Metal–Metal Bonding Process Research Based on Xgboost Machine Learning Algorithm

Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Polymers Ročník 15; číslo 20; s. 4085
Hlavní autoři: Feng, Jingpeng, Zhan, Lihua, Ma, Bolin, Zhou, Hao, Xiong, Bang, Guo, Jinzhan, Xia, Yunni, Hui, Shengmeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 14.10.2023
MDPI
Témata:
ISSN:2073-4360, 2073-4360
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused on improving metal–metal bonding performance by applying SLJ experiments, finite element models (FEMs), and the Xgboost machine learning (ML) algorithm. The importance ranking of process parameters on tensile–shear strength (TSS) was evaluated with the interpretation toolkit SHAP (Shapley additive explanations) and it optimized reasonable bonding process parameters. The validity of the FEM was verified using SLJ experiments. The Xgboost models with 70 runs can achieve better prediction results. According to the degree of influence, the process parameters affecting the TSS ranked from high to low are roughness, adhesive layer thickness, and lap length, and the corresponding optimized values were 0.89 μm, 0.1 mm, and 27 mm, respectively. The experimentally measured TSS values increased by 14% from the optimized process parameters via the Xgboost model. ML methods provide a more accurate and intuitive understanding of process parameters on TSS.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15204085