Metal–Metal Bonding Process Research Based on Xgboost Machine Learning Algorithm
Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused...
Uloženo v:
| Vydáno v: | Polymers Ročník 15; číslo 20; s. 4085 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
14.10.2023
MDPI |
| Témata: | |
| ISSN: | 2073-4360, 2073-4360 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused on improving metal–metal bonding performance by applying SLJ experiments, finite element models (FEMs), and the Xgboost machine learning (ML) algorithm. The importance ranking of process parameters on tensile–shear strength (TSS) was evaluated with the interpretation toolkit SHAP (Shapley additive explanations) and it optimized reasonable bonding process parameters. The validity of the FEM was verified using SLJ experiments. The Xgboost models with 70 runs can achieve better prediction results. According to the degree of influence, the process parameters affecting the TSS ranked from high to low are roughness, adhesive layer thickness, and lap length, and the corresponding optimized values were 0.89 μm, 0.1 mm, and 27 mm, respectively. The experimentally measured TSS values increased by 14% from the optimized process parameters via the Xgboost model. ML methods provide a more accurate and intuitive understanding of process parameters on TSS. |
|---|---|
| AbstractList | Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused on improving metal–metal bonding performance by applying SLJ experiments, finite element models (FEMs), and the Xgboost machine learning (ML) algorithm. The importance ranking of process parameters on tensile–shear strength (TSS) was evaluated with the interpretation toolkit SHAP (Shapley additive explanations) and it optimized reasonable bonding process parameters. The validity of the FEM was verified using SLJ experiments. The Xgboost models with 70 runs can achieve better prediction results. According to the degree of influence, the process parameters affecting the TSS ranked from high to low are roughness, adhesive layer thickness, and lap length, and the corresponding optimized values were 0.89 μm, 0.1 mm, and 27 mm, respectively. The experimentally measured TSS values increased by 14% from the optimized process parameters via the Xgboost model. ML methods provide a more accurate and intuitive understanding of process parameters on TSS. Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused on improving metal-metal bonding performance by applying SLJ experiments, finite element models (FEMs), and the Xgboost machine learning (ML) algorithm. The importance ranking of process parameters on tensile-shear strength (TSS) was evaluated with the interpretation toolkit SHAP (Shapley additive explanations) and it optimized reasonable bonding process parameters. The validity of the FEM was verified using SLJ experiments. The Xgboost models with 70 runs can achieve better prediction results. According to the degree of influence, the process parameters affecting the TSS ranked from high to low are roughness, adhesive layer thickness, and lap length, and the corresponding optimized values were 0.89 μm, 0.1 mm, and 27 mm, respectively. The experimentally measured TSS values increased by 14% from the optimized process parameters via the Xgboost model. ML methods provide a more accurate and intuitive understanding of process parameters on TSS.Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused on improving metal-metal bonding performance by applying SLJ experiments, finite element models (FEMs), and the Xgboost machine learning (ML) algorithm. The importance ranking of process parameters on tensile-shear strength (TSS) was evaluated with the interpretation toolkit SHAP (Shapley additive explanations) and it optimized reasonable bonding process parameters. The validity of the FEM was verified using SLJ experiments. The Xgboost models with 70 runs can achieve better prediction results. According to the degree of influence, the process parameters affecting the TSS ranked from high to low are roughness, adhesive layer thickness, and lap length, and the corresponding optimized values were 0.89 μm, 0.1 mm, and 27 mm, respectively. The experimentally measured TSS values increased by 14% from the optimized process parameters via the Xgboost model. ML methods provide a more accurate and intuitive understanding of process parameters on TSS. |
| Audience | Academic |
| Author | Xiong, Bang Zhan, Lihua Zhou, Hao Feng, Jingpeng Xia, Yunni Hui, Shengmeng Ma, Bolin Guo, Jinzhan |
| AuthorAffiliation | 1 State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China; fengjingpeng4@gmail.com (J.F.); yjs-cast@csu.edu.cn (L.Z.); 233812049@csu.edu.cn (H.Z.); xiongbang8638@163.com (B.X.); guruci@163.com (J.G.); xyn13467535590@163.com (Y.X.); 223801010@csu.edu.cn (S.H.) 2 Light Alloys Research Institute, Central South University, Changsha 410083, China |
| AuthorAffiliation_xml | – name: 2 Light Alloys Research Institute, Central South University, Changsha 410083, China – name: 1 State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China; fengjingpeng4@gmail.com (J.F.); yjs-cast@csu.edu.cn (L.Z.); 233812049@csu.edu.cn (H.Z.); xiongbang8638@163.com (B.X.); guruci@163.com (J.G.); xyn13467535590@163.com (Y.X.); 223801010@csu.edu.cn (S.H.) |
| Author_xml | – sequence: 1 givenname: Jingpeng surname: Feng fullname: Feng, Jingpeng – sequence: 2 givenname: Lihua orcidid: 0000-0001-9419-4149 surname: Zhan fullname: Zhan, Lihua – sequence: 3 givenname: Bolin orcidid: 0000-0003-0411-6302 surname: Ma fullname: Ma, Bolin – sequence: 4 givenname: Hao surname: Zhou fullname: Zhou, Hao – sequence: 5 givenname: Bang surname: Xiong fullname: Xiong, Bang – sequence: 6 givenname: Jinzhan surname: Guo fullname: Guo, Jinzhan – sequence: 7 givenname: Yunni surname: Xia fullname: Xia, Yunni – sequence: 8 givenname: Shengmeng surname: Hui fullname: Hui, Shengmeng |
| BookMark | eNp1kc1q3DAUhUVJoGmaZfeGbrpxql_LXpVJ6E9gQkNIoTshS9ceBVmaSp5Cdn2HvmGfpHImlCYQaXGF7neOdDmv0EGIARB6Q_ApYx1-v43-biKCYo5b8QIdUSxZzVmDD_47v0QnOd_isrhoGiKP0PUlzNr_-fX7vlZnMVgXxuoqRQM5V9eQQSezqc50BlvFUH0f-xjzXF1qs3EBqnXph0Wy8mNMbt5Mr9HhoH2Gk4d6jL59-nhz_qVef_18cb5a14YzOtdE9sB430hrqW0otVTrwQCxRoC2LW4HqtvByEETEB1reT8I6DDv-85yBowdow973-2un8AaCHPSXm2Tm3S6U1E79bgT3EaN8aciuCFYdKI4vHtwSPHHDvKsJpcNeK8DxF1WtG2ZaLGQsqBvn6C3cZdCmW-hqOw4aRbqdE-N2oNyYYjlYVO2hcmZEtjgyv1KSkq6rmRVBPVeYFLMOcHw7_sEqyVX9SjXwrMnvHGznl1cJnT-GdVf48Krkg |
| CitedBy_id | crossref_primary_10_1007_s00240_024_01587_y crossref_primary_10_1016_j_engstruct_2025_120817 crossref_primary_10_1002_pc_28689 crossref_primary_10_3390_polym16141974 |
| Cites_doi | 10.1016/j.compstruct.2022.116086 10.1016/j.compositesb.2015.09.002 10.1016/j.promfg.2020.01.209 10.1061/(ASCE)ST.1943-541X.0003115 10.1080/01694243.2016.1170588 10.1016/j.engfracmech.2015.11.015 10.1016/j.jmapro.2020.04.042 10.1002/adts.202000048 10.1016/j.ijadhadh.2013.01.004 10.1080/01694243.2012.691002 10.1016/j.ijadhadh.2008.09.001 10.1016/j.compstruct.2020.112136 10.1016/j.compositesb.2021.108894 10.1080/00218464.2013.773258 10.3390/polym14173484 10.1080/00218464.2021.1932483 10.1016/j.compositesb.2013.05.056 10.1016/j.jmst.2021.09.004 10.1002/app.42898 10.1163/156856195X00347 10.1016/j.ijadhadh.2008.01.002 10.1016/j.ijadhadh.2011.09.004 10.1016/j.ijadhadh.2013.01.016 10.12691/ajme-7-2-2 10.3390/coatings12101559 10.1038/s41524-023-01038-z 10.1016/j.surfcoat.2021.128072 10.1080/01694243.2015.1092746 10.1016/S1003-6326(15)63821-3 10.3390/met11081159 10.1002/adts.202100565 10.1016/j.engfracmech.2005.12.015 10.1080/00218464.2015.1124765 10.1016/j.ijadhadh.2013.12.026 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.3390/polym15204085 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2073-4360 |
| ExternalDocumentID | PMC10610595 A772199520 10_3390_polym15204085 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Key Research and Development Program grantid: 2018YFA0702800 – fundername: Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University grantid: ZZYJKT2021-03 – fundername: National Natural Science Foundation of China grantid: 52175373; 52005516 |
| GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RNS RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 ESTFP PUEGO 5PM |
| ID | FETCH-LOGICAL-c432t-17be34b67dd2d622d2aafce1dc5ead808f2a8fc7fa1e59384bf5e904bb9d43e33 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001089926300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4360 |
| IngestDate | Tue Nov 04 02:06:14 EST 2025 Fri Sep 05 10:04:08 EDT 2025 Sun Jul 13 04:54:24 EDT 2025 Sun Nov 23 08:57:53 EST 2025 Tue Nov 18 21:53:09 EST 2025 Sat Nov 29 07:14:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c432t-17be34b67dd2d622d2aafce1dc5ead808f2a8fc7fa1e59384bf5e904bb9d43e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0411-6302 0000-0001-9419-4149 |
| OpenAccessLink | https://www.proquest.com/docview/2882794167?pq-origsite=%requestingapplication% |
| PQID | 2882794167 |
| PQPubID | 2032345 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10610595 proquest_miscellaneous_2883580577 proquest_journals_2882794167 gale_infotracacademiconefile_A772199520 crossref_primary_10_3390_polym15204085 crossref_citationtrail_10_3390_polym15204085 |
| PublicationCentury | 2000 |
| PublicationDate | 20231014 |
| PublicationDateYYYYMMDD | 2023-10-14 |
| PublicationDate_xml | – month: 10 year: 2023 text: 20231014 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Polymers |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zhao (ref_19) 2023; 9 Kanani (ref_36) 2020; 241 Natu (ref_11) 2019; 7 Cui (ref_12) 2020; 56 Zhao (ref_13) 2021; 57 Na (ref_16) 2016; 30 ref_14 ref_34 ref_33 ref_32 ref_31 Faridmehr (ref_30) 2014; 2 Boutar (ref_43) 2016; 30 ref_18 Gu (ref_23) 2021; 217 ref_39 Ashrafi (ref_3) 2012; 32 Feng (ref_45) 2021; 147 Keisler (ref_40) 1995; 9 Sai (ref_22) 2020; 3 Hu (ref_24) 2022; 432 Bhat (ref_2) 2013; 42 Zhao (ref_37) 2014; 49 Diao (ref_21) 2022; 109 Borsellino (ref_38) 2009; 29 Zhang (ref_17) 2022; 299 Senthil (ref_41) 2016; 154 Li (ref_29) 2015; 25 ref_42 Akpinar (ref_27) 2013; 55 Marques (ref_1) 2016; 84 Zhang (ref_15) 2016; 133 Zhan (ref_25) 2017; 93 Kilic (ref_35) 2006; 73 Xu (ref_20) 2022; 5 Silva (ref_4) 2019; 38 Pinto (ref_7) 2014; 90 Grant (ref_10) 2009; 29 ref_28 ref_8 Zimmermann (ref_9) 2021; 98 Shaikh (ref_6) 2017; 7 ref_5 Akpinar (ref_26) 2012; 26 Karachalios (ref_44) 2013; 43 |
| References_xml | – volume: 299 start-page: 116086 year: 2022 ident: ref_17 article-title: Mechanical properties prediction of composite laminate with FEA and machine learning coupled method publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.116086 – volume: 84 start-page: 248 year: 2016 ident: ref_1 article-title: Adhesive selection for hybrid spot-welded/bonded single-lap joints: Experimentation and numerical analysis publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2015.09.002 – volume: 38 start-page: 1189 year: 2019 ident: ref_4 article-title: Comparative evaluation of adhesively-bonded single-lap and stepped-lap joints publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2020.01.209 – volume: 2 start-page: 53 year: 2014 ident: ref_30 article-title: Correlation between engineering stress-strain and true stress-strain curve publication-title: Am. J. Civil. Eng. Arch. – volume: 147 start-page: 4021173 year: 2021 ident: ref_45 article-title: Interpretable Xgboost-SHAP machine-learning model for shear strength prediction of squat RC walls publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0003115 – ident: ref_5 – ident: ref_32 – ident: ref_34 – volume: 30 start-page: 1913 year: 2016 ident: ref_43 article-title: Effect of adhesive thickness and surface roughness on the shear strength of aluminium one-component polyurethane adhesive single-lap joints for automotive applications publication-title: J. Adhes. Sci. Technol. doi: 10.1080/01694243.2016.1170588 – volume: 154 start-page: 24 year: 2016 ident: ref_41 article-title: Experimental determination of fracture toughness for adhesively bonded composite joints publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2015.11.015 – volume: 56 start-page: 238 year: 2020 ident: ref_12 article-title: Strength and failure analysis of adhesive single-lap joints under shear loading: Effects of surface morphologies and overlap zone parameters publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.04.042 – volume: 3 start-page: 2000048 year: 2020 ident: ref_22 article-title: Fatigue life prediction of glare composites using regression tree ensemble-based machine learning model publication-title: Adv. Theory Simul. doi: 10.1002/adts.202000048 – volume: 42 start-page: 60 year: 2013 ident: ref_2 article-title: Evaluation of kissing bond in composite adhesive lap joints using digital image correlation: Preliminary studies publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2013.01.004 – volume: 26 start-page: 2591 year: 2012 ident: ref_26 article-title: Effect of protrusion at the ends of bondline in single lap joints under tension and bending publication-title: J. Adhes. Sci. Technol. doi: 10.1080/01694243.2012.691002 – volume: 29 start-page: 405 year: 2009 ident: ref_10 article-title: Experimental and numerical analysis of single-lap joints for the automotive industry publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2008.09.001 – volume: 241 start-page: 112136 year: 2020 ident: ref_36 article-title: The influence of notching and mixed-adhesives at the bonding area on the strength and stress distribution of dissimilar single-lap joints publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.112136 – volume: 217 start-page: 108894 year: 2021 ident: ref_23 article-title: A parametric study of adhesive bonded joints with composite material using black-box and grey-box machine learning methods: Deep neuron networks and genetic programming publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2021.108894 – ident: ref_39 – volume: 90 start-page: 89 year: 2014 ident: ref_7 article-title: Numerical and experimental analysis of balanced and unbalanced adhesive single-lap joints between aluminium adherends publication-title: J. Adhes. doi: 10.1080/00218464.2013.773258 – ident: ref_28 doi: 10.3390/polym14173484 – ident: ref_42 – volume: 98 start-page: 1635 year: 2021 ident: ref_9 article-title: Analytical stiffness analysis of adhesively bonded single-lap joints subjected to out-of-plane deflection due to tensile loading publication-title: J. Adhes. doi: 10.1080/00218464.2021.1932483 – volume: 55 start-page: 55 year: 2013 ident: ref_27 article-title: The effect of the spew fillet on an adhesively bonded single-lap joint subjected to bending moment publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2013.05.056 – volume: 109 start-page: 86 year: 2022 ident: ref_21 article-title: A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.09.004 – volume: 7 start-page: 64 year: 2017 ident: ref_6 article-title: Single lap adhesive joint (SLAJ): A study publication-title: Int. J. Eng. Technol. – volume: 133 start-page: 42898 year: 2016 ident: ref_15 article-title: Bonding performance and fracture morphology of a hybrid multiscale epoxy adhesive on oil-covered substrates publication-title: J. Appl. Polym.Sci. doi: 10.1002/app.42898 – volume: 9 start-page: 395 year: 1995 ident: ref_40 article-title: The effect of substrate roughness characteristics on wettability and on the mechanical properties of adhesive joints loaded at high strain rates publication-title: J. Adhes. Sci. Technol. doi: 10.1163/156856195X00347 – volume: 29 start-page: 36 year: 2009 ident: ref_38 article-title: Adhesive joining of aluminium AA6082: The effects of resin and surface treatment publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2008.01.002 – volume: 32 start-page: 46 year: 2012 ident: ref_3 article-title: Adhesively bonded single lap joints with non-flat interfaces publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2011.09.004 – volume: 43 start-page: 81 year: 2013 ident: ref_44 article-title: Single lap joints loaded in tension with high strength steel adherends publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2013.01.016 – volume: 7 start-page: 61 year: 2019 ident: ref_11 article-title: Variation of Adhesive Strength in Single Lap Joint (SLJ) with surface irregularities publication-title: Am. J. Mech. Eng. doi: 10.12691/ajme-7-2-2 – ident: ref_14 doi: 10.3390/coatings12101559 – volume: 9 start-page: 94 year: 2023 ident: ref_19 article-title: Understanding and design of metallic alloys guided by phase-field simulations publication-title: Npj. Comput. Mater. doi: 10.1038/s41524-023-01038-z – volume: 432 start-page: 128072 year: 2022 ident: ref_24 article-title: A simple and effective resin pre-coating treatment on grinded, acid pickled and anodised substrates for stronger adhesive bonding between Ti-6Al-4V titanium alloy and CFRP publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.128072 – ident: ref_8 – ident: ref_31 – ident: ref_33 – volume: 30 start-page: 131 year: 2016 ident: ref_16 article-title: An adhesive joint strength evaluation method and its application in mechanical engineering publication-title: J. Adhes. Sci. Technol. doi: 10.1080/01694243.2015.1092746 – volume: 25 start-page: 2103 year: 2015 ident: ref_29 article-title: Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al–(3.2–3.8) Cu–(1.0–1.4)Li alloys publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(15)63821-3 – ident: ref_18 doi: 10.3390/met11081159 – volume: 5 start-page: 202100565 year: 2022 ident: ref_20 article-title: New opportunity: Machine learning for polymer materials design and discovery publication-title: Adv. Theory Simul. doi: 10.1002/adts.202100565 – volume: 73 start-page: 1472 year: 2006 ident: ref_35 article-title: Influence of adhesive spew in bonded single-lap joints publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2005.12.015 – volume: 93 start-page: 613 year: 2017 ident: ref_25 article-title: Study on effects of pre-treatment and surface roughness on tensile-shear strength of 2060 Al–Li alloy adhesive joints publication-title: J. Adhes. doi: 10.1080/00218464.2015.1124765 – volume: 57 start-page: 1107 year: 2021 ident: ref_13 article-title: Current research status of interface of ceramic-metal laminated composite material for armor protection publication-title: Acta. Metall. Sin. – volume: 49 start-page: 115 year: 2014 ident: ref_37 article-title: Two-dimensional analytical solution of elastic stresses for balanced single-lap joints—Variational method publication-title: Int. J. Adhes. Adhes. doi: 10.1016/j.ijadhadh.2013.12.026 |
| SSID | ssj0000456617 |
| Score | 2.3585677 |
| Snippet | Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the... |
| SourceID | pubmedcentral proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4085 |
| SubjectTerms | Adhesive bonding Algorithms Analysis Curing Experimental methods Finite element method Interfacial bonding Machine learning Mathematical models Metal bonding Metal-metal bonding Methods New technology Optimization Process parameters Research methodology Shear strength Thickness |
| Title | Metal–Metal Bonding Process Research Based on Xgboost Machine Learning Algorithm |
| URI | https://www.proquest.com/docview/2882794167 https://www.proquest.com/docview/2883580577 https://pubmed.ncbi.nlm.nih.gov/PMC10610595 |
| Volume | 15 |
| WOSCitedRecordID | wos001089926300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: KB. dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RFgkulL-KLaUyEoILoYnjxM6p2q1agdCuVhVIyylybGdbaZtsuykSN96BN-yTdCbrLGwluHCKrFiOlRnPjz3-PoA3aSa00y6lGz1EYaZMoApsWlOWmcP42vCyJZuQo5GaTLKx33Bb-LLKzia2htrWhvbIDziGgqg7USoP55cBsUbR6aqn0NiALUIqQz3fGhyPxqerXRYKWNBHL8E1Y8zvD-b17McFOq2QoL3WnNFdk3y3TPIPv3Oy_b8zfgyPfMTJ-ksVeQL3XPUUHhx1RG_P4HToMAK_-fmrfTIiGkZ_xvwVAtbV5rEBOjzL6opNphiaLxo2bAsxHfMYrVPWn01xAs3ZxXP4enL85ehj4KkWAiNi3gSRLFwsilRay23KueVal8ZF1iSoaipUJdeqNLLUkUuyWImiTFwWiqLIrIhdHO_AZlVX7gWwVJnQ6bRwUlqRlTKzGm0EBgouwQGU6MH77p_nxuOQEx3GLMd8hESUr4moB29X3edLAI6_dXxHAsxpYeJ4Rvv7BTgrgrjK-5hH0H10HvZgrxNY7lfsIv8trR68Xr1GSdABiq5cfd32oVPjRGIftaYbq6kRWvf6m-r8rEXtptwbY9lk999ffwkPidGe3GMk9mCzubp2r-C--d6cL672YUNO1L7Xcmx9HnzA1vjTcPztFnP7DnI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VW6Ry4R-xtICR-LkQNXGcxDkgtBSqrtpdrVCRllNw_LOttE223RTUG-_Ae_BQPAkz2WRhK8GtB05RZMuJ7c8z39ieGYBncSqUVTYmjx5KYSa1J3N8Ndq51CK_1tzVySaS4VCOx-loDX60vjB0rbKVibWgNqWmPfJtjlQQsRPEyZvZqUdZo-h0tU2hsYDFvr34iibb_HX_Hc7vc8533x_u7HlNVgFPi5BXXpDkNhR5nBjDTcy54Uo5bQOjIxxV6UvHlXQ6cSqwURpKkbvIpr7I89SI0NIGKIr8dUFg78D6qD8YfVru6hBBQk6wCOYZhqm_PSunFyeoJH0KJbai_C6rgMvXMv_Qc7s3_7cRugU3GkbNeoslcBvWbHEHNnbaRHZ34cPAooXx89v3-skokTLqa9a4SLD27iF7iwrdsLJg4wmaHvOKDeqLppY1MWgnrDedYIero5N78PFKunQfOkVZ2AfAYql9q-LcJokRqUtSo1AGIhGyETYgRRdetXOc6SbOOqX7mGZobxEkshVIdOHFsvpsEWDkbxVfEmAyEjzYnlaN_wT-FYXwynpoJ5G_Pfe7sNUCJGsk0jz7jY4uPF0W40zQAZEqbHle16FT8SjBOnIFi8tfo2jkqyXF8VEdlZz2FpCrRw___fUnsLF3ODjIDvrD_U24zpEzEhUIxBZ0qrNz-wiu6S_V8fzscbO2GHy-arD-AtGFa68 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKQIuvBGBAovE44IVe7221weEQktEVBJFCKRwMut9pJVSOzQuqDf-A_-Gn8MvYcaxA6kEtx44WdaubK_325lvducB8DhOhbLKxhTRQyXMpPZkjrdGO5da5Neau7rYRDIey-k0nWzBjzYWhtwqW5lYC2pTatoj73GkgoidIE56rnGLmOwNXi4-e1RBik5a23IaK4js29OvaL4tXwz3cK6fcD54_X73jddUGPC0CHnlBUluQ5HHiTHcxJwbrpTTNjA6wj8sfem4kk4nTgU2SkMpchfZ1Bd5nhoRWtoMRfG_jZRc8A5sT4ajycf1Dg-RJeQHq8SeYZj6vUU5Pz1ChelTWrENRXhWHZx10fxD5w2u_s9_6xpcaZg266-WxnXYssUNuLTbFri7Ce9GFi2Pn9--11dGBZZRj7MmdIK1PonsFSp6w8qCTWdokiwrNqodUC1rctPOWH8-wwFXB0e34MO5DOk2dIqysHeAxVL7VsW5TRIjUpekRqFsRIJkI3yAFF143s53ppv861QGZJ6hHUbwyDbg0YWn6-6LVeKRv3V8RuDJSCDh87Rq4irwqyi1V9ZH-4ni8LnfhZ0WLFkjqZbZb6R04dG6GWeCDo5UYcuTug-dlkcJ9pEbuFx_GmUp32wpDg_qbOW054AcPrr777c_hIuI0OztcLx_Dy5zpJLEEAKxA53q-MTehwv6S3W4PH7QLDMGn84bq78AgiF0bw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93Metal+Bonding+Process+Research+Based+on+Xgboost+Machine+Learning+Algorithm&rft.jtitle=Polymers&rft.au=Feng%2C+Jingpeng&rft.au=Zhan%2C+Lihua&rft.au=Ma%2C+Bolin&rft.au=Zhou%2C+Hao&rft.date=2023-10-14&rft.issn=2073-4360&rft.eissn=2073-4360&rft.volume=15&rft.issue=20&rft.spage=4085&rft_id=info:doi/10.3390%2Fpolym15204085&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_polym15204085 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |