of PID gains for a hydraulic turbine regulating system using adaptive grid particle swam optimization
URI https://dx.doi.org/10.1016/j.isatra.2014.11.003
https://www.ncbi.nlm.nih.gov/pubmed/25481821
https://www.proquest.com/docview/1681910373
Volume 56
WOSCitedRecordID wos000356128000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB7W1gd9KLbeWrWM4IOypOQymUkel1pxfSiFVtj1JUySSTfLNlmym1p_jj_Hf-WZSy66lKogC2EJSWbgfDnnOyfngtAbKsA5TnwXXqSUWAT2agWuSKw4CO0sBO_N46kaNsFOT4PJJDwbDH40tTDXC1YUwc1NuPyvooZzIGxZOvsX4m4fCifgPwgdjiB2OP6R4EfdJ2n18VxmDFplPNearclNX4hK0s4SNMaVzDevC5P-fDZ-P7zkMnFG5VcOZ9_SiteyFTYYp1hy0kqPr1eBCNUHelirgANP-VItcVnl6XBptjZcfeVXeh1T8tnnw-PzkZxS0Ywsbwn-sSka-TLLZ3UH4Gmt47VTXsT5xtlJzstZnXdINbHwaS3gIf34huN32YQ66NYU3nRZTkqRy9orX0__ORJadwcsBCS4vyh3v6-dHT01xRh6R1v6DRuiwxlzlU5VydZUDjmSjV5tr7OZbSbjudyJ3Ag4qrI9G7CBbZf5IdiI7dH4ZPKppQXgZxpaoHfe1HGqZMPNtW7jSbf5QYoPXTxCO8aRwSMt5V00EMUeethrb7mHdo3hWOG3prv5u8foew-fuMzwb_jEHT7xusQGn1jjU14P-MQKnxjwiTlu8YkNPnGHT6zxiRU-cYNPLPGJG3xiiU_cx-cT9PnDycXxR8vMCbES4rlri9ixEHFsM85Z6IgsoH6WxWFMSSZiTsElTikFtSN79QG9JZTQxBUUfllqp57wnqKtoizEc4RZnDiZ76QiZUB1QXURRh3qh_DXIyTx95HXSCVKTBN9OctlETXZkvNIyzKSsgT_Wjbf3UdWe9dSN5G543rWCDwyRFgT3Agwesedrxt8RGAn5Mc_XoiyXkUOlaEZ22NwzTMNnHYvrk-At7vOwT-v-wI96N7dl2hrXdXiFbqfXK_zVXWI7rFJcGheiJ-V5fgy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+multi-objective+controller+to+optimal+tuning+of+PID+gains+for+a+hydraulic+turbine+regulating+system+using+adaptive+grid+particle+swam+optimization&rft.jtitle=ISA+transactions&rft.au=Chen%2C+Zhihuan&rft.au=Yuan%2C+Yanbin&rft.au=Yuan%2C+Xiaohui&rft.au=Huang%2C+Yuehua&rft.date=2015-05-01&rft.pub=Elsevier+Ltd&rft.issn=0019-0578&rft.eissn=1879-2022&rft.volume=56&rft.spage=173&rft.epage=187&rft_id=info:doi/10.1016%2Fj.isatra.2014.11.003&rft.externalDocID=S0019057814002602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon