Enhancing Electricity Load Forecasting with Machine Learning and Deep Learning

The electricity load forecasting handles the process of determining how much electricity will be available at a given time while maintaining the balance and stability of the power grid. The accuracy of electricity load forecasting plays an important role in ensuring safe operation and improving the...

Full description

Saved in:
Bibliographic Details
Published in:Technologies (Basel) Vol. 13; no. 2; p. 59
Main Authors: Perçuku, Arbër, Minkovska, Daniela, Hinov, Nikolay
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.02.2025
Subjects:
ISSN:2227-7080, 2227-7080
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The electricity load forecasting handles the process of determining how much electricity will be available at a given time while maintaining the balance and stability of the power grid. The accuracy of electricity load forecasting plays an important role in ensuring safe operation and improving the reliability of power systems and is a key component in the operational planning and efficient market. For many years, a conventional method has been used by using historical data as input parameters. With swift progress and improvement in technology, which shows more potential due to its accuracy, different methods can be applied depending on the identified model. To enhance the forecast of load, this paper introduces and proposes a framework developed on graph database technology to archive large amounts of data, which collects measured data from electrical substations in Pristina, Kosovo. The data includes electrical and weather parameters collected over a four-year timeframe. The proposed framework is designed to handle short-term load forecasting. Machine learning Linear Regression and deep learning Long Short-Term Memory algorithms are applied to multiple datasets and mean absolute error and root mean square error are calculated. The results show the promising performance and effectiveness of the proposed model, with high accuracy in load forecasting.
AbstractList The electricity load forecasting handles the process of determining how much electricity will be available at a given time while maintaining the balance and stability of the power grid. The accuracy of electricity load forecasting plays an important role in ensuring safe operation and improving the reliability of power systems and is a key component in the operational planning and efficient market. For many years, a conventional method has been used by using historical data as input parameters. With swift progress and improvement in technology, which shows more potential due to its accuracy, different methods can be applied depending on the identified model. To enhance the forecast of load, this paper introduces and proposes a framework developed on graph database technology to archive large amounts of data, which collects measured data from electrical substations in Pristina, Kosovo. The data includes electrical and weather parameters collected over a four-year timeframe. The proposed framework is designed to handle short-term load forecasting. Machine learning Linear Regression and deep learning Long Short-Term Memory algorithms are applied to multiple datasets and mean absolute error and root mean square error are calculated. The results show the promising performance and effectiveness of the proposed model, with high accuracy in load forecasting.
Audience Academic
Author Minkovska, Daniela
Hinov, Nikolay
Perçuku, Arbër
Author_xml – sequence: 1
  givenname: Arbër
  surname: Perçuku
  fullname: Perçuku, Arbër
– sequence: 2
  givenname: Daniela
  orcidid: 0000-0003-3095-6954
  surname: Minkovska
  fullname: Minkovska, Daniela
– sequence: 3
  givenname: Nikolay
  orcidid: 0000-0002-0308-4858
  surname: Hinov
  fullname: Hinov, Nikolay
BookMark eNp9kU9vVCEUxV9MTay138DFS1xP5T8Pd02dapNRN7omF7jMMHmFkUdj-u1lHDXGGLkLyOH-Tric58NZLhmH4SUlV5wb8rqh3-Uyl23ChXLCCJHmyXDOGNMrTSZy9sf52XC5LHvSl6F8UvJ8-LjOO8g-5e24ntG3mnxqj-OmQBhvS0UPSztefkttN34Av0sZxw1CzUcVchjfIh5-Ky-GpxHmBS9_7hfDl9v155v3q82nd3c315uVF5y1FWOeiADRcTHpQI0KjGupneOaEEcBjQFEpUEoH6hkkgonlZYCIiglkV8MdyffUGBvDzXdQ320BZL9IZS6tVBb8jNaLwVxcWLecSVcYG7yqBSlkUYio4vd69XJ61DL1wdcmt2Xh5r78y2nmjJuJjX1rqtT1xa6acqxtAq-V8D75HskMXX9emLGGDFx0YE3J8DXsiwVo-0_Cy2V3ME0W0rsMT_7r_w6LP6Cf834X-w7AhWkRg
CitedBy_id crossref_primary_10_3390_computation13030075
crossref_primary_10_3390_electronics14142820
crossref_primary_10_3390_en18051144
crossref_primary_10_3390_technologies13080321
Cites_doi 10.3390/en16031480
10.1057/palgrave.jors.2601589
10.1016/j.apenergy.2021.117594
10.3390/forecast3010006
10.3390/en13020391
10.1016/j.ijepes.2017.10.032
10.1109/ACCESS.2021.3060290
10.1109/TPWRS.2004.835679
10.3390/technologies11030070
10.3390/electronics13091722
10.1109/TSTE.2017.2762435
10.3390/en12224349
10.1016/j.apenergy.2020.116177
10.3390/en15062158
10.1016/j.epsr.2015.09.001
10.1109/ACCESS.2021.3060654
10.1016/j.ejor.2009.01.062
10.1109/UPEC.2007.4469121
10.1186/s42162-022-00213-8
10.1162/neco.1997.9.8.1735
10.1186/s42162-021-00172-6
10.3390/su12166364
10.1007/978-3-319-55252-1
10.1016/j.egypro.2019.01.952
10.3390/en14102737
10.1007/s42979-021-00592-x
10.1186/s43067-020-00021-8
10.3390/en14134046
10.3390/su14073984
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
D1I
DWQXO
F28
FR3
GNUQQ
HCIFZ
JQ2
K7-
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/technologies13020059
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2227-7080
ExternalDocumentID oai_doaj_org_article_c540bf82cb364bd2b8ce6611f1f05fbf
A829994834
10_3390_technologies13020059
GeographicLocations Kosovo
GeographicLocations_xml – name: Kosovo
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KB.
KC.
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
8FD
ABUWG
AZQEC
COVID
DWQXO
F28
FR3
GNUQQ
JQ2
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c432t-22c04dafb3487d196d23757bb3700b1ae99aee67a46cd152514b56754afa665e3
IEDL.DBID M7S
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001431884900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7080
IngestDate Fri Oct 03 12:42:51 EDT 2025
Fri Jul 25 12:14:27 EDT 2025
Tue Nov 04 18:11:15 EST 2025
Sat Nov 29 07:16:44 EST 2025
Tue Nov 18 21:44:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-22c04dafb3487d196d23757bb3700b1ae99aee67a46cd152514b56754afa665e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3095-6954
0000-0002-0308-4858
OpenAccessLink https://www.proquest.com/docview/3171239868?pq-origsite=%requestingapplication%
PQID 3171239868
PQPubID 2032323
ParticipantIDs doaj_primary_oai_doaj_org_article_c540bf82cb364bd2b8ce6611f1f05fbf
proquest_journals_3171239868
gale_infotracacademiconefile_A829994834
crossref_citationtrail_10_3390_technologies13020059
crossref_primary_10_3390_technologies13020059
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Technologies (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Farsi (ref_11) 2021; 9
Nespoli (ref_14) 2021; 3
Dudek (ref_8) 2016; 130
ref_13
ref_12
Chen (ref_4) 2001; Volume 2
ref_10
Chen (ref_9) 2004; 19
Sevlian (ref_28) 2018; 98
ref_17
ref_16
Kang (ref_1) 2004; 28
Sarker (ref_27) 2021; 2
Muzaffar (ref_21) 2019; 158
Lenders (ref_31) 2021; 4
Gigoni (ref_18) 2017; 9
Rafi (ref_15) 2021; 9
ref_23
ref_22
Fekri (ref_20) 2021; 282
ref_3
ref_2
Vinasco (ref_19) 2021; 303
ref_29
ref_26
Hochreiter (ref_24) 1997; 9
Nti (ref_32) 2020; 7
Hahn (ref_34) 2009; 199
Beichter (ref_33) 2022; 5
ref_5
ref_7
Hyndman (ref_25) 2006; 4
ref_6
Taylor (ref_30) 2003; 54
References_xml – ident: ref_3
  doi: 10.3390/en16031480
– volume: 54
  start-page: 799
  year: 2003
  ident: ref_30
  article-title: Short-Term Electricity Demand Forecasting Using Double Seasonal Exponential Smoothing
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601589
– volume: 303
  start-page: 117594
  year: 2021
  ident: ref_19
  article-title: Probabilistic load forecasting considering temporal correlation: Online models for the prediction of households’ electrical load
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117594
– volume: 3
  start-page: 91
  year: 2021
  ident: ref_14
  article-title: Electrical Load Forecast by Means of LSTM: The Impact of Data Quality
  publication-title: Forecasting
  doi: 10.3390/forecast3010006
– ident: ref_13
  doi: 10.3390/en13020391
– ident: ref_26
– volume: 98
  start-page: 350
  year: 2018
  ident: ref_28
  article-title: A Scaling Law for Short Term Load Forecasting on Varying Levels of Aggregation
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2017.10.032
– volume: Volume 2
  start-page: 411
  year: 2001
  ident: ref_4
  article-title: ANN-based short-term load forecasting in electricity markets
  publication-title: Proceedings of the Power Engineering Society Winter Meeting
– volume: 9
  start-page: 31191
  year: 2021
  ident: ref_11
  article-title: On Short-Term Load Forecasting Using Machine Learning Techniques and a Novel Parallel Deep LSTM-CNN Approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3060290
– volume: 19
  start-page: 1821
  year: 2004
  ident: ref_9
  article-title: Load forecasting using support vector machines: A study on EUNITE competition 2001
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.835679
– volume: 4
  start-page: 43
  year: 2006
  ident: ref_25
  article-title: Another look at forecast accuracy metrics for intermittent demand
  publication-title: Foresight Int. J. Appl. Forecast.
– ident: ref_12
  doi: 10.3390/technologies11030070
– ident: ref_29
  doi: 10.3390/electronics13091722
– volume: 9
  start-page: 831
  year: 2017
  ident: ref_18
  article-title: Day-Ahead Hourly Forecasting of Power Generation from Photovoltaic Plants
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2017.2762435
– ident: ref_2
  doi: 10.3390/en12224349
– volume: 282
  start-page: 116177
  year: 2021
  ident: ref_20
  article-title: Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.116177
– ident: ref_17
  doi: 10.3390/en15062158
– volume: 28
  start-page: 1
  year: 2004
  ident: ref_1
  article-title: Review of power system load forecasting and its development
  publication-title: Autom. Electr. Power Syst.
– volume: 130
  start-page: 139
  year: 2016
  ident: ref_8
  article-title: Pattern-based local linear regression models for short-term load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2015.09.001
– volume: 9
  start-page: 32436
  year: 2021
  ident: ref_15
  article-title: A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3060654
– volume: 199
  start-page: 902
  year: 2009
  ident: ref_34
  article-title: Electric load forecasting methods: Tools for decision making
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.01.062
– ident: ref_10
  doi: 10.1109/UPEC.2007.4469121
– volume: 5
  start-page: 19
  year: 2022
  ident: ref_33
  article-title: Net load forecasting using different aggregation levels
  publication-title: Energy Inform.
  doi: 10.1186/s42162-022-00213-8
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_24
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 4
  start-page: 13
  year: 2021
  ident: ref_31
  article-title: Comparison of short-term electrical load forecasting methods for different building types
  publication-title: Energy Inform.
  doi: 10.1186/s42162-021-00172-6
– ident: ref_5
  doi: 10.3390/su12166364
– ident: ref_23
  doi: 10.1007/978-3-319-55252-1
– volume: 158
  start-page: 2922
  year: 2019
  ident: ref_21
  article-title: Short-Term Load Forecast Using LSTM Networks
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.952
– ident: ref_16
  doi: 10.3390/en14102737
– volume: 2
  start-page: 160
  year: 2021
  ident: ref_27
  article-title: Machine Learning: Algorithms, Real-World Applications and Research Directions
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00592-x
– volume: 7
  start-page: 13
  year: 2020
  ident: ref_32
  article-title: Electricity load forecasting: A systematic review
  publication-title: J. Electr. Syst. Inf. Technol.
  doi: 10.1186/s43067-020-00021-8
– ident: ref_6
  doi: 10.3390/en14134046
– ident: ref_22
– ident: ref_7
  doi: 10.3390/su14073984
SSID ssj0000913865
Score 2.3150525
Snippet The electricity load forecasting handles the process of determining how much electricity will be available at a given time while maintaining the balance and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 59
SubjectTerms Accuracy
Algorithms
Alternative energy sources
Artificial intelligence
Case studies
Datasets
Deep learning
Electric power systems
Electrical loads
Electricity
electricity load
Forecasting
Forecasting techniques
Handles
Kosovo
linear regression algorithm
long short-term memory algorithm
Machine learning
Methods
Neural networks
Parameters
Prediction theory
Regression analysis
short-term forecasting
Substations
System reliability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELYQouAKdDxOLAfIBRJVhGM7dlxyxyIKWFGARGf5CUgooN2F38-Mk11tcScaWsuJnJnxPJzx9xFy0nCvTGaiyqlRlYzMV22MoWIuJa288M63hWxCTybtw4O5XaH6wp6wHh64F9xZgJTC55YHL5T0kfs2JIgpda4za7LP6H2ZNivFVPHBpkYyy_6unIC6_my-OKmGAhR_1rECT7oSiwpk__8cc4k2lz_J1pAm0vN-edtkLXU75McKeOAumYy7JwTL6B7puHDZPAfIqOn1q4sUCTeDm2FLM8WTVnpTeiYTHeBUH6nrIr1I6W05skfuL8d3f6-qgR2hClLwecV5YDK67AXUHBE2UuRCN9p7oRnztUvGgLyVdlKFiCxHtfQNlAfSZadUk8Qvst69dmmfUGFc5EonE-soncwtvC5pcAaB5ToIPyJiIScbBuhwZLB4sVBCoHTtv6Q7ItXyqbceOuOL-X9QBcu5CHxdBsAc7GAO9itzGJFTVKDF7QlLDG64ZQAfikBX9ryF-GvwBHVEDhc6tsO-nVnIpmpERFTtwXes5jfZ5MgXXLq8D8n6fPqejshG-Jg_z6bHxWQ_AXUd9Co
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhancing Electricity Load Forecasting with Machine Learning and Deep Learning
URI https://www.proquest.com/docview/3171239868
https://doaj.org/article/c540bf82cb364bd2b8ce6611f1f05fbf
Volume 13
WOSCitedRecordID wos001431884900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913865
  issn: 2227-7080
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913865
  issn: 2227-7080
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2227-7080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913865
  issn: 2227-7080
  databaseCode: P5Z
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 2227-7080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913865
  issn: 2227-7080
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913865
  issn: 2227-7080
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2227-7080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913865
  issn: 2227-7080
  databaseCode: KB.
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913865
  issn: 2227-7080
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913865
  issn: 2227-7080
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwN74I0oLJUPSJzMOrbjJCe0haxAsFXEQ1q4RH6WlVDabQtHfjszrlv2wOPAZQ6OEyWZscczHn8fIU9KYXUTuWQxlJopzy2rvXeMmxAqbaU1tk5kE9V0Wp-dNV1OuK1yWeV2TkwTtZ87zJEfgZ8rEKtO188XFwxZo3B3NVNoXCX7iJJQpNK997scC2Je1rrcnJiTEN0frbf5aghDccuOJ5DSSx4pAff_aXpOPufk5v--7S1yI6826fHGPG6TK2G4Qw4uYRDeJdN2-IKYG8OMtokS59zBwpy-nRtPkbfTmRVWRlNM2NLTVHoZaEZlnVEzePoyhMWu5R75eNJ-ePGKZZIF5pQUayaE48qbaCWELh7GoxeyKitrZcW5LUxoGlCbrozSziNZUqFsCVGGMtFoXQZ5n-wN8yE8IFQ2xgtdhcYXXhkVa3hcqGBOcTwWTtoRkdsf3buMQI5EGF97iERQPf3v1DMibHfXYoPA8Y_-E9Thri_iZ6eG-XLW5-HYO1io2lgLZ6VW1gtbuwArlSIWkZfRxhF5ihbQ4yiHV3QmH1aAD0W8rP64BjfeYCJ2RA63FtDn4b_qf6n_4d8vPyLXBRIKpzLwQ7K3Xn4Lj8k19319vlqOyf6knXbvxilRAPJNxVBOno2TnaP80YLsys_Qt3t92n36Ce5UCVo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLVKQQIWPIsIFPACxMqqx_bYngVChaZqlTRiUaTujJ-hEpqEJID4Kb4RX2cmdMFj1QVbz4xlj4-vr6-vz0Hoec2cbBLlJMVaEhGoIzoET6iNUUnHnXW6iE2oyUSfnTXvttCP_i4MpFX2NrEY6jDzECPfy-tcBVx1Ur-efyagGgWnq72ExhoWo_j9W96yLV8dH-TxfcHY4fD07RHpVAWIF5ytCGOeimCT49lXDxmAgXFVK-e4otRVNjZNbqdUVkgfQB2oEq7ObrWwyUpZR57rvYKuCq4VzKuRIpuYDnBsalmvb-hx3tC9VR8fz9teOCKkhRT1wgpYhAL-tByUNe7w9v_2d-6gW503jffX8L-LtmJ7D928wLF4H02G7UfgFGmneFgkf8593njg8cwGDLqk3i4h8xtDQBqflNTSiDvW2Sm2bcAHMc43JTvo_aV06AHabmdtfIgwb2xgUsUmVEFYkXSuLqpsMz1NledugHg_sMZ3DOsg9PHJ5J0WwMH8Dg4DRDZfzdcMI_94_w1gZvMu8IOXgtliajpzY3x2xF3SzDsuhQvMaR-zJ1alKtE6uTRALwFxBqxYbqK33WWM3FHgAzP7OrspDQSaB2i3R5zpzNvS_ILbo78_foauH52ejM34eDJ6jG4wEE8uKe-7aHu1-BKfoGv-6-p8uXhaZhJGHy4bnD8BmTFc5g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aBoRgwRtRGMALEKtoHDtxkgVCA23FaIaqC5BGbIyfZSSUlraA-DW-jnvdpMyCx2oWbJ2Hkvjkvnx9DsCTUljVRC6zGEqVFZ7brPbeZdyEUCkrrbF1EpuoJpP65KSZ7sCPfi8MtVX2NjEZaj93VCPfRz-XE1edqvdj1xYxHY5fLD5npCBFK629nMYGIkfh-zdM31bPD4c410-FGI_evnqddQoDmSukWGdCOF54E63EuN0jGL2QVVlZKyvObW5C0-Azq8oUynlSCsoLW2KIXZholCqDxPtegIsV5pjUTjgt32_rO8S3Watys1tPyobvr_taOabAtFzIE0HqGW-YRAP-5BqSvxtf_5-_1A241kXZ7GDzW9yEndDegqtnuBdvw2TUfiSukXbGRkkK6NRhQsKO58Yz0it1ZkUd4YwK1exNajkNrGOjnTHTejYMYbEduQPvzuWF7sJuO2_DPWCyMV6oKjQ-94UpYo23CxXaUsdj7qQdgOwnWbuOeZ0EQD5pzMAIGvp30BhAtr1qsWEe-cf5Lwk_23OJNzwNzJcz3Zkh7TBAt7EWzkpVWC9s7QJGaHnMIy-jjQN4RujTZN3wEZ3pNmngixJPmD6oMXxpqAA9gL0efbozeyv9C3r3_374MVxGTOrjw8nRA7giSFM5dcLvwe56-SU8hEvu6_p0tXyUfioGH84bmz8BYs1mCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Electricity+Load+Forecasting+with+Machine+Learning+and+Deep+Learning&rft.jtitle=Technologies+%28Basel%29&rft.au=Per%C3%A7uku%2C+Arb%C3%ABr&rft.au=Minkovska%2C+Daniela&rft.au=Hinov%2C+Nikolay&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2227-7080&rft.volume=13&rft.issue=2&rft.spage=59&rft_id=info:doi/10.3390%2Ftechnologies13020059&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7080&client=summon