Machine learning based approaches for detecting COVID-19 using clinical text data
Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising results in health care through its decision making by analysing the data. COVID-19 has affected more than 100 countries in a matter of no time....
Uloženo v:
| Vydáno v: | International journal of information technology (Singapore. Online) Ročník 12; číslo 3; s. 731 - 739 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Singapore
01.09.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 2511-2104, 2511-2112, 2511-2112 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising results in health care through its decision making by analysing the data. COVID-19 has affected more than 100 countries in a matter of no time. People all over the world are vulnerable to its consequences in future. It is imperative to develop a control system that will detect the coronavirus. One of the solution to control the current havoc can be the diagnosis of disease with the help of various AI tools. In this paper, we classified textual clinical reports into four classes by using classical and ensemble machine learning algorithms. Feature engineering was performed using techniques like Term frequency/inverse document frequency (TF/IDF), Bag of words (BOW) and report length. These features were supplied to traditional and ensemble machine learning classifiers. Logistic regression and Multinomial Naïve Bayes showed better results than other ML algorithms by having 96.2% testing accuracy. In future recurrent neural network can be used for better accuracy. |
|---|---|
| AbstractList | Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising results in health care through its decision making by analysing the data. COVID-19 has affected more than 100 countries in a matter of no time. People all over the world are vulnerable to its consequences in future. It is imperative to develop a control system that will detect the coronavirus. One of the solution to control the current havoc can be the diagnosis of disease with the help of various AI tools. In this paper, we classified textual clinical reports into four classes by using classical and ensemble machine learning algorithms. Feature engineering was performed using techniques like Term frequency/inverse document frequency (TF/IDF), Bag of words (BOW) and report length. These features were supplied to traditional and ensemble machine learning classifiers. Logistic regression and Multinomial Naïve Bayes showed better results than other ML algorithms by having 96.2% testing accuracy. In future recurrent neural network can be used for better accuracy. Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising results in health care through its decision making by analysing the data. COVID-19 has affected more than 100 countries in a matter of no time. People all over the world are vulnerable to its consequences in future. It is imperative to develop a control system that will detect the coronavirus. One of the solution to control the current havoc can be the diagnosis of disease with the help of various AI tools. In this paper, we classified textual clinical reports into four classes by using classical and ensemble machine learning algorithms. Feature engineering was performed using techniques like Term frequency/inverse document frequency (TF/IDF), Bag of words (BOW) and report length. These features were supplied to traditional and ensemble machine learning classifiers. Logistic regression and Multinomial Naïve Bayes showed better results than other ML algorithms by having 96.2% testing accuracy. In future recurrent neural network can be used for better accuracy.Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising results in health care through its decision making by analysing the data. COVID-19 has affected more than 100 countries in a matter of no time. People all over the world are vulnerable to its consequences in future. It is imperative to develop a control system that will detect the coronavirus. One of the solution to control the current havoc can be the diagnosis of disease with the help of various AI tools. In this paper, we classified textual clinical reports into four classes by using classical and ensemble machine learning algorithms. Feature engineering was performed using techniques like Term frequency/inverse document frequency (TF/IDF), Bag of words (BOW) and report length. These features were supplied to traditional and ensemble machine learning classifiers. Logistic regression and Multinomial Naïve Bayes showed better results than other ML algorithms by having 96.2% testing accuracy. In future recurrent neural network can be used for better accuracy. |
| Author | Khanday, Akib Mohi Ud Din Rouf, Nusrat Rabani, Syed Tanzeel Mohi Ud Din, Masarat Khan, Qamar Rayees |
| Author_xml | – sequence: 1 givenname: Akib Mohi Ud Din orcidid: 0000-0001-6804-4905 surname: Khanday fullname: Khanday, Akib Mohi Ud Din email: akibkhanday@bgsbu.ac.in organization: Department of Computer Sciences, Baba Ghulam Shah Badshah University – sequence: 2 givenname: Syed Tanzeel surname: Rabani fullname: Rabani, Syed Tanzeel organization: Department of Computer Sciences, Baba Ghulam Shah Badshah University – sequence: 3 givenname: Qamar Rayees surname: Khan fullname: Khan, Qamar Rayees organization: Department of Computer Sciences, Baba Ghulam Shah Badshah University – sequence: 4 givenname: Nusrat surname: Rouf fullname: Rouf, Nusrat organization: Department of Computer Sciences, Baba Ghulam Shah Badshah University – sequence: 5 givenname: Masarat surname: Mohi Ud Din fullname: Mohi Ud Din, Masarat organization: Government Medical College |
| BookMark | eNp9kUFv1DAQhS1UREvpH-AUiQuXwIwdJ_YFCS20VCqqkICrNXGcrVHWXmwHwb8n6RYQPfRg2db73thP7yk7CjE4xp4jvEKA7nVuUHVQA18WNFrW-hE74RKx5oj86O8ZmmN2lrPvQSBvhezwCTsWXAmFXJ6wTx_J3vjgqslRCj5sq56yGyra71NcJJerMaZqcMXZssqb66-X72rU1ZzXq5188JamqrifpRqo0DP2eKQpu7O7_ZR9OX__efOhvrq-uNy8vaptI7iuVc-7lkjTKFCrzqGkRio-tO0gWmq4hhHkoPsWmx7ADgNI5UZYUoyAvWrFKXtzmLuf-50brAsl0WT2ye8o_TKRvPlfCf7GbOMP0wkuW6GXAS_vBqT4fXa5mJ3P1k0TBRfnbHgjOkQNfEVf3EO_xTmFJd4tpZTQsFLqQNkUc05uNNYXKj6u7_vJIJi1OnOozizVmdvqzGrl96x_cjxoEgdTXuCwdenfrx5w_QauSqp6 |
| CitedBy_id | crossref_primary_10_1109_TCBB_2023_3294333 crossref_primary_10_1007_s41870_024_01788_z crossref_primary_10_1007_s42979_022_01184_z crossref_primary_10_4108_eetpht_10_5174 crossref_primary_10_1007_s41870_023_01409_1 crossref_primary_10_1007_s41870_025_02469_1 crossref_primary_10_1016_j_jksuci_2021_09_019 crossref_primary_10_33317_ssurj_611 crossref_primary_10_1155_2024_8014111 crossref_primary_10_32604_cmc_2022_022673 crossref_primary_10_1038_s41598_025_98719_0 crossref_primary_10_1155_2022_6521532 crossref_primary_10_1109_ACCESS_2025_3538518 crossref_primary_10_1080_00207543_2023_2275635 crossref_primary_10_3233_JIFS_236392 crossref_primary_10_1007_s12539_021_00431_w crossref_primary_10_1007_s00607_021_00951_9 crossref_primary_10_32604_cmc_2021_013453 crossref_primary_10_32604_cmc_2023_032671 crossref_primary_10_1007_s42979_022_01493_3 crossref_primary_10_1371_journal_pone_0277878 crossref_primary_10_32604_cmc_2023_033924 crossref_primary_10_1007_s42600_023_00268_w crossref_primary_10_1007_s41870_025_02404_4 crossref_primary_10_1016_j_eswa_2022_118650 crossref_primary_10_5937_afmnai39_38354 crossref_primary_10_15446_dyna_v90n226_105616 crossref_primary_10_32604_cmes_2021_016981 crossref_primary_10_1007_s41870_024_01882_2 crossref_primary_10_1016_j_sasc_2025_200194 crossref_primary_10_1007_s41870_023_01361_0 crossref_primary_10_1007_s41870_022_00949_2 crossref_primary_10_47164_ijngc_v13i3_870 crossref_primary_10_1002_wat2_1550 crossref_primary_10_2196_65434 crossref_primary_10_1016_j_chaos_2020_110337 crossref_primary_10_1109_ACCESS_2021_3050852 crossref_primary_10_4018_IJSI_311505 crossref_primary_10_1155_2022_3412992 crossref_primary_10_1016_j_matpr_2021_02_166 crossref_primary_10_3390_su15076177 crossref_primary_10_1007_s12539_021_00465_0 crossref_primary_10_32604_cmc_2021_016896 crossref_primary_10_1155_2022_3783058 crossref_primary_10_1177_1063293X211021435 crossref_primary_10_1007_s41870_023_01283_x crossref_primary_10_1016_j_eswa_2022_117551 crossref_primary_10_1155_2022_7731618 crossref_primary_10_1007_s13755_021_00164_6 crossref_primary_10_1016_j_smhl_2022_100322 crossref_primary_10_1111_jpim_12571 crossref_primary_10_1016_j_eswa_2022_116547 crossref_primary_10_1007_s10489_020_02102_7 crossref_primary_10_1371_journal_pone_0252573 crossref_primary_10_7717_peerj_cs_1333 crossref_primary_10_1007_s11042_022_14219_7 crossref_primary_10_1007_s11277_023_10336_0 crossref_primary_10_1007_s41870_023_01564_5 crossref_primary_10_1016_j_artmed_2022_102286 crossref_primary_10_1007_s10668_022_02584_0 crossref_primary_10_1016_j_procs_2021_10_009 crossref_primary_10_1007_s41870_024_01770_9 crossref_primary_10_1017_S135132492300027X crossref_primary_10_1007_s11831_024_10098_3 crossref_primary_10_1109_ACCESS_2024_3457850 crossref_primary_10_1109_TEM_2021_3094544 crossref_primary_10_1007_s41870_020_00550_5 crossref_primary_10_1155_2022_1773259 crossref_primary_10_1016_j_procs_2023_01_182 crossref_primary_10_1007_s42979_021_00965_2 crossref_primary_10_1587_transinf_2024IIP0002 crossref_primary_10_3390_e27090962 crossref_primary_10_32604_cmes_2023_043921 crossref_primary_10_1007_s11042_024_18487_3 crossref_primary_10_1038_s41598_021_93757_w crossref_primary_10_1007_s12065_022_00704_3 crossref_primary_10_1007_s41870_022_00968_z crossref_primary_10_1016_j_eswa_2024_125080 crossref_primary_10_1007_s41324_021_00408_3 crossref_primary_10_1007_s41870_023_01345_0 crossref_primary_10_1007_s41870_023_01538_7 crossref_primary_10_1007_s41870_024_02375_y crossref_primary_10_1007_s41870_022_00967_0 crossref_primary_10_1007_s41870_024_02142_z crossref_primary_10_1109_TAI_2022_3142241 crossref_primary_10_1155_2022_3180742 |
| Cites_doi | 10.1016/S0140-6736(20)30211-7 10.1007/s41870-018-0270-5 10.35940/ijrte.C6612.098319 10.1101/2020.02.27.20028027 10.1038/s41586-020-2008-3 10.1016/S0167-9473(01)00065-2 10.1007/s41870-018-0088-1 10.32604/cmc.2020.010691 10.1007/s41870-017-0072-1 10.1109/IJCNN.2018.8489738 10.1038/s41598-020-76550-z 10.1613/jair.1.12162 |
| ContentType | Journal Article |
| Copyright | Bharati Vidyapeeth's Institute of Computer Applications and Management 2020 Bharati Vidyapeeth's Institute of Computer Applications and Management 2020. |
| Copyright_xml | – notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2020 – notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2020. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM |
| DOI | 10.1007/s41870-020-00495-9 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Computer and Information Systems Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2511-2112 |
| EndPage | 739 |
| ExternalDocumentID | PMC7325639 10_1007_s41870_020_00495_9 |
| GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AANZL AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFQWF AGDGC AGMZJ AGQEE AGRTI AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW Z7Z Z81 Z83 Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ABUWG ACSTC AEZWR AFDZB AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM |
| ID | FETCH-LOGICAL-c4329-8b276aa9af31987e15a4582d66d36a4290f05d9b614b00cdd058ef0031f01b863 |
| IEDL.DBID | RSV |
| ISSN | 2511-2104 2511-2112 |
| IngestDate | Thu Aug 21 13:48:47 EDT 2025 Thu Oct 02 11:11:59 EDT 2025 Thu Sep 18 00:00:15 EDT 2025 Sat Nov 29 03:11:45 EST 2025 Tue Nov 18 21:08:42 EST 2025 Fri Feb 21 02:32:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Keywords | COVID-19 Artificial intelligence Machine learning Ensemble Imperative |
| Language | English |
| License | This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4329-8b276aa9af31987e15a4582d66d36a4290f05d9b614b00cdd058ef0031f01b863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6804-4905 |
| OpenAccessLink | http://dx.doi.org/10.1007/s41870-020-00495-9 |
| PMID | 32838125 |
| PQID | 2437883909 |
| PQPubID | 2034493 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7325639 proquest_miscellaneous_2437119029 proquest_journals_2437883909 crossref_citationtrail_10_1007_s41870_020_00495_9 crossref_primary_10_1007_s41870_020_00495_9 springer_journals_10_1007_s41870_020_00495_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20200900 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 9 year: 2020 text: 20200900 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Heidelberg |
| PublicationSubtitle | An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management |
| PublicationTitle | International journal of information technology (Singapore. Online) |
| PublicationTitleAbbrev | Int. j. inf. tecnol |
| PublicationYear | 2020 |
| Publisher | Springer Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
| References | Wu, Zhao, Yu, Chen, Wang, Song, Hu, Tao, Tian, Pei, Yuan, Zhang, Dai, Liu, Wang, Zheng, Xu, Holmes, Zhang (CR1) 2020; 44 Kumar, Dabas, Hooda (CR7) 2018 CR2 CR4 CR6 CR5 CR19 CR18 Verma, Khanday, Rabani, Mir, Jamwal (CR8) 2019 CR17 Chen, Zhou, Dong, Qu, Gong, Han, Qiu, Wang, Liu, Wei, Xia, Yu, Zhang, Zhang (CR3) 2020; 395 CR16 Friedman (CR22) 2002; 38 CR15 CR12 Sarwar, Ali, Manhas (CR10) 2018 CR11 Jiang, Coffee, Bari, Wang, Jiang, Huang, Shi, Dai, Cai, Zhang, Wu, He, Huang (CR14) 2020; 63 CR21 CR20 Yan, Zhang, Xiao, Wang, Sun, Liang, Li, Zhang, Guo, Xiao, Tang, Cao, Tan, Huang, Amd, Luo, Cao, Xu, Yuan (CR13) 2020 Chakraborti, Choudhary, Singh (CR9) 2018; 10 F Wu (495_CR1) 2020; 44 495_CR6 495_CR5 P Verma (495_CR8) 2019 495_CR16 495_CR4 495_CR15 495_CR2 X Jiang (495_CR14) 2020; 63 A Kumar (495_CR7) 2018 495_CR19 495_CR18 495_CR17 S Chakraborti (495_CR9) 2018; 10 A Sarwar (495_CR10) 2018 495_CR12 JH Friedman (495_CR22) 2002; 38 495_CR11 495_CR21 495_CR20 L Yan (495_CR13) 2020 N Chen (495_CR3) 2020; 395 |
| References_xml | – ident: CR21 – ident: CR19 – ident: CR18 – ident: CR4 – ident: CR15 – ident: CR2 – ident: CR16 – volume: 395 start-page: 507 issue: 10223 year: 2020 end-page: 513 ident: CR3 article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study publication-title: Lancet doi: 10.1016/S0140-6736(20)30211-7 – year: 2018 ident: CR10 article-title: Diagnosis of diabetes type-II using hybrid machine learning based ensemble model publication-title: Int J Inf Technol doi: 10.1007/s41870-018-0270-5 – ident: CR12 – ident: CR17 – ident: CR11 – ident: CR6 – year: 2019 ident: CR8 article-title: Twitter Sentiment Analysis on Indian Government Project using R publication-title: Int J Recent Tech Eng doi: 10.35940/ijrte.C6612.098319 – year: 2020 ident: CR13 article-title: Prediction of criticality in patients with severe covid-19 Infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan publication-title: medRxiv doi: 10.1101/2020.02.27.20028027 – volume: 44 start-page: 265 issue: 59 year: 2020 end-page: 269 ident: CR1 article-title: A new coronavirus associated with human respiratory disease in china publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 38 start-page: 367 issue: 4 year: 2002 end-page: 378 ident: CR22 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – ident: CR5 – volume: 10 start-page: 257 year: 2018 end-page: 263 ident: CR9 article-title: A machine learning based method to detect epilepsy publication-title: Int J Inf Technol doi: 10.1007/s41870-018-0088-1 – volume: 63 start-page: 537 issue: 1 year: 2020 end-page: 551 ident: CR14 article-title: Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity publication-title: Compu Mater Contin doi: 10.32604/cmc.2020.010691 – year: 2018 ident: CR7 article-title: Text classification algorithms for mining unstructured data: a SWOT analysis publication-title: Int J Inf Technol doi: 10.1007/s41870-017-0072-1 – ident: CR20 – ident: 495_CR16 – ident: 495_CR15 – ident: 495_CR18 – ident: 495_CR17 – ident: 495_CR19 – ident: 495_CR20 – ident: 495_CR21 doi: 10.1109/IJCNN.2018.8489738 – ident: 495_CR2 – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 495_CR22 publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – ident: 495_CR12 doi: 10.1038/s41598-020-76550-z – ident: 495_CR6 – ident: 495_CR5 – volume: 395 start-page: 507 issue: 10223 year: 2020 ident: 495_CR3 publication-title: Lancet doi: 10.1016/S0140-6736(20)30211-7 – volume: 44 start-page: 265 issue: 59 year: 2020 ident: 495_CR1 publication-title: Nature doi: 10.1038/s41586-020-2008-3 – ident: 495_CR4 – volume: 10 start-page: 257 year: 2018 ident: 495_CR9 publication-title: Int J Inf Technol doi: 10.1007/s41870-018-0088-1 – volume: 63 start-page: 537 issue: 1 year: 2020 ident: 495_CR14 publication-title: Compu Mater Contin doi: 10.32604/cmc.2020.010691 – year: 2019 ident: 495_CR8 publication-title: Int J Recent Tech Eng doi: 10.35940/ijrte.C6612.098319 – ident: 495_CR11 doi: 10.1613/jair.1.12162 – year: 2018 ident: 495_CR7 publication-title: Int J Inf Technol doi: 10.1007/s41870-017-0072-1 – year: 2020 ident: 495_CR13 publication-title: medRxiv doi: 10.1101/2020.02.27.20028027 – year: 2018 ident: 495_CR10 publication-title: Int J Inf Technol doi: 10.1007/s41870-018-0270-5 |
| SSID | ssib031263571 ssj0002710285 |
| Score | 2.593566 |
| Snippet | Technology advancements have a rapid effect on every field of life, be it medical field or any other field. Artificial intelligence has shown the promising... |
| SourceID | pubmedcentral proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 731 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Imaging Computer Science Coronaviruses COVID-19 Decision analysis Decision making Engineering education Image Processing and Computer Vision Machine Learning Original Research Pattern Recognition and Graphics Recurrent neural networks Regression analysis Software Engineering Viral diseases Vision |
| Title | Machine learning based approaches for detecting COVID-19 using clinical text data |
| URI | https://link.springer.com/article/10.1007/s41870-020-00495-9 https://www.proquest.com/docview/2437883909 https://www.proquest.com/docview/2437119029 https://pubmed.ncbi.nlm.nih.gov/PMC7325639 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2511-2112 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710285 issn: 2511-2104 databaseCode: RSV dateStart: 20170301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbY4AAHHgPEcwoSN6jUNH0eETCBxFPAtFuVNckAoYI2xu8nzpKOTYAE5yRNm9jxl9r-DLBfhCrUODnEMqkC3YzMS7OAeoqGUiYx0sWYnb5Irq7STie7sUlhAxft7lyS5qSukt1CmmKRlAAzoUOsMFiD2QjZZvCOftd2UsQo8qtYkPNsXGtoRDGWEeG0p-84oc2e-f6xkxZqDDungyanPKfGILWW_vcpy7BoASg5GknMCszIsgFLrrgDsbregIUvTIWrcHtpgi4lsVUmegTNnyCOklwOiEa_REj0SWDz8XX7_MSjGcHA-h5xCZgEA00IhqWuwUPr9P74zLPVGLwiZEHmpd0giTnPuGL4o0LSiKPPTcSxYDHXZs1XfiSyrrb3WpULIfwolQoPDeXTbhqzdaiXr6XcAKLP10REijJMyy2o4rKrKC-4PiCo8GOxCdTtQF5YqnKsmPGSVyTLZgVzvYK5WcE824SDaszbiKjj1947bmNzq7SDHLkZUw0Yfd28VzVrdUMfCi_l63DUh2oQFeg-yYRAVLMiYfdkS_n0aIi7E6YBJtMjD51YjCf_-V23_tZ9G-YDI1kYB7cD9ff-UO7CXPHx_jToN6GWdNKmUZhP4ekKKg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4ScCBN-JNkLhBpabJ-jgiYAIxBoiBuFVZk4wh1CEG_H7iLCkMARKckzRtYsdfavszwG7BNTc4mWOZVIluRhakWUQDTblSSYx0MXanG0mzmd7dZZcuKazvo929S9Ke1FWyG6cpFkmJMBOaY4XBURjnWGYH7-jXt16KGEV-FQdyHqxrDY0oxjIinA7MHYe77JnvHztsoT5g59egyS-eU2uQ6rP_-5Q5mHEAlBwMJGYeRlS5ALO-uANxur4A05-YChfh6twGXSriqkx0CJo_STwlueoTg36JVOiTwObDi9vTo4BmBAPrO8QnYBIMNCEYlroEN_Xj1uFJ4KoxBAVnURak7SiJhciEZvijQtGaQJ-bjGPJYmHMWqjDmszaxt4bVS6kDGup0nho6JC205gtw1jZK9UKEHO-JrKmKcO03IJqodqaikKYA4LKMJarQP0O5IWjKseKGY95RbJsVzA3K5jbFcyzVdirxjwNiDp-7b3hNzZ3StvPkZsxNYAxNM07VbNRN_ShiFL1Xgd9qAFRkemTDAlENSsSdg-3lN17S9ydMAMwmRm578XiY_Kf33Xtb923YfKkdd7IG6fNs3WYiqyUYUzcBoy9PL-qTZgo3l66_ectqzbvHToMJg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCcGBHVFWI3GDiDh2sxwRUIGAsiNukRvbLEIBtYXvZ8ZNAkWAhDjbiRN77HnJvHkDsJFJKxEnSyqTqinMKLw4CbhnuTQmCkkuxq30cdRsxre3ydmnLH7Hdi9Dkr2cBlJpyrvbL9puV4lvksdUMCWgrGhJ1QYHYVjilwyRui4ub0qLEpy0VgrA8-jCbORQiddI0NrD7x1ZZNJ8f9t-b_UBQb8SKL9EUZ1zakz-_7WmYKIApmynZ0nTMGDyGZgsiz6w4gyYgfFPCoazcH7iyJiGFdUn7hi5Rc1KqXLTYYiKmTYUq6Dm3dObwz2PJ4wI93esTMxkREBhRFedg-vG_tXugVdUafAyKYLEi1tBFCqVKCvoB4bhdUWxOB2GWoQK3Z1v_bpOWogDcItnWvv12Fg6TKzPW3Eo5mEof87NAjA8dyNdt1xQum7GrTIty1Wm8ODg2g91DXi5GmlWSJhTJY2ntBJfdjOY4gymbgbTpAab1TUvPQGPX3svl4ucFpu5k5JmY4xA0sfm9aoZtyHFVlRunl97fTiCqwD7RH3GUY1KQt79LfnDvRP0jgQCT4FXbpUm8jH4z8-6-LfuazB6ttdIjw-bR0swFjgjI6rcMgx1269mBUayt-5Dp73qdtA7SG4VCg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+approaches+for+detecting+COVID-19+using+clinical+text+data&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Khanday+Akib+Mohi+Ud+Din&rft.au=Rabani%2C+Syed+Tanzeel&rft.au=Khan%2C+Qamar+Rayees&rft.au=Rouf+Nusrat&rft.date=2020-09-01&rft.pub=Springer+Nature+B.V&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=12&rft.issue=3&rft.spage=731&rft.epage=739&rft_id=info:doi/10.1007%2Fs41870-020-00495-9&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon |