Gene count estimation with pytximport enables reproducible analysis of bulk RNA sequencing data in Python

Summary Transcript quantification tools efficiently map bulk RNA sequencing (RNA-seq) reads to reference transcriptomes. However, their output consists of transcript count estimates that are subject to multiple biases and cannot be readily used with existing differential gene expression analysis too...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) Vol. 40; no. 12
Main Authors: Kuehl, Malte, Wong, Milagros N, Wanner, Nicola, Bonn, Stefan, Puelles, Victor G
Format: Journal Article
Language:English
Published: England Oxford University Press 28.11.2024
Oxford Publishing Limited (England)
Subjects:
ISSN:1367-4811, 1367-4803, 1367-4811
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Transcript quantification tools efficiently map bulk RNA sequencing (RNA-seq) reads to reference transcriptomes. However, their output consists of transcript count estimates that are subject to multiple biases and cannot be readily used with existing differential gene expression analysis tools in Python. Here we present pytximport, a Python implementation of the tximport R package that supports a variety of input formats, different modes of bias correction, inferential replicates, gene-level summarization of transcript counts, transcript-level exports, transcript-to-gene mapping generation, and optional filtering of transcripts by biotype. pytximport is part of the scverse ecosystem of open-source Python software packages for omics analyses and includes both a Python as well as a command-line interface. With pytximport, we propose a bulk RNA-seq analysis workflow based on Bioconda and scverse ecosystem packages, ensuring reproducible analyses through Snakemake rules. We apply this pipeline to a publicly available RNA-seq dataset, demonstrating how pytximport enables the creation of Python-centric workflows capable of providing insights into transcriptomic alterations. Availability and implementation pytximport is licensed under the GNU General Public License version 3. The source code is available at https://github.com/complextissue/pytximport and via Zenodo with DOI: 10.5281/zenodo.13907917. A related Snakemake workflow is available through GitHub at https://github.com/complextissue/snakemake-bulk-rna-seq-workflow and Zenodo with DOI: 10.5281/zenodo.12713811. Documentation and a vignette for new users are available at: https://pytximport.readthedocs.io.
AbstractList Transcript quantification tools efficiently map bulk RNA sequencing (RNA-seq) reads to reference transcriptomes. However, their output consists of transcript count estimates that are subject to multiple biases and cannot be readily used with existing differential gene expression analysis tools in Python.Here we present pytximport, a Python implementation of the tximport R package that supports a variety of input formats, different modes of bias correction, inferential replicates, gene-level summarization of transcript counts, transcript-level exports, transcript-to-gene mapping generation, and optional filtering of transcripts by biotype. pytximport is part of the scverse ecosystem of open-source Python software packages for omics analyses and includes both a Python as well as a command-line interface.With pytximport, we propose a bulk RNA-seq analysis workflow based on Bioconda and scverse ecosystem packages, ensuring reproducible analyses through Snakemake rules. We apply this pipeline to a publicly available RNA-seq dataset, demonstrating how pytximport enables the creation of Python-centric workflows capable of providing insights into transcriptomic alterations.SUMMARYTranscript quantification tools efficiently map bulk RNA sequencing (RNA-seq) reads to reference transcriptomes. However, their output consists of transcript count estimates that are subject to multiple biases and cannot be readily used with existing differential gene expression analysis tools in Python.Here we present pytximport, a Python implementation of the tximport R package that supports a variety of input formats, different modes of bias correction, inferential replicates, gene-level summarization of transcript counts, transcript-level exports, transcript-to-gene mapping generation, and optional filtering of transcripts by biotype. pytximport is part of the scverse ecosystem of open-source Python software packages for omics analyses and includes both a Python as well as a command-line interface.With pytximport, we propose a bulk RNA-seq analysis workflow based on Bioconda and scverse ecosystem packages, ensuring reproducible analyses through Snakemake rules. We apply this pipeline to a publicly available RNA-seq dataset, demonstrating how pytximport enables the creation of Python-centric workflows capable of providing insights into transcriptomic alterations.pytximport is licensed under the GNU General Public License version 3. The source code is available at https://github.com/complextissue/pytximport and via Zenodo with DOI: 10.5281/zenodo.13907917. A related Snakemake workflow is available through GitHub at https://github.com/complextissue/snakemake-bulk-rna-seq-workflow and Zenodo with DOI: 10.5281/zenodo.12713811. Documentation and a vignette for new users are available at: https://pytximport.readthedocs.io.AVAILABILITY AND IMPLEMENTATIONpytximport is licensed under the GNU General Public License version 3. The source code is available at https://github.com/complextissue/pytximport and via Zenodo with DOI: 10.5281/zenodo.13907917. A related Snakemake workflow is available through GitHub at https://github.com/complextissue/snakemake-bulk-rna-seq-workflow and Zenodo with DOI: 10.5281/zenodo.12713811. Documentation and a vignette for new users are available at: https://pytximport.readthedocs.io.
Transcript quantification tools efficiently map bulk RNA sequencing (RNA-seq) reads to reference transcriptomes. However, their output consists of transcript count estimates that are subject to multiple biases and cannot be readily used with existing differential gene expression analysis tools in Python. Here we present pytximport, a Python implementation of the tximport R package that supports a variety of input formats, different modes of bias correction, inferential replicates, gene-level summarization of transcript counts, transcript-level exports, transcript-to-gene mapping generation, and optional filtering of transcripts by biotype. pytximport is part of the scverse ecosystem of open-source Python software packages for omics analyses and includes both a Python as well as a command-line interface. With pytximport, we propose a bulk RNA-seq analysis workflow based on Bioconda and scverse ecosystem packages, ensuring reproducible analyses through Snakemake rules. We apply this pipeline to a publicly available RNA-seq dataset, demonstrating how pytximport enables the creation of Python-centric workflows capable of providing insights into transcriptomic alterations. Availability and implementation pytximport is licensed under the GNU General Public License version 3. The source code is available at https://github.com/complextissue/pytximport and via Zenodo with DOI: 10.5281/zenodo.13907917. A related Snakemake workflow is available through GitHub at https://github.com/complextissue/snakemake-bulk-rna-seq-workflow and Zenodo with DOI: 10.5281/zenodo.12713811. Documentation and a vignette for new users are available at: https://pytximport.readthedocs.io.
Summary Transcript quantification tools efficiently map bulk RNA sequencing (RNA-seq) reads to reference transcriptomes. However, their output consists of transcript count estimates that are subject to multiple biases and cannot be readily used with existing differential gene expression analysis tools in Python. Here we present pytximport, a Python implementation of the tximport R package that supports a variety of input formats, different modes of bias correction, inferential replicates, gene-level summarization of transcript counts, transcript-level exports, transcript-to-gene mapping generation, and optional filtering of transcripts by biotype. pytximport is part of the scverse ecosystem of open-source Python software packages for omics analyses and includes both a Python as well as a command-line interface. With pytximport, we propose a bulk RNA-seq analysis workflow based on Bioconda and scverse ecosystem packages, ensuring reproducible analyses through Snakemake rules. We apply this pipeline to a publicly available RNA-seq dataset, demonstrating how pytximport enables the creation of Python-centric workflows capable of providing insights into transcriptomic alterations. Availability and implementation pytximport is licensed under the GNU General Public License version 3. The source code is available at https://github.com/complextissue/pytximport and via Zenodo with DOI: 10.5281/zenodo.13907917. A related Snakemake workflow is available through GitHub at https://github.com/complextissue/snakemake-bulk-rna-seq-workflow and Zenodo with DOI: 10.5281/zenodo.12713811. Documentation and a vignette for new users are available at: https://pytximport.readthedocs.io.
Transcript quantification tools efficiently map bulk RNA sequencing (RNA-seq) reads to reference transcriptomes. However, their output consists of transcript count estimates that are subject to multiple biases and cannot be readily used with existing differential gene expression analysis tools in Python.Here we present pytximport, a Python implementation of the tximport R package that supports a variety of input formats, different modes of bias correction, inferential replicates, gene-level summarization of transcript counts, transcript-level exports, transcript-to-gene mapping generation, and optional filtering of transcripts by biotype. pytximport is part of the scverse ecosystem of open-source Python software packages for omics analyses and includes both a Python as well as a command-line interface.With pytximport, we propose a bulk RNA-seq analysis workflow based on Bioconda and scverse ecosystem packages, ensuring reproducible analyses through Snakemake rules. We apply this pipeline to a publicly available RNA-seq dataset, demonstrating how pytximport enables the creation of Python-centric workflows capable of providing insights into transcriptomic alterations. pytximport is licensed under the GNU General Public License version 3. The source code is available at https://github.com/complextissue/pytximport and via Zenodo with DOI: 10.5281/zenodo.13907917. A related Snakemake workflow is available through GitHub at https://github.com/complextissue/snakemake-bulk-rna-seq-workflow and Zenodo with DOI: 10.5281/zenodo.12713811. Documentation and a vignette for new users are available at: https://pytximport.readthedocs.io.
Author Kuehl, Malte
Wong, Milagros N
Puelles, Victor G
Wanner, Nicola
Bonn, Stefan
Author_xml – sequence: 1
  givenname: Malte
  orcidid: 0000-0003-4167-2498
  surname: Kuehl
  fullname: Kuehl, Malte
  email: malte.kuehl@clin.au.dk
– sequence: 2
  givenname: Milagros N
  surname: Wong
  fullname: Wong, Milagros N
– sequence: 3
  givenname: Nicola
  surname: Wanner
  fullname: Wanner, Nicola
– sequence: 4
  givenname: Stefan
  orcidid: 0000-0003-4366-5662
  surname: Bonn
  fullname: Bonn, Stefan
– sequence: 5
  givenname: Victor G
  orcidid: 0000-0002-7735-5462
  surname: Puelles
  fullname: Puelles, Victor G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39565903$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9PHCEUxUljU_9-BUPiS19WYVhgeDLGtGpiWmPaZwLMHRedhRGY1v32YnY12qc-wc393ZNz79lFWyEGQOiQkmNKFDuxPvrQx7Q0xbt8YosBScgntEOZkLN5S-nWu_822s35nhDCCRdf0DZTXHBF2A7yFxAAuziFgiEX_6IXA_7rywKPq_Lkl2NMtRWMHSDjBGOK3eR8rbAJZlhln3HssZ2GB3z74wxneJwgOB_ucGeKwT7gm1VZxLCPPvdmyHCweffQ7-_ffp1fzq5_Xlydn13P3Jw1ZUZ7Z4QA6KSUrZHcgO2lEVJwS2vB-dw1hCqhjOpYL7gjPbfKtFYQSxhv2R46XeuOk11C5yCUZAY9prpbWulovP7YCX6h7-IfTalolBK8KnzdKKRYl8lFL312MAwmQJyyZpRRTgiby4oe_YPexynVu1SqodVOS1VTqcP3lt68vMZQAbEGXIo5J-jfEEr0S976Y956k3cdpOvBOI3_O_MMHcG3gg
Cites_doi 10.1093/bioadv/vbac016
10.1186/s13059-014-0550-8
10.1038/nbt.2450
10.1038/s41587-023-01733-8
10.12688/f1000research.7035.2
10.1186/1471-2164-10-22
10.1093/bioinformatics/btad547
10.12688/f1000research.15398.3
10.1186/s12859-021-04198-1
10.1101/2023.01.04.522742
10.1186/s13059-020-02151-8
10.1093/nar/gkad841
10.1093/nar/gkad1049
10.1038/nbt.2862
10.1038/nmeth.4197
10.5334/jors.148
10.1038/s41576-019-0150-2
10.1093/nar/gkad1025
10.1093/bioinformatics/bts480
10.12688/f1000research.7563.2
10.1186/s12864-017-4002-1
10.1186/s13059-018-1419-z
10.1101/2024.02.28.582591
10.1371/journal.pcbi.1003118
10.1101/2021.12.16.473007
10.1038/nmeth.4324
10.1038/nbt.3519
10.1186/1471-2105-12-323
10.1016/j.humimm.2021.02.012
10.1002/imt2.107
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. 2024
The Author(s) 2024. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2024
– notice: The Author(s) 2024. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1093/bioinformatics/btae700
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID PMC11629965
39565903
10_1093_bioinformatics_btae700
10.1093/bioinformatics/btae700
Genre Research Support, Non-U.S. Gov't
Journal Article
Report
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
– fundername: NovoNordisk Foundation
– fundername: BMBF
– fundername: German Research Council
– fundername: Collaborative Research Center
  grantid: 1192 [SFB 1192]
– fundername: Deutsche Forschungsgemeinschaft
  grantid: FOR 5068 P9
– fundername: Young Investigator
  grantid: NNF21OC0066381
– fundername: ;
– fundername: ;
  grantid: FOR 5068 P9
– fundername: ;
  grantid: 1192 [SFB 1192]
– fundername: ;
  grantid: NNF21OC0066381
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
ROX
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c432t-1fca66eed7778a75aebf7a6765b15ae554c201969a9d3f65c0f5b9a8b60b03583
IEDL.DBID TOX
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001373044300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4811
1367-4803
IngestDate Thu Aug 21 18:29:45 EDT 2025
Wed Oct 01 13:47:13 EDT 2025
Mon Oct 06 17:35:54 EDT 2025
Mon Jul 21 05:46:12 EDT 2025
Sat Nov 29 03:49:31 EST 2025
Mon Jun 30 08:34:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-1fca66eed7778a75aebf7a6765b15ae554c201969a9d3f65c0f5b9a8b60b03583
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Report-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Stefan Bonn and Victor G. Puelles jointly supervised the work.
ORCID 0000-0002-7735-5462
0000-0003-4366-5662
0000-0003-4167-2498
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btae700
PMID 39565903
PQID 3213588192
PQPubID 36124
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11629965
proquest_miscellaneous_3131500347
proquest_journals_3213588192
pubmed_primary_39565903
crossref_primary_10_1093_bioinformatics_btae700
oup_primary_10_1093_bioinformatics_btae700
PublicationCentury 2000
PublicationDate 2024-11-28
PublicationDateYYYYMMDD 2024-11-28
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2024
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Love (2024121018345665400_btae700-B13) 2014; 15
Sarantopoulou (2024121018345665400_btae700-B21) 2021; 22
Badia-I-Mompel (2024121018345665400_btae700-B1) 2022; 2
Hoyer (2024121018345665400_btae700-B6) 2017; 5
Lawrence (2024121018345665400_btae700-B10) 2013; 9
Hu (2024121018345665400_btae700-B7) 2021; 82
Müller-Dott (2024121018345665400_btae700-B16) 2023; 51
Muzellec (2024121018345665400_btae700-B17) 2023; 39
Li (2024121018345665400_btae700-B11) 2011; 12
Patro (2024121018345665400_btae700-B19) 2014; 32
Stark (2024121018345665400_btae700-B25) 2019; 20
Virshup (2024121018345665400_btae700-B27) 2023; 41
Love (2024121018345665400_btae700-B12) 2016; 4
Zhang (2024121018345665400_btae700-B30) 2017; 18
Smedley (2024121018345665400_btae700-B22) 2009; 10
Srivastava (2024121018345665400_btae700-B24) 2020; 21
Soneson (2024121018345665400_btae700-B23) 2016; 4
Trapnell (2024121018345665400_btae700-B26) 2013; 31
Virshup (2024121018345665400_btae700-B28) 2021
Chen (2024121018345665400_btae700-B3) 2023; 2
Yi (2024121018345665400_btae700-B29) 2018; 19
Love (2024121018345665400_btae700-B14) 2018; 7
Milacic (2024121018345665400_btae700-B15) 2024; 52
Bray (2024121018345665400_btae700-B2) 2016; 34
Patro (2024121018345665400_btae700-B18) 2017; 14
Harrison (2024121018345665400_btae700-B4) 2024; 52
Jousheghani (2024121018345665400_btae700-B8) 2024
Pimentel (2024121018345665400_btae700-B20) 2017; 14
Köster (2024121018345665400_btae700-B9) 2012; 28
He (2024121018345665400_btae700-B5) 2023
References_xml – volume: 2
  start-page: vbac016
  year: 2022
  ident: 2024121018345665400_btae700-B1
  article-title: decoupleR: ensemble of computational methods to infer biological activities from omics data
  publication-title: Bioinform Adv
  doi: 10.1093/bioadv/vbac016
– volume: 15
  start-page: 550
  year: 2014
  ident: 2024121018345665400_btae700-B13
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 31
  start-page: 46
  year: 2013
  ident: 2024121018345665400_btae700-B26
  article-title: Differential analysis of gene regulation at transcript resolution with RNA-seq
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2450
– volume: 41
  start-page: 604
  year: 2023
  ident: 2024121018345665400_btae700-B27
  article-title: The scverse project provides a computational ecosystem for single-cell omics data analysis
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-023-01733-8
– volume: 4
  year: 2016
  ident: 2024121018345665400_btae700-B12
  article-title: RNA-Seq workflow: gene-level exploratory analysis and differential expression
  publication-title: F1000Res
  doi: 10.12688/f1000research.7035.2
– volume: 10
  start-page: 22
  year: 2009
  ident: 2024121018345665400_btae700-B22
  article-title: BioMart—biological queries made easy
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-22
– volume: 39
  start-page: btad547
  year: 2023
  ident: 2024121018345665400_btae700-B17
  article-title: PyDESeq2: a python package for bulk RNA-seq differential expression analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad547
– volume: 7
  start-page: 952
  year: 2018
  ident: 2024121018345665400_btae700-B14
  article-title: Swimming downstream: statistical analysis of differential transcript usage following Salmon quantification
  publication-title: F1000Res
  doi: 10.12688/f1000research.15398.3
– volume: 22
  start-page: 266
  year: 2021
  ident: 2024121018345665400_btae700-B21
  article-title: Comparative evaluation of full-length isoform quantification from RNA-Seq
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-021-04198-1
– year: 2023
  ident: 2024121018345665400_btae700-B5
  doi: 10.1101/2023.01.04.522742
– volume: 21
  start-page: 239
  year: 2020
  ident: 2024121018345665400_btae700-B24
  article-title: Alignment and mapping methodology influence transcript abundance estimation
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02151-8
– volume: 51
  start-page: 10934
  year: 2023
  ident: 2024121018345665400_btae700-B16
  article-title: Expanding the coverage of regulons from high-confidence prior knowledge for accurate estimation of transcription factor activities
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkad841
– volume: 52
  start-page: D891
  year: 2024
  ident: 2024121018345665400_btae700-B4
  article-title: Ensembl 2024
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkad1049
– volume: 32
  start-page: 462
  year: 2014
  ident: 2024121018345665400_btae700-B19
  article-title: Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2862
– volume: 14
  start-page: 417
  year: 2017
  ident: 2024121018345665400_btae700-B18
  article-title: Salmon provides fast and bias-aware quantification of transcript expression
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4197
– volume: 5
  start-page: 10
  year: 2017
  ident: 2024121018345665400_btae700-B6
  article-title: xarray: N-D labeled arrays and datasets in Python
  publication-title: JORS
  doi: 10.5334/jors.148
– volume: 20
  start-page: 631
  year: 2019
  ident: 2024121018345665400_btae700-B25
  article-title: RNA sequencing: the teenage years
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0150-2
– volume: 52
  start-page: D672
  year: 2024
  ident: 2024121018345665400_btae700-B15
  article-title: The Reactome Pathway Knowledgebase 2024
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkad1025
– volume: 28
  start-page: 2520
  year: 2012
  ident: 2024121018345665400_btae700-B9
  article-title: Snakemake—a scalable bioinformatics workflow engine
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts480
– volume: 4
  start-page: 1521
  year: 2016
  ident: 2024121018345665400_btae700-B23
  article-title: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
  publication-title: F1000Res
  doi: 10.12688/f1000research.7563.2
– volume: 18
  start-page: 583
  year: 2017
  ident: 2024121018345665400_btae700-B30
  article-title: Evaluation and comparison of computational tools for RNA-seq isoform quantification
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-4002-1
– volume: 19
  start-page: 53
  year: 2018
  ident: 2024121018345665400_btae700-B29
  article-title: Gene-level differential analysis at transcript-level resolution
  publication-title: Genome Biol
  doi: 10.1186/s13059-018-1419-z
– year: 2024
  ident: 2024121018345665400_btae700-B8
  doi: 10.1101/2024.02.28.582591
– volume: 9
  start-page: e1003118
  year: 2013
  ident: 2024121018345665400_btae700-B10
  article-title: Software for computing and annotating genomic ranges
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003118
– year: 2021
  ident: 2024121018345665400_btae700-B28
  doi: 10.1101/2021.12.16.473007
– volume: 14
  start-page: 687
  year: 2017
  ident: 2024121018345665400_btae700-B20
  article-title: Differential analysis of RNA-seq incorporating quantification uncertainty
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4324
– volume: 34
  start-page: 525
  year: 2016
  ident: 2024121018345665400_btae700-B2
  article-title: Near-optimal probabilistic RNA-seq quantification
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3519
– volume: 12
  start-page: 323
  year: 2011
  ident: 2024121018345665400_btae700-B11
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-323
– volume: 82
  start-page: 801
  year: 2021
  ident: 2024121018345665400_btae700-B7
  article-title: Next-generation sequencing technologies: an overview
  publication-title: Hum Immunol
  doi: 10.1016/j.humimm.2021.02.012
– volume: 2
  start-page: e107
  year: 2023
  ident: 2024121018345665400_btae700-B3
  article-title: Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp
  publication-title: Imeta
  doi: 10.1002/imt2.107
SSID ssj0005056
Score 2.4731824
Snippet Summary Transcript quantification tools efficiently map bulk RNA sequencing (RNA-seq) reads to reference transcriptomes. However, their output consists of...
Transcript quantification tools efficiently map bulk RNA sequencing (RNA-seq) reads to reference transcriptomes. However, their output consists of transcript...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Applications Note
Availability
Bias
Gene expression
Gene Expression Profiling - methods
Gene mapping
Gene sequencing
Line interfaces
Packages
Python
Ribonucleic acid
RNA
Sequence Analysis, RNA - methods
Software
Source code
Transcriptome
Transcriptomes
Transcriptomics
Workflow
Title Gene count estimation with pytximport enables reproducible analysis of bulk RNA sequencing data in Python
URI https://www.ncbi.nlm.nih.gov/pubmed/39565903
https://www.proquest.com/docview/3213588192
https://www.proquest.com/docview/3131500347
https://pubmed.ncbi.nlm.nih.gov/PMC11629965
Volume 40
WOSCitedRecordID wos001373044300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9swDBe3soO97PN2y9YVD_Y0CLXj-uuxjB176sq4Qd-Cndhc2EhLm471v5-cpN3l4GDbo7FCbEtCki39BPDezjIXBHUp1aFMZxZ1zlDPU-6890qXIljbNptQi4VerczyDNixFubuE77hU1etexDRCFw8dY31isYonQkdJfv6y-pPUgfa82Md8L2fDkzQoKztlnd5N0nyltW5evIf630Kj3sXk8w7mXgGZ75-Dudd08nDC6gi0jRpe0SQCLHR1S6SeCFLNofmVxWxqnCqLarakYh6GUFhKxwR20OYkHUgbv_jO_m6mJM-GxttIIn5pqSqyfIQIQku4NvVp-uPn9O-4UJazHjWpCwUVkq0mkopbZWw3gVlpZLCMRyg51FkLZ6ONSUPUhQ0CGesdpI6ypEbL2FUr2v_CkgoGW7borNTYAxWSMcN065wPBjtTJklMD3yIN90uBp59x7O8-EB5v0BJvABWfXXxOMjR_NeKXc5zxguMiLAJfDuNI3qFN9IbO3Xe6RhHF1kymcqgctOAE6_5BhLCkN5AnogGieCCNU9nKmrmxaymzGJdl-K1_-yiTfwKEMXKlY-ZnoMo2a792_hYfGzqXbbCTxQKz1p7xAmrRL8BpQwEdM
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+count+estimation+with+pytximport+enables+reproducible+analysis+of+bulk+RNA+sequencing+data+in+Python&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Kuehl%2C+Malte&rft.au=Wong%2C+Milagros+N&rft.au=Wanner%2C+Nicola&rft.au=Bonn%2C+Stefan&rft.date=2024-11-28&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=40&rft.issue=12&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtae700&rft_id=info%3Apmid%2F39565903&rft.externalDocID=PMC11629965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon