Machine learning based approaches for detecting COVID-19 using clinical text data

Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising results in health care through its decision making by analysing the data. COVID-19 has affected more than 100 countries in a matter of no time....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of information technology (Singapore. Online) Ročník 12; číslo 3; s. 731 - 739
Hlavní autoři: Khanday, Akib Mohi Ud Din, Rabani, Syed Tanzeel, Khan, Qamar Rayees, Rouf, Nusrat, Mohi Ud Din, Masarat
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Singapore 01.09.2020
Springer Nature B.V
Témata:
ISSN:2511-2104, 2511-2112, 2511-2112
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising results in health care through its decision making by analysing the data. COVID-19 has affected more than 100 countries in a matter of no time. People all over the world are vulnerable to its consequences in future. It is imperative to develop a control system that will detect the coronavirus. One of the solution to control the current havoc can be the diagnosis of disease with the help of various AI tools. In this paper, we classified textual clinical reports into four classes by using classical and ensemble machine learning algorithms. Feature engineering was performed using techniques like Term frequency/inverse document frequency (TF/IDF), Bag of words (BOW) and report length. These features were supplied to traditional and ensemble machine learning classifiers. Logistic regression and Multinomial Naïve Bayes showed better results than other ML algorithms by having 96.2% testing accuracy. In future recurrent neural network can be used for better accuracy.
AbstractList Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising results in health care through its decision making by analysing the data. COVID-19 has affected more than 100 countries in a matter of no time. People all over the world are vulnerable to its consequences in future. It is imperative to develop a control system that will detect the coronavirus. One of the solution to control the current havoc can be the diagnosis of disease with the help of various AI tools. In this paper, we classified textual clinical reports into four classes by using classical and ensemble machine learning algorithms. Feature engineering was performed using techniques like Term frequency/inverse document frequency (TF/IDF), Bag of words (BOW) and report length. These features were supplied to traditional and ensemble machine learning classifiers. Logistic regression and Multinomial Naïve Bayes showed better results than other ML algorithms by having 96.2% testing accuracy. In future recurrent neural network can be used for better accuracy.
Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising results in health care through its decision making by analysing the data. COVID-19 has affected more than 100 countries in a matter of no time. People all over the world are vulnerable to its consequences in future. It is imperative to develop a control system that will detect the coronavirus. One of the solution to control the current havoc can be the diagnosis of disease with the help of various AI tools. In this paper, we classified textual clinical reports into four classes by using classical and ensemble machine learning algorithms. Feature engineering was performed using techniques like Term frequency/inverse document frequency (TF/IDF), Bag of words (BOW) and report length. These features were supplied to traditional and ensemble machine learning classifiers. Logistic regression and Multinomial Naïve Bayes showed better results than other ML algorithms by having 96.2% testing accuracy. In future recurrent neural network can be used for better accuracy.Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising results in health care through its decision making by analysing the data. COVID-19 has affected more than 100 countries in a matter of no time. People all over the world are vulnerable to its consequences in future. It is imperative to develop a control system that will detect the coronavirus. One of the solution to control the current havoc can be the diagnosis of disease with the help of various AI tools. In this paper, we classified textual clinical reports into four classes by using classical and ensemble machine learning algorithms. Feature engineering was performed using techniques like Term frequency/inverse document frequency (TF/IDF), Bag of words (BOW) and report length. These features were supplied to traditional and ensemble machine learning classifiers. Logistic regression and Multinomial Naïve Bayes showed better results than other ML algorithms by having 96.2% testing accuracy. In future recurrent neural network can be used for better accuracy.
Author Khanday, Akib Mohi Ud Din
Rouf, Nusrat
Rabani, Syed Tanzeel
Mohi Ud Din, Masarat
Khan, Qamar Rayees
Author_xml – sequence: 1
  givenname: Akib Mohi Ud Din
  orcidid: 0000-0001-6804-4905
  surname: Khanday
  fullname: Khanday, Akib Mohi Ud Din
  email: akibkhanday@bgsbu.ac.in
  organization: Department of Computer Sciences, Baba Ghulam Shah Badshah University
– sequence: 2
  givenname: Syed Tanzeel
  surname: Rabani
  fullname: Rabani, Syed Tanzeel
  organization: Department of Computer Sciences, Baba Ghulam Shah Badshah University
– sequence: 3
  givenname: Qamar Rayees
  surname: Khan
  fullname: Khan, Qamar Rayees
  organization: Department of Computer Sciences, Baba Ghulam Shah Badshah University
– sequence: 4
  givenname: Nusrat
  surname: Rouf
  fullname: Rouf, Nusrat
  organization: Department of Computer Sciences, Baba Ghulam Shah Badshah University
– sequence: 5
  givenname: Masarat
  surname: Mohi Ud Din
  fullname: Mohi Ud Din, Masarat
  organization: Government Medical College
BookMark eNp9kUFv1DAQhS1UREvpH-AUiQuXwIwdJ_YFCS20VCqqkICrNXGcrVHWXmwHwb8n6RYQPfRg2db73thP7yk7CjE4xp4jvEKA7nVuUHVQA18WNFrW-hE74RKx5oj86O8ZmmN2lrPvQSBvhezwCTsWXAmFXJ6wTx_J3vjgqslRCj5sq56yGyra71NcJJerMaZqcMXZssqb66-X72rU1ZzXq5188JamqrifpRqo0DP2eKQpu7O7_ZR9OX__efOhvrq-uNy8vaptI7iuVc-7lkjTKFCrzqGkRio-tO0gWmq4hhHkoPsWmx7ADgNI5UZYUoyAvWrFKXtzmLuf-50brAsl0WT2ye8o_TKRvPlfCf7GbOMP0wkuW6GXAS_vBqT4fXa5mJ3P1k0TBRfnbHgjOkQNfEVf3EO_xTmFJd4tpZTQsFLqQNkUc05uNNYXKj6u7_vJIJi1OnOozizVmdvqzGrl96x_cjxoEgdTXuCwdenfrx5w_QauSqp6
CitedBy_id crossref_primary_10_1109_TCBB_2023_3294333
crossref_primary_10_1007_s41870_024_01788_z
crossref_primary_10_1007_s42979_022_01184_z
crossref_primary_10_4108_eetpht_10_5174
crossref_primary_10_1007_s41870_023_01409_1
crossref_primary_10_1007_s41870_025_02469_1
crossref_primary_10_1016_j_jksuci_2021_09_019
crossref_primary_10_33317_ssurj_611
crossref_primary_10_1155_2024_8014111
crossref_primary_10_32604_cmc_2022_022673
crossref_primary_10_1038_s41598_025_98719_0
crossref_primary_10_1155_2022_6521532
crossref_primary_10_1109_ACCESS_2025_3538518
crossref_primary_10_1080_00207543_2023_2275635
crossref_primary_10_3233_JIFS_236392
crossref_primary_10_1007_s12539_021_00431_w
crossref_primary_10_1007_s00607_021_00951_9
crossref_primary_10_32604_cmc_2021_013453
crossref_primary_10_32604_cmc_2023_032671
crossref_primary_10_1007_s42979_022_01493_3
crossref_primary_10_1371_journal_pone_0277878
crossref_primary_10_32604_cmc_2023_033924
crossref_primary_10_1007_s42600_023_00268_w
crossref_primary_10_1007_s41870_025_02404_4
crossref_primary_10_1016_j_eswa_2022_118650
crossref_primary_10_5937_afmnai39_38354
crossref_primary_10_15446_dyna_v90n226_105616
crossref_primary_10_32604_cmes_2021_016981
crossref_primary_10_1007_s41870_024_01882_2
crossref_primary_10_1016_j_sasc_2025_200194
crossref_primary_10_1007_s41870_023_01361_0
crossref_primary_10_1007_s41870_022_00949_2
crossref_primary_10_47164_ijngc_v13i3_870
crossref_primary_10_1002_wat2_1550
crossref_primary_10_2196_65434
crossref_primary_10_1016_j_chaos_2020_110337
crossref_primary_10_1109_ACCESS_2021_3050852
crossref_primary_10_4018_IJSI_311505
crossref_primary_10_1155_2022_3412992
crossref_primary_10_1016_j_matpr_2021_02_166
crossref_primary_10_3390_su15076177
crossref_primary_10_1007_s12539_021_00465_0
crossref_primary_10_32604_cmc_2021_016896
crossref_primary_10_1155_2022_3783058
crossref_primary_10_1177_1063293X211021435
crossref_primary_10_1007_s41870_023_01283_x
crossref_primary_10_1016_j_eswa_2022_117551
crossref_primary_10_1155_2022_7731618
crossref_primary_10_1007_s13755_021_00164_6
crossref_primary_10_1016_j_smhl_2022_100322
crossref_primary_10_1111_jpim_12571
crossref_primary_10_1016_j_eswa_2022_116547
crossref_primary_10_1007_s10489_020_02102_7
crossref_primary_10_1371_journal_pone_0252573
crossref_primary_10_7717_peerj_cs_1333
crossref_primary_10_1007_s11042_022_14219_7
crossref_primary_10_1007_s11277_023_10336_0
crossref_primary_10_1007_s41870_023_01564_5
crossref_primary_10_1016_j_artmed_2022_102286
crossref_primary_10_1007_s10668_022_02584_0
crossref_primary_10_1016_j_procs_2021_10_009
crossref_primary_10_1007_s41870_024_01770_9
crossref_primary_10_1017_S135132492300027X
crossref_primary_10_1007_s11831_024_10098_3
crossref_primary_10_1109_ACCESS_2024_3457850
crossref_primary_10_1109_TEM_2021_3094544
crossref_primary_10_1007_s41870_020_00550_5
crossref_primary_10_1155_2022_1773259
crossref_primary_10_1016_j_procs_2023_01_182
crossref_primary_10_1007_s42979_021_00965_2
crossref_primary_10_1587_transinf_2024IIP0002
crossref_primary_10_3390_e27090962
crossref_primary_10_32604_cmes_2023_043921
crossref_primary_10_1007_s11042_024_18487_3
crossref_primary_10_1038_s41598_021_93757_w
crossref_primary_10_1007_s12065_022_00704_3
crossref_primary_10_1007_s41870_022_00968_z
crossref_primary_10_1016_j_eswa_2024_125080
crossref_primary_10_1007_s41324_021_00408_3
crossref_primary_10_1007_s41870_023_01345_0
crossref_primary_10_1007_s41870_023_01538_7
crossref_primary_10_1007_s41870_024_02375_y
crossref_primary_10_1007_s41870_022_00967_0
crossref_primary_10_1007_s41870_024_02142_z
crossref_primary_10_1109_TAI_2022_3142241
crossref_primary_10_1155_2022_3180742
Cites_doi 10.1016/S0140-6736(20)30211-7
10.1007/s41870-018-0270-5
10.35940/ijrte.C6612.098319
10.1101/2020.02.27.20028027
10.1038/s41586-020-2008-3
10.1016/S0167-9473(01)00065-2
10.1007/s41870-018-0088-1
10.32604/cmc.2020.010691
10.1007/s41870-017-0072-1
10.1109/IJCNN.2018.8489738
10.1038/s41598-020-76550-z
10.1613/jair.1.12162
ContentType Journal Article
Copyright Bharati Vidyapeeth's Institute of Computer Applications and Management 2020
Bharati Vidyapeeth's Institute of Computer Applications and Management 2020.
Copyright_xml – notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2020
– notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2020.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1007/s41870-020-00495-9
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Computer and Information Systems Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2511-2112
EndPage 739
ExternalDocumentID PMC7325639
10_1007_s41870_020_00495_9
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AGRTI
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
Z7Z
Z81
Z83
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUWG
ACSTC
AEZWR
AFDZB
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c4329-8b276aa9af31987e15a4582d66d36a4290f05d9b614b00cdd058ef0031f01b863
IEDL.DBID RSV
ISSN 2511-2104
2511-2112
IngestDate Thu Aug 21 13:48:47 EDT 2025
Thu Oct 02 11:11:59 EDT 2025
Thu Sep 18 00:00:15 EDT 2025
Sat Nov 29 03:11:45 EST 2025
Tue Nov 18 21:08:42 EST 2025
Fri Feb 21 02:32:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords COVID-19
Artificial intelligence
Machine learning
Ensemble
Imperative
Language English
License This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4329-8b276aa9af31987e15a4582d66d36a4290f05d9b614b00cdd058ef0031f01b863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6804-4905
OpenAccessLink http://dx.doi.org/10.1007/s41870-020-00495-9
PMID 32838125
PQID 2437883909
PQPubID 2034493
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7325639
proquest_miscellaneous_2437119029
proquest_journals_2437883909
crossref_citationtrail_10_1007_s41870_020_00495_9
crossref_primary_10_1007_s41870_020_00495_9
springer_journals_10_1007_s41870_020_00495_9
PublicationCentury 2000
PublicationDate 20200900
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 9
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationSubtitle An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management
PublicationTitle International journal of information technology (Singapore. Online)
PublicationTitleAbbrev Int. j. inf. tecnol
PublicationYear 2020
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References Wu, Zhao, Yu, Chen, Wang, Song, Hu, Tao, Tian, Pei, Yuan, Zhang, Dai, Liu, Wang, Zheng, Xu, Holmes, Zhang (CR1) 2020; 44
Kumar, Dabas, Hooda (CR7) 2018
CR2
CR4
CR6
CR5
CR19
CR18
Verma, Khanday, Rabani, Mir, Jamwal (CR8) 2019
CR17
Chen, Zhou, Dong, Qu, Gong, Han, Qiu, Wang, Liu, Wei, Xia, Yu, Zhang, Zhang (CR3) 2020; 395
CR16
Friedman (CR22) 2002; 38
CR15
CR12
Sarwar, Ali, Manhas (CR10) 2018
CR11
Jiang, Coffee, Bari, Wang, Jiang, Huang, Shi, Dai, Cai, Zhang, Wu, He, Huang (CR14) 2020; 63
CR21
CR20
Yan, Zhang, Xiao, Wang, Sun, Liang, Li, Zhang, Guo, Xiao, Tang, Cao, Tan, Huang, Amd, Luo, Cao, Xu, Yuan (CR13) 2020
Chakraborti, Choudhary, Singh (CR9) 2018; 10
F Wu (495_CR1) 2020; 44
495_CR6
495_CR5
P Verma (495_CR8) 2019
495_CR16
495_CR4
495_CR15
495_CR2
X Jiang (495_CR14) 2020; 63
A Kumar (495_CR7) 2018
495_CR19
495_CR18
495_CR17
S Chakraborti (495_CR9) 2018; 10
A Sarwar (495_CR10) 2018
495_CR12
JH Friedman (495_CR22) 2002; 38
495_CR11
495_CR21
495_CR20
L Yan (495_CR13) 2020
N Chen (495_CR3) 2020; 395
References_xml – ident: CR21
– ident: CR19
– ident: CR18
– ident: CR4
– ident: CR15
– ident: CR2
– ident: CR16
– volume: 395
  start-page: 507
  issue: 10223
  year: 2020
  end-page: 513
  ident: CR3
  article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30211-7
– year: 2018
  ident: CR10
  article-title: Diagnosis of diabetes type-II using hybrid machine learning based ensemble model
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-018-0270-5
– ident: CR12
– ident: CR17
– ident: CR11
– ident: CR6
– year: 2019
  ident: CR8
  article-title: Twitter Sentiment Analysis on Indian Government Project using R
  publication-title: Int J Recent Tech Eng
  doi: 10.35940/ijrte.C6612.098319
– year: 2020
  ident: CR13
  article-title: Prediction of criticality in patients with severe covid-19 Infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan
  publication-title: medRxiv
  doi: 10.1101/2020.02.27.20028027
– volume: 44
  start-page: 265
  issue: 59
  year: 2020
  end-page: 269
  ident: CR1
  article-title: A new coronavirus associated with human respiratory disease in china
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  end-page: 378
  ident: CR22
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– ident: CR5
– volume: 10
  start-page: 257
  year: 2018
  end-page: 263
  ident: CR9
  article-title: A machine learning based method to detect epilepsy
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-018-0088-1
– volume: 63
  start-page: 537
  issue: 1
  year: 2020
  end-page: 551
  ident: CR14
  article-title: Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity
  publication-title: Compu Mater Contin
  doi: 10.32604/cmc.2020.010691
– year: 2018
  ident: CR7
  article-title: Text classification algorithms for mining unstructured data: a SWOT analysis
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-017-0072-1
– ident: CR20
– ident: 495_CR16
– ident: 495_CR15
– ident: 495_CR18
– ident: 495_CR17
– ident: 495_CR19
– ident: 495_CR20
– ident: 495_CR21
  doi: 10.1109/IJCNN.2018.8489738
– ident: 495_CR2
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 495_CR22
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– ident: 495_CR12
  doi: 10.1038/s41598-020-76550-z
– ident: 495_CR6
– ident: 495_CR5
– volume: 395
  start-page: 507
  issue: 10223
  year: 2020
  ident: 495_CR3
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30211-7
– volume: 44
  start-page: 265
  issue: 59
  year: 2020
  ident: 495_CR1
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– ident: 495_CR4
– volume: 10
  start-page: 257
  year: 2018
  ident: 495_CR9
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-018-0088-1
– volume: 63
  start-page: 537
  issue: 1
  year: 2020
  ident: 495_CR14
  publication-title: Compu Mater Contin
  doi: 10.32604/cmc.2020.010691
– year: 2019
  ident: 495_CR8
  publication-title: Int J Recent Tech Eng
  doi: 10.35940/ijrte.C6612.098319
– ident: 495_CR11
  doi: 10.1613/jair.1.12162
– year: 2018
  ident: 495_CR7
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-017-0072-1
– year: 2020
  ident: 495_CR13
  publication-title: medRxiv
  doi: 10.1101/2020.02.27.20028027
– year: 2018
  ident: 495_CR10
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-018-0270-5
SSID ssib031263571
ssj0002710285
Score 2.593566
Snippet Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 731
SubjectTerms Algorithms
Artificial Intelligence
Computer Imaging
Computer Science
Coronaviruses
COVID-19
Decision analysis
Decision making
Engineering education
Image Processing and Computer Vision
Machine Learning
Original Research
Pattern Recognition and Graphics
Recurrent neural networks
Regression analysis
Software Engineering
Viral diseases
Vision
Title Machine learning based approaches for detecting COVID-19 using clinical text data
URI https://link.springer.com/article/10.1007/s41870-020-00495-9
https://www.proquest.com/docview/2437883909
https://www.proquest.com/docview/2437119029
https://pubmed.ncbi.nlm.nih.gov/PMC7325639
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: RSV
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbY4AAHHgPEcwoSN6jUNH0eETCBxFPAtFuVNckAoYI2xu8nzpKOTYAE5yRNm9jxl9r-DLBfhCrUODnEMqkC3YzMS7OAeoqGUiYx0sWYnb5Irq7STie7sUlhAxft7lyS5qSukt1CmmKRlAAzoUOsMFiD2QjZZvCOftd2UsQo8qtYkPNsXGtoRDGWEeG0p-84oc2e-f6xkxZqDDungyanPKfGILWW_vcpy7BoASg5GknMCszIsgFLrrgDsbregIUvTIWrcHtpgi4lsVUmegTNnyCOklwOiEa_REj0SWDz8XX7_MSjGcHA-h5xCZgEA00IhqWuwUPr9P74zLPVGLwiZEHmpd0giTnPuGL4o0LSiKPPTcSxYDHXZs1XfiSyrrb3WpULIfwolQoPDeXTbhqzdaiXr6XcAKLP10REijJMyy2o4rKrKC-4PiCo8GOxCdTtQF5YqnKsmPGSVyTLZgVzvYK5WcE824SDaszbiKjj1947bmNzq7SDHLkZUw0Yfd28VzVrdUMfCi_l63DUh2oQFeg-yYRAVLMiYfdkS_n0aIi7E6YBJtMjD51YjCf_-V23_tZ9G-YDI1kYB7cD9ff-UO7CXPHx_jToN6GWdNKmUZhP4ekKKg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4ScCBN-JNkLhBpabJ-jgiYAIxBoiBuFVZk4wh1CEG_H7iLCkMARKckzRtYsdfavszwG7BNTc4mWOZVIluRhakWUQDTblSSYx0MXanG0mzmd7dZZcuKazvo929S9Ke1FWyG6cpFkmJMBOaY4XBURjnWGYH7-jXt16KGEV-FQdyHqxrDY0oxjIinA7MHYe77JnvHztsoT5g59egyS-eU2uQ6rP_-5Q5mHEAlBwMJGYeRlS5ALO-uANxur4A05-YChfh6twGXSriqkx0CJo_STwlueoTg36JVOiTwObDi9vTo4BmBAPrO8QnYBIMNCEYlroEN_Xj1uFJ4KoxBAVnURak7SiJhciEZvijQtGaQJ-bjGPJYmHMWqjDmszaxt4bVS6kDGup0nho6JC205gtw1jZK9UKEHO-JrKmKcO03IJqodqaikKYA4LKMJarQP0O5IWjKseKGY95RbJsVzA3K5jbFcyzVdirxjwNiDp-7b3hNzZ3StvPkZsxNYAxNM07VbNRN_ShiFL1Xgd9qAFRkemTDAlENSsSdg-3lN17S9ydMAMwmRm578XiY_Kf33Xtb923YfKkdd7IG6fNs3WYiqyUYUzcBoy9PL-qTZgo3l66_ectqzbvHToMJg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCcGBHVFWI3GDiDh2sxwRUIGAsiNukRvbLEIBtYXvZ8ZNAkWAhDjbiRN77HnJvHkDsJFJKxEnSyqTqinMKLw4CbhnuTQmCkkuxq30cdRsxre3ydmnLH7Hdi9Dkr2cBlJpyrvbL9puV4lvksdUMCWgrGhJ1QYHYVjilwyRui4ub0qLEpy0VgrA8-jCbORQiddI0NrD7x1ZZNJ8f9t-b_UBQb8SKL9EUZ1zakz-_7WmYKIApmynZ0nTMGDyGZgsiz6w4gyYgfFPCoazcH7iyJiGFdUn7hi5Rc1KqXLTYYiKmTYUq6Dm3dObwz2PJ4wI93esTMxkREBhRFedg-vG_tXugVdUafAyKYLEi1tBFCqVKCvoB4bhdUWxOB2GWoQK3Z1v_bpOWogDcItnWvv12Fg6TKzPW3Eo5mEof87NAjA8dyNdt1xQum7GrTIty1Wm8ODg2g91DXi5GmlWSJhTJY2ntBJfdjOY4gymbgbTpAab1TUvPQGPX3svl4ucFpu5k5JmY4xA0sfm9aoZtyHFVlRunl97fTiCqwD7RH3GUY1KQt79LfnDvRP0jgQCT4FXbpUm8jH4z8-6-LfuazB6ttdIjw-bR0swFjgjI6rcMgx1269mBUayt-5Dp73qdtA7SG4VCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+approaches+for+detecting+COVID-19+using+clinical+text+data&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Khanday+Akib+Mohi+Ud+Din&rft.au=Rabani%2C+Syed+Tanzeel&rft.au=Khan%2C+Qamar+Rayees&rft.au=Rouf+Nusrat&rft.date=2020-09-01&rft.pub=Springer+Nature+B.V&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=12&rft.issue=3&rft.spage=731&rft.epage=739&rft_id=info:doi/10.1007%2Fs41870-020-00495-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon