Metal–Metal Bonding Process Research Based on Xgboost Machine Learning Algorithm

Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Polymers Ročník 15; číslo 20; s. 4085
Hlavní autoři: Feng, Jingpeng, Zhan, Lihua, Ma, Bolin, Zhou, Hao, Xiong, Bang, Guo, Jinzhan, Xia, Yunni, Hui, Shengmeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 14.10.2023
MDPI
Témata:
ISSN:2073-4360, 2073-4360
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused on improving metal–metal bonding performance by applying SLJ experiments, finite element models (FEMs), and the Xgboost machine learning (ML) algorithm. The importance ranking of process parameters on tensile–shear strength (TSS) was evaluated with the interpretation toolkit SHAP (Shapley additive explanations) and it optimized reasonable bonding process parameters. The validity of the FEM was verified using SLJ experiments. The Xgboost models with 70 runs can achieve better prediction results. According to the degree of influence, the process parameters affecting the TSS ranked from high to low are roughness, adhesive layer thickness, and lap length, and the corresponding optimized values were 0.89 μm, 0.1 mm, and 27 mm, respectively. The experimentally measured TSS values increased by 14% from the optimized process parameters via the Xgboost model. ML methods provide a more accurate and intuitive understanding of process parameters on TSS.
AbstractList Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused on improving metal–metal bonding performance by applying SLJ experiments, finite element models (FEMs), and the Xgboost machine learning (ML) algorithm. The importance ranking of process parameters on tensile–shear strength (TSS) was evaluated with the interpretation toolkit SHAP (Shapley additive explanations) and it optimized reasonable bonding process parameters. The validity of the FEM was verified using SLJ experiments. The Xgboost models with 70 runs can achieve better prediction results. According to the degree of influence, the process parameters affecting the TSS ranked from high to low are roughness, adhesive layer thickness, and lap length, and the corresponding optimized values were 0.89 μm, 0.1 mm, and 27 mm, respectively. The experimentally measured TSS values increased by 14% from the optimized process parameters via the Xgboost model. ML methods provide a more accurate and intuitive understanding of process parameters on TSS.
Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused on improving metal-metal bonding performance by applying SLJ experiments, finite element models (FEMs), and the Xgboost machine learning (ML) algorithm. The importance ranking of process parameters on tensile-shear strength (TSS) was evaluated with the interpretation toolkit SHAP (Shapley additive explanations) and it optimized reasonable bonding process parameters. The validity of the FEM was verified using SLJ experiments. The Xgboost models with 70 runs can achieve better prediction results. According to the degree of influence, the process parameters affecting the TSS ranked from high to low are roughness, adhesive layer thickness, and lap length, and the corresponding optimized values were 0.89 μm, 0.1 mm, and 27 mm, respectively. The experimentally measured TSS values increased by 14% from the optimized process parameters via the Xgboost model. ML methods provide a more accurate and intuitive understanding of process parameters on TSS.Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused on improving metal-metal bonding performance by applying SLJ experiments, finite element models (FEMs), and the Xgboost machine learning (ML) algorithm. The importance ranking of process parameters on tensile-shear strength (TSS) was evaluated with the interpretation toolkit SHAP (Shapley additive explanations) and it optimized reasonable bonding process parameters. The validity of the FEM was verified using SLJ experiments. The Xgboost models with 70 runs can achieve better prediction results. According to the degree of influence, the process parameters affecting the TSS ranked from high to low are roughness, adhesive layer thickness, and lap length, and the corresponding optimized values were 0.89 μm, 0.1 mm, and 27 mm, respectively. The experimentally measured TSS values increased by 14% from the optimized process parameters via the Xgboost model. ML methods provide a more accurate and intuitive understanding of process parameters on TSS.
Audience Academic
Author Xiong, Bang
Zhan, Lihua
Zhou, Hao
Feng, Jingpeng
Xia, Yunni
Hui, Shengmeng
Ma, Bolin
Guo, Jinzhan
AuthorAffiliation 1 State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China; fengjingpeng4@gmail.com (J.F.); yjs-cast@csu.edu.cn (L.Z.); 233812049@csu.edu.cn (H.Z.); xiongbang8638@163.com (B.X.); guruci@163.com (J.G.); xyn13467535590@163.com (Y.X.); 223801010@csu.edu.cn (S.H.)
2 Light Alloys Research Institute, Central South University, Changsha 410083, China
AuthorAffiliation_xml – name: 2 Light Alloys Research Institute, Central South University, Changsha 410083, China
– name: 1 State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China; fengjingpeng4@gmail.com (J.F.); yjs-cast@csu.edu.cn (L.Z.); 233812049@csu.edu.cn (H.Z.); xiongbang8638@163.com (B.X.); guruci@163.com (J.G.); xyn13467535590@163.com (Y.X.); 223801010@csu.edu.cn (S.H.)
Author_xml – sequence: 1
  givenname: Jingpeng
  surname: Feng
  fullname: Feng, Jingpeng
– sequence: 2
  givenname: Lihua
  orcidid: 0000-0001-9419-4149
  surname: Zhan
  fullname: Zhan, Lihua
– sequence: 3
  givenname: Bolin
  orcidid: 0000-0003-0411-6302
  surname: Ma
  fullname: Ma, Bolin
– sequence: 4
  givenname: Hao
  surname: Zhou
  fullname: Zhou, Hao
– sequence: 5
  givenname: Bang
  surname: Xiong
  fullname: Xiong, Bang
– sequence: 6
  givenname: Jinzhan
  surname: Guo
  fullname: Guo, Jinzhan
– sequence: 7
  givenname: Yunni
  surname: Xia
  fullname: Xia, Yunni
– sequence: 8
  givenname: Shengmeng
  surname: Hui
  fullname: Hui, Shengmeng
BookMark eNp1kc1q3DAUhUVJoGmaZfeGbrpxql_LXpVJ6E9gQkNIoTshS9ceBVmaSp5Cdn2HvmGfpHImlCYQaXGF7neOdDmv0EGIARB6Q_ApYx1-v43-biKCYo5b8QIdUSxZzVmDD_47v0QnOd_isrhoGiKP0PUlzNr_-fX7vlZnMVgXxuoqRQM5V9eQQSezqc50BlvFUH0f-xjzXF1qs3EBqnXph0Wy8mNMbt5Mr9HhoH2Gk4d6jL59-nhz_qVef_18cb5a14YzOtdE9sB430hrqW0otVTrwQCxRoC2LW4HqtvByEETEB1reT8I6DDv-85yBowdow973-2un8AaCHPSXm2Tm3S6U1E79bgT3EaN8aciuCFYdKI4vHtwSPHHDvKsJpcNeK8DxF1WtG2ZaLGQsqBvn6C3cZdCmW-hqOw4aRbqdE-N2oNyYYjlYVO2hcmZEtjgyv1KSkq6rmRVBPVeYFLMOcHw7_sEqyVX9SjXwrMnvHGznl1cJnT-GdVf48Krkg
CitedBy_id crossref_primary_10_1007_s00240_024_01587_y
crossref_primary_10_1016_j_engstruct_2025_120817
crossref_primary_10_1002_pc_28689
crossref_primary_10_3390_polym16141974
Cites_doi 10.1016/j.compstruct.2022.116086
10.1016/j.compositesb.2015.09.002
10.1016/j.promfg.2020.01.209
10.1061/(ASCE)ST.1943-541X.0003115
10.1080/01694243.2016.1170588
10.1016/j.engfracmech.2015.11.015
10.1016/j.jmapro.2020.04.042
10.1002/adts.202000048
10.1016/j.ijadhadh.2013.01.004
10.1080/01694243.2012.691002
10.1016/j.ijadhadh.2008.09.001
10.1016/j.compstruct.2020.112136
10.1016/j.compositesb.2021.108894
10.1080/00218464.2013.773258
10.3390/polym14173484
10.1080/00218464.2021.1932483
10.1016/j.compositesb.2013.05.056
10.1016/j.jmst.2021.09.004
10.1002/app.42898
10.1163/156856195X00347
10.1016/j.ijadhadh.2008.01.002
10.1016/j.ijadhadh.2011.09.004
10.1016/j.ijadhadh.2013.01.016
10.12691/ajme-7-2-2
10.3390/coatings12101559
10.1038/s41524-023-01038-z
10.1016/j.surfcoat.2021.128072
10.1080/01694243.2015.1092746
10.1016/S1003-6326(15)63821-3
10.3390/met11081159
10.1002/adts.202100565
10.1016/j.engfracmech.2005.12.015
10.1080/00218464.2015.1124765
10.1016/j.ijadhadh.2013.12.026
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/polym15204085
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC10610595
A772199520
10_3390_polym15204085
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Key Research and Development Program
  grantid: 2018YFA0702800
– fundername: Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University
  grantid: ZZYJKT2021-03
– fundername: National Natural Science Foundation of China
  grantid: 52175373; 52005516
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c432t-17be34b67dd2d622d2aafce1dc5ead808f2a8fc7fa1e59384bf5e904bb9d43e33
IEDL.DBID BENPR
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001089926300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4360
IngestDate Tue Nov 04 02:06:14 EST 2025
Fri Sep 05 10:04:08 EDT 2025
Sun Jul 13 04:54:24 EDT 2025
Sun Nov 23 08:57:53 EST 2025
Tue Nov 18 21:53:09 EST 2025
Sat Nov 29 07:14:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-17be34b67dd2d622d2aafce1dc5ead808f2a8fc7fa1e59384bf5e904bb9d43e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0411-6302
0000-0001-9419-4149
OpenAccessLink https://www.proquest.com/docview/2882794167?pq-origsite=%requestingapplication%
PQID 2882794167
PQPubID 2032345
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10610595
proquest_miscellaneous_2883580577
proquest_journals_2882794167
gale_infotracacademiconefile_A772199520
crossref_primary_10_3390_polym15204085
crossref_citationtrail_10_3390_polym15204085
PublicationCentury 2000
PublicationDate 20231014
PublicationDateYYYYMMDD 2023-10-14
PublicationDate_xml – month: 10
  year: 2023
  text: 20231014
  day: 14
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Polymers
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhao (ref_19) 2023; 9
Kanani (ref_36) 2020; 241
Natu (ref_11) 2019; 7
Cui (ref_12) 2020; 56
Zhao (ref_13) 2021; 57
Na (ref_16) 2016; 30
ref_14
ref_34
ref_33
ref_32
ref_31
Faridmehr (ref_30) 2014; 2
Boutar (ref_43) 2016; 30
ref_18
Gu (ref_23) 2021; 217
ref_39
Ashrafi (ref_3) 2012; 32
Feng (ref_45) 2021; 147
Keisler (ref_40) 1995; 9
Sai (ref_22) 2020; 3
Hu (ref_24) 2022; 432
Bhat (ref_2) 2013; 42
Zhao (ref_37) 2014; 49
Diao (ref_21) 2022; 109
Borsellino (ref_38) 2009; 29
Zhang (ref_17) 2022; 299
Senthil (ref_41) 2016; 154
Li (ref_29) 2015; 25
ref_42
Akpinar (ref_27) 2013; 55
Marques (ref_1) 2016; 84
Zhang (ref_15) 2016; 133
Zhan (ref_25) 2017; 93
Kilic (ref_35) 2006; 73
Xu (ref_20) 2022; 5
Silva (ref_4) 2019; 38
Pinto (ref_7) 2014; 90
Grant (ref_10) 2009; 29
ref_28
ref_8
Zimmermann (ref_9) 2021; 98
Shaikh (ref_6) 2017; 7
ref_5
Akpinar (ref_26) 2012; 26
Karachalios (ref_44) 2013; 43
References_xml – volume: 299
  start-page: 116086
  year: 2022
  ident: ref_17
  article-title: Mechanical properties prediction of composite laminate with FEA and machine learning coupled method
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.116086
– volume: 84
  start-page: 248
  year: 2016
  ident: ref_1
  article-title: Adhesive selection for hybrid spot-welded/bonded single-lap joints: Experimentation and numerical analysis
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2015.09.002
– volume: 38
  start-page: 1189
  year: 2019
  ident: ref_4
  article-title: Comparative evaluation of adhesively-bonded single-lap and stepped-lap joints
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.01.209
– volume: 2
  start-page: 53
  year: 2014
  ident: ref_30
  article-title: Correlation between engineering stress-strain and true stress-strain curve
  publication-title: Am. J. Civil. Eng. Arch.
– volume: 147
  start-page: 4021173
  year: 2021
  ident: ref_45
  article-title: Interpretable Xgboost-SHAP machine-learning model for shear strength prediction of squat RC walls
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0003115
– ident: ref_5
– ident: ref_32
– ident: ref_34
– volume: 30
  start-page: 1913
  year: 2016
  ident: ref_43
  article-title: Effect of adhesive thickness and surface roughness on the shear strength of aluminium one-component polyurethane adhesive single-lap joints for automotive applications
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1080/01694243.2016.1170588
– volume: 154
  start-page: 24
  year: 2016
  ident: ref_41
  article-title: Experimental determination of fracture toughness for adhesively bonded composite joints
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2015.11.015
– volume: 56
  start-page: 238
  year: 2020
  ident: ref_12
  article-title: Strength and failure analysis of adhesive single-lap joints under shear loading: Effects of surface morphologies and overlap zone parameters
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2020.04.042
– volume: 3
  start-page: 2000048
  year: 2020
  ident: ref_22
  article-title: Fatigue life prediction of glare composites using regression tree ensemble-based machine learning model
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.202000048
– volume: 42
  start-page: 60
  year: 2013
  ident: ref_2
  article-title: Evaluation of kissing bond in composite adhesive lap joints using digital image correlation: Preliminary studies
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2013.01.004
– volume: 26
  start-page: 2591
  year: 2012
  ident: ref_26
  article-title: Effect of protrusion at the ends of bondline in single lap joints under tension and bending
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1080/01694243.2012.691002
– volume: 29
  start-page: 405
  year: 2009
  ident: ref_10
  article-title: Experimental and numerical analysis of single-lap joints for the automotive industry
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2008.09.001
– volume: 241
  start-page: 112136
  year: 2020
  ident: ref_36
  article-title: The influence of notching and mixed-adhesives at the bonding area on the strength and stress distribution of dissimilar single-lap joints
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.112136
– volume: 217
  start-page: 108894
  year: 2021
  ident: ref_23
  article-title: A parametric study of adhesive bonded joints with composite material using black-box and grey-box machine learning methods: Deep neuron networks and genetic programming
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2021.108894
– ident: ref_39
– volume: 90
  start-page: 89
  year: 2014
  ident: ref_7
  article-title: Numerical and experimental analysis of balanced and unbalanced adhesive single-lap joints between aluminium adherends
  publication-title: J. Adhes.
  doi: 10.1080/00218464.2013.773258
– ident: ref_28
  doi: 10.3390/polym14173484
– ident: ref_42
– volume: 98
  start-page: 1635
  year: 2021
  ident: ref_9
  article-title: Analytical stiffness analysis of adhesively bonded single-lap joints subjected to out-of-plane deflection due to tensile loading
  publication-title: J. Adhes.
  doi: 10.1080/00218464.2021.1932483
– volume: 55
  start-page: 55
  year: 2013
  ident: ref_27
  article-title: The effect of the spew fillet on an adhesively bonded single-lap joint subjected to bending moment
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2013.05.056
– volume: 109
  start-page: 86
  year: 2022
  ident: ref_21
  article-title: A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.09.004
– volume: 7
  start-page: 64
  year: 2017
  ident: ref_6
  article-title: Single lap adhesive joint (SLAJ): A study
  publication-title: Int. J. Eng. Technol.
– volume: 133
  start-page: 42898
  year: 2016
  ident: ref_15
  article-title: Bonding performance and fracture morphology of a hybrid multiscale epoxy adhesive on oil-covered substrates
  publication-title: J. Appl. Polym.Sci.
  doi: 10.1002/app.42898
– volume: 9
  start-page: 395
  year: 1995
  ident: ref_40
  article-title: The effect of substrate roughness characteristics on wettability and on the mechanical properties of adhesive joints loaded at high strain rates
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1163/156856195X00347
– volume: 29
  start-page: 36
  year: 2009
  ident: ref_38
  article-title: Adhesive joining of aluminium AA6082: The effects of resin and surface treatment
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2008.01.002
– volume: 32
  start-page: 46
  year: 2012
  ident: ref_3
  article-title: Adhesively bonded single lap joints with non-flat interfaces
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2011.09.004
– volume: 43
  start-page: 81
  year: 2013
  ident: ref_44
  article-title: Single lap joints loaded in tension with high strength steel adherends
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2013.01.016
– volume: 7
  start-page: 61
  year: 2019
  ident: ref_11
  article-title: Variation of Adhesive Strength in Single Lap Joint (SLJ) with surface irregularities
  publication-title: Am. J. Mech. Eng.
  doi: 10.12691/ajme-7-2-2
– ident: ref_14
  doi: 10.3390/coatings12101559
– volume: 9
  start-page: 94
  year: 2023
  ident: ref_19
  article-title: Understanding and design of metallic alloys guided by phase-field simulations
  publication-title: Npj. Comput. Mater.
  doi: 10.1038/s41524-023-01038-z
– volume: 432
  start-page: 128072
  year: 2022
  ident: ref_24
  article-title: A simple and effective resin pre-coating treatment on grinded, acid pickled and anodised substrates for stronger adhesive bonding between Ti-6Al-4V titanium alloy and CFRP
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2021.128072
– ident: ref_8
– ident: ref_31
– ident: ref_33
– volume: 30
  start-page: 131
  year: 2016
  ident: ref_16
  article-title: An adhesive joint strength evaluation method and its application in mechanical engineering
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1080/01694243.2015.1092746
– volume: 25
  start-page: 2103
  year: 2015
  ident: ref_29
  article-title: Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al–(3.2–3.8) Cu–(1.0–1.4)Li alloys
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(15)63821-3
– ident: ref_18
  doi: 10.3390/met11081159
– volume: 5
  start-page: 202100565
  year: 2022
  ident: ref_20
  article-title: New opportunity: Machine learning for polymer materials design and discovery
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.202100565
– volume: 73
  start-page: 1472
  year: 2006
  ident: ref_35
  article-title: Influence of adhesive spew in bonded single-lap joints
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2005.12.015
– volume: 93
  start-page: 613
  year: 2017
  ident: ref_25
  article-title: Study on effects of pre-treatment and surface roughness on tensile-shear strength of 2060 Al–Li alloy adhesive joints
  publication-title: J. Adhes.
  doi: 10.1080/00218464.2015.1124765
– volume: 57
  start-page: 1107
  year: 2021
  ident: ref_13
  article-title: Current research status of interface of ceramic-metal laminated composite material for armor protection
  publication-title: Acta. Metall. Sin.
– volume: 49
  start-page: 115
  year: 2014
  ident: ref_37
  article-title: Two-dimensional analytical solution of elastic stresses for balanced single-lap joints—Variational method
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2013.12.026
SSID ssj0000456617
Score 2.3585677
Snippet Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the...
SourceID pubmedcentral
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4085
SubjectTerms Adhesive bonding
Algorithms
Analysis
Curing
Experimental methods
Finite element method
Interfacial bonding
Machine learning
Mathematical models
Metal bonding
Metal-metal bonding
Methods
New technology
Optimization
Process parameters
Research methodology
Shear strength
Thickness
Title Metal–Metal Bonding Process Research Based on Xgboost Machine Learning Algorithm
URI https://www.proquest.com/docview/2882794167
https://www.proquest.com/docview/2883580577
https://pubmed.ncbi.nlm.nih.gov/PMC10610595
Volume 15
WOSCitedRecordID wos001089926300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: KB.
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RFgkulL-KLaUyEoILoYnjxM6p2q1agdCuVhVIyylybGdbaZtsuykSN96BN-yTdCbrLGwluHCKrFiOlRnPjz3-PoA3aSa00y6lGz1EYaZMoApsWlOWmcP42vCyJZuQo5GaTLKx33Bb-LLKzia2htrWhvbIDziGgqg7USoP55cBsUbR6aqn0NiALUIqQz3fGhyPxqerXRYKWNBHL8E1Y8zvD-b17McFOq2QoL3WnNFdk3y3TPIPv3Oy_b8zfgyPfMTJ-ksVeQL3XPUUHhx1RG_P4HToMAK_-fmrfTIiGkZ_xvwVAtbV5rEBOjzL6opNphiaLxo2bAsxHfMYrVPWn01xAs3ZxXP4enL85ehj4KkWAiNi3gSRLFwsilRay23KueVal8ZF1iSoaipUJdeqNLLUkUuyWImiTFwWiqLIrIhdHO_AZlVX7gWwVJnQ6bRwUlqRlTKzGm0EBgouwQGU6MH77p_nxuOQEx3GLMd8hESUr4moB29X3edLAI6_dXxHAsxpYeJ4Rvv7BTgrgrjK-5hH0H10HvZgrxNY7lfsIv8trR68Xr1GSdABiq5cfd32oVPjRGIftaYbq6kRWvf6m-r8rEXtptwbY9lk999ffwkPidGe3GMk9mCzubp2r-C--d6cL672YUNO1L7Xcmx9HnzA1vjTcPztFnP7DnI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VW6Ry4R-xtICR-LkQNXGcxDkgtBSqrtpdrVCRllNw_LOttE223RTUG-_Ae_BQPAkz2WRhK8GtB05RZMuJ7c8z39ieGYBncSqUVTYmjx5KYSa1J3N8Ndq51CK_1tzVySaS4VCOx-loDX60vjB0rbKVibWgNqWmPfJtjlQQsRPEyZvZqUdZo-h0tU2hsYDFvr34iibb_HX_Hc7vc8533x_u7HlNVgFPi5BXXpDkNhR5nBjDTcy54Uo5bQOjIxxV6UvHlXQ6cSqwURpKkbvIpr7I89SI0NIGKIr8dUFg78D6qD8YfVru6hBBQk6wCOYZhqm_PSunFyeoJH0KJbai_C6rgMvXMv_Qc7s3_7cRugU3GkbNeoslcBvWbHEHNnbaRHZ34cPAooXx89v3-skokTLqa9a4SLD27iF7iwrdsLJg4wmaHvOKDeqLppY1MWgnrDedYIero5N78PFKunQfOkVZ2AfAYql9q-LcJokRqUtSo1AGIhGyETYgRRdetXOc6SbOOqX7mGZobxEkshVIdOHFsvpsEWDkbxVfEmAyEjzYnlaN_wT-FYXwynpoJ5G_Pfe7sNUCJGsk0jz7jY4uPF0W40zQAZEqbHle16FT8SjBOnIFi8tfo2jkqyXF8VEdlZz2FpCrRw___fUnsLF3ODjIDvrD_U24zpEzEhUIxBZ0qrNz-wiu6S_V8fzscbO2GHy-arD-AtGFa68
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKQIuvBGBAovE44IVe7221weEQktEVBJFCKRwMut9pJVSOzQuqDf-A_-Gn8MvYcaxA6kEtx44WdaubK_325lvducB8DhOhbLKxhTRQyXMpPZkjrdGO5da5Neau7rYRDIey-k0nWzBjzYWhtwqW5lYC2pTatoj73GkgoidIE56rnGLmOwNXi4-e1RBik5a23IaK4js29OvaL4tXwz3cK6fcD54_X73jddUGPC0CHnlBUluQ5HHiTHcxJwbrpTTNjA6wj8sfem4kk4nTgU2SkMpchfZ1Bd5nhoRWtoMRfG_jZRc8A5sT4ajycf1Dg-RJeQHq8SeYZj6vUU5Pz1ChelTWrENRXhWHZx10fxD5w2u_s9_6xpcaZg266-WxnXYssUNuLTbFri7Ce9GFi2Pn9--11dGBZZRj7MmdIK1PonsFSp6w8qCTWdokiwrNqodUC1rctPOWH8-wwFXB0e34MO5DOk2dIqysHeAxVL7VsW5TRIjUpekRqFsRIJkI3yAFF143s53ppv861QGZJ6hHUbwyDbg0YWn6-6LVeKRv3V8RuDJSCDh87Rq4irwqyi1V9ZH-4ni8LnfhZ0WLFkjqZbZb6R04dG6GWeCDo5UYcuTug-dlkcJ9pEbuFx_GmUp32wpDg_qbOW054AcPrr777c_hIuI0OztcLx_Dy5zpJLEEAKxA53q-MTehwv6S3W4PH7QLDMGn84bq78AgiF0bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93Metal+Bonding+Process+Research+Based+on+Xgboost+Machine+Learning+Algorithm&rft.jtitle=Polymers&rft.au=Feng%2C+Jingpeng&rft.au=Zhan%2C+Lihua&rft.au=Ma%2C+Bolin&rft.au=Zhou%2C+Hao&rft.date=2023-10-14&rft.issn=2073-4360&rft.eissn=2073-4360&rft.volume=15&rft.issue=20&rft.spage=4085&rft_id=info:doi/10.3390%2Fpolym15204085&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_polym15204085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon