A regularized nonnegative canonical polyadic decomposition algorithm with preprocessing for 3D fluorescence spectroscopy

We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation‐Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of chemometrics Ročník 29; číslo 4; s. 253 - 265
Hlavní autori: Royer, Jean-Philip, Thirion-Moreau, Nadège, Comon, Pierre, Redon, Roland, Mounier, Stéphane
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester Blackwell Publishing Ltd 01.04.2015
Wiley Subscription Services, Inc
Wiley
Predmet:
ISSN:0886-9383, 1099-128X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation‐Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks that clutter the FEEM. To improve its robustness versus possible improper settings, we suggest to associate the classical Zepp's method with a morphological image filtering technique. Then, in the second stage, the Canonical Polyadic (CP or Candecomp/Parafac) decomposition of a nonnegative three‐way array has to be computed. In the fluorescence spectroscopy context, the constituent vectors of the loading matrices should be nonnegative (since standing for spectra and concentrations). Thus, we suggest a new nonnegative third order CP decomposition algorithm (NNCP) based on a nonlinear conjugate gradient optimization algorithm with regularization terms and periodic restarts. Computer simulations performed on real experimental data are provided to enlighten the effectiveness and robustness of the whole processing chain and to validate the approach. Copyright © 2015 John Wiley & Sons, Ltd. Focusing on the fluorescence spectroscopy framework, we suggest a novel approach to handle the preprocessing of Fluorescence ExcitationŰEmission Matrices (FEEM) and the nonnegative Canonical Polyadic decomposition of the resulting three‐way tensor of FEEM. We also illustrate the importance of additional regularization terms in the case of overfactoring and show that the calibration of the whole processing chain on known but experimental mixtures remains an important stage to adjust the different parameters. The influence of the preprocessing on the obtained results should not be underestimated.
AbstractList We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation-Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks that clutter the FEEM. To improve its robustness versus possible improper settings, we suggest to associate the classical Zepp's method with a morphological image filtering technique. Then, in a second stage, the Canonical Polyadic (CP or Cande-comp/Parafac) decomposition of a nonnegative 3-way array has to be computed. In the fluorescence spectroscopy context, the constituent vectors of the loading matrices should be nonnegative (since standing for spectra and concentrations). Thus, we suggest a new NonNegative third order CP decomposition algorithm (NNCP) based on a non linear conjugate gradient optimisation algorithm with regularization terms and periodic restarts. Computer simulations performed on real experimental data are provided to enlighten the effectiveness and robustness of the whole processing chain and to validate the approach.
We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation-Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks that clutter the FEEM. To improve its robustness versus possible improper settings, we suggest to associate the classical Zepp's method with a morphological image filtering technique. Then, in the second stage, the Canonical Polyadic (CP or Candecomp/Parafac) decomposition of a nonnegative three-way array has to be computed. In the fluorescence spectroscopy context, the constituent vectors of the loading matrices should be nonnegative (since standing for spectra and concentrations). Thus, we suggest a new nonnegative third order CP decomposition algorithm (NNCP) based on a nonlinear conjugate gradient optimization algorithm with regularization terms and periodic restarts. Computer simulations performed on real experimental data are provided to enlighten the effectiveness and robustness of the whole processing chain and to validate the approach. Copyright copyright 2015John Wiley & Sons, Ltd. Focusing on the fluorescence spectroscopy framework, we suggest a novel approach to handle the preprocessing of Fluorescence ExcitationEmission Matrices (FEEM) and the nonnegative Canonical Polyadic decomposition of the resulting three-way tensor of FEEM. We also illustrate the importance of additional regularization terms in the case of overfactoring and show that the calibration of the whole processing chain on known but experimental mixtures remains an important stage to adjust the different parameters. The influence of the preprocessing on the obtained results should not be underestimated.
We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation‐Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks that clutter the FEEM. To improve its robustness versus possible improper settings, we suggest to associate the classical Zepp's method with a morphological image filtering technique. Then, in the second stage, the Canonical Polyadic (CP or Candecomp/Parafac) decomposition of a nonnegative three‐way array has to be computed. In the fluorescence spectroscopy context, the constituent vectors of the loading matrices should be nonnegative (since standing for spectra and concentrations). Thus, we suggest a new nonnegative third order CP decomposition algorithm (NNCP) based on a nonlinear conjugate gradient optimization algorithm with regularization terms and periodic restarts. Computer simulations performed on real experimental data are provided to enlighten the effectiveness and robustness of the whole processing chain and to validate the approach. Copyright © 2015 John Wiley & Sons, Ltd. Focusing on the fluorescence spectroscopy framework, we suggest a novel approach to handle the preprocessing of Fluorescence ExcitationŰEmission Matrices (FEEM) and the nonnegative Canonical Polyadic decomposition of the resulting three‐way tensor of FEEM. We also illustrate the importance of additional regularization terms in the case of overfactoring and show that the calibration of the whole processing chain on known but experimental mixtures remains an important stage to adjust the different parameters. The influence of the preprocessing on the obtained results should not be underestimated.
We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation-Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks that clutter the FEEM. To improve its robustness versus possible improper settings, we suggest to associate the classical Zepp's method with a morphological image filtering technique. Then, in the second stage, the Canonical Polyadic (CP or Candecomp/Parafac) decomposition of a nonnegative three-way array has to be computed. In the fluorescence spectroscopy context, the constituent vectors of the loading matrices should be nonnegative (since standing for spectra and concentrations). Thus, we suggest a new nonnegative third order CP decomposition algorithm (NNCP) based on a nonlinear conjugate gradient optimization algorithm with regularization terms and periodic restarts. Computer simulations performed on real experimental data are provided to enlighten the effectiveness and robustness of the whole processing chain and to validate the approach.
Author Thirion-Moreau, Nadège
Comon, Pierre
Mounier, Stéphane
Royer, Jean-Philip
Redon, Roland
Author_xml – sequence: 1
  givenname: Jean-Philip
  surname: Royer
  fullname: Royer, Jean-Philip
  organization: Aix-Marseille Université CNRS, ENSAM, LSIS, UMR 7296, F-13397 Marseille, France
– sequence: 2
  givenname: Nadège
  surname: Thirion-Moreau
  fullname: Thirion-Moreau, Nadège
  email: Correspondence to: Nadège Thirion-Moreau, Aix-Marseille Université, CNRS, ENSAM, LSIS, UMR 7296, F-13397 Marseille., thirion@univ-tln.fr
  organization: Aix-Marseille Université CNRS, ENSAM, LSIS, UMR 7296, F-13397 Marseille, France
– sequence: 3
  givenname: Pierre
  surname: Comon
  fullname: Comon, Pierre
  organization: GIPSA-Lab, CNRS UMR 5216, Grenoble Campus, BP 46, F-38402 St Martin d'Hères Cédex, France
– sequence: 4
  givenname: Roland
  surname: Redon
  fullname: Redon, Roland
  organization: PROTEE, Université de Toulon, F-83957, La Garde, France
– sequence: 5
  givenname: Stéphane
  surname: Mounier
  fullname: Mounier, Stéphane
  organization: PROTEE, Université de Toulon, F-83957, La Garde, France
BackLink https://hal.science/hal-01126693$$DView record in HAL
BookMark eNp1kU9v1DAQxS1UJLYFiY9giQscsthxNrGPq6V0gaVIiH83y4wnWxcnTu2k7fLp8WpRERVcPPL4N0_z_I7JUR96JOQpZ3POWPkSsJuXDVMPyIwzpQpeym9HZMakrAslpHhEjlO6ZCy_iWpGbpc04nbyJrqfaGkW63FrRneNFEy-OTCeDsHvjHVALULohpDc6EJPjd-G6MaLjt7kkw4RhxgAU3L9lrYhUvGKtn4KERNgD0jTgDDGkCAMu8fkYWt8wie_6wn5_Pr002pdbD6cvVktNwVUolTFArhUXNlcsMXSYMkF2IpB2cgSlGq4agUTxta1QGaZhbYyIJkR9rusrBIn5MVB98J4PUTXmbjTwTi9Xm70vsc4L-taiWue2ecHNvu4mjCNunN5de9Nj2FKmtdy0TRScJbRZ_fQyzDFPjvJVFNVjagF-yMI2XWK2N5twJnex6VzXHofV0bn91Bwo9n_8xiN8_8aKA4DN87j7r_CenX6_m_epRFv73gTf-i6Ec1Cfz0_01J8fHf-pX6r1-IXeoC4nQ
CitedBy_id crossref_primary_10_1016_j_chemolab_2022_104550
crossref_primary_10_1007_s11045_021_00818_4
crossref_primary_10_1109_LSP_2017_2751038
crossref_primary_10_1109_LSP_2015_2427456
crossref_primary_10_1080_09720529_2018_1445813
crossref_primary_10_1002_cem_2859
Cites_doi 10.1137/0802028
10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1
10.1016/j.chemolab.2004.07.003
10.1007/s10492-013-0026-2
10.1016/j.microc.2014.02.004
10.1016/j.marchem.2005.08.009
10.1002/cem.801
10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
10.1002/1099-128X(200005/06)14:3<171::AID-CEM591>3.0.CO;2-P
10.1007/978-1-4757-3061-6
10.1007/978-0-387-74503-9
10.1016/j.marchem.2004.02.006
10.1109/ICASSP.2013.6638397
10.1016/j.watres.2010.06.036
10.1109/TPAMI.2010.15
10.1016/S0304-4203(03)00072-0
10.1016/S0169-7439(00)00081-2
10.1109/MLSP.2014.6958896
10.1002/cem.1180060104
10.1002/cem.1236
10.1002/(SICI)1099-128X(199911/12)13:6<557::AID-CEM563>3.0.CO;2-C
10.1016/0895-7177(93)90204-C
10.1016/j.talanta.2006.04.014
10.1016/j.marpolbul.2007.12.022
10.1007/BF02310791
10.1002/9780470747278
10.1109/SAM.2008.4606923
10.1016/j.chemolab.2010.03.006
10.1016/j.chemolab.2009.02.008
10.1002/cem.1244
10.1016/j.sigpro.2011.03.006
10.1016/j.chemosphere.2013.12.087
10.1002/0470012110
10.1109/ICASSP.2011.5947050
10.1117/12.203507
10.1016/S0003-2670(01)00812-1
10.1016/S0003-2670(01)01354-X
10.1093/comjnl/7.4.308
10.1016/S0165-9936(02)01201-3
10.1348/000711005X64817
10.1016/S0169-7439(97)00032-4
10.1017/CBO9780511804441
10.1002/sapm192761164
10.1016/j.laa.2014.02.001
10.1016/0304-4203(95)00062-3
10.1109/ICASSP.2008.4518122
10.1002/jctb.664
10.1016/S0169-7439(97)00031-2
10.1016/j.chemolab.2013.12.009
10.1348/000711000159132
10.1137/07070111X
10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
10.1016/0734-189X(86)90004-6
10.1109/ICASSP.2010.5495727
10.1007/b98874
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright Wiley Subscription Services, Inc. Apr 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Subscription Services, Inc. Apr 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1002/cem.2709
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Computer Science
EISSN 1099-128X
EndPage 265
ExternalDocumentID oai:HAL:hal-01126693v1
3660509711
10_1002_cem_2709
CEM2709
ark_67375_WNG_83RKNV6J_H
Genre article
Feature
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
AAYXX
CITATION
O8X
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c4329-5c18919dc18efe2ae213cd40c2782c99719f303ad663e0d0dcf4ac80a3db84d93
IEDL.DBID DRFUL
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352582800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0886-9383
IngestDate Tue Oct 14 20:49:52 EDT 2025
Thu Oct 02 05:17:19 EDT 2025
Fri Jul 25 10:45:21 EDT 2025
Sat Nov 29 07:12:19 EST 2025
Tue Nov 18 22:14:37 EST 2025
Wed Jan 22 16:33:45 EST 2025
Sun Sep 21 06:18:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Nway
fluorescence
FEEM
canonical polyadic decomposition
Raman
tensor
Rayleigh
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4329-5c18919dc18efe2ae213cd40c2782c99719f303ad663e0d0dcf4ac80a3db84d93
Notes ArticleID:CEM2709
istex:EE131ADAB6C4B75C7E52A4E6C172273DA66ADD5F
ark:/67375/WNG-83RKNV6J-H
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9245-3407
0000-0002-9624-0230
0000-0001-9436-9228
0000-0002-9344-4844
OpenAccessLink https://hal.science/hal-01126693
PQID 1674473630
PQPubID 37374
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_01126693v1
proquest_miscellaneous_1685778310
proquest_journals_1674473630
crossref_primary_10_1002_cem_2709
crossref_citationtrail_10_1002_cem_2709
wiley_primary_10_1002_cem_2709_CEM2709
istex_primary_ark_67375_WNG_83RKNV6J_H
PublicationCentury 2000
PublicationDate April 2015
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: April 2015
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Journal of chemometrics
PublicationTitleAlternate J. Chemometrics
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References Serra J. Image Analysis and Mathematical Morphology. Academic Press: New York, USA, 1982.
Comon P, Luciani X, De Almeida ALF. Tensor decompositions, alternating least squares and other tales. J. Chemom. 2009; 23: 393-405.
Coloigner J, Karfoul A, Alberra L, Comon P. Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors. Linear Algebra Appl. 2014; 450: 334-374.
Bro R, Kiers HA. A new efficient method for determining the number of components in Parafac models. J. Chemom. 2003; 17: 274-286.
Luciani X, Albera L. Canonical polyadic decomposition based on joint eigenvalue decomposition. Chemom.Intell. Lab. Syst. 2014; 132: 152-167.
Nelder J, Mead R. A simplex method for function minimization. Comput. J. 1965; 7: 308-313.
Patra D, Mishra A. Recent developments in multi-component synchronous fluorescence scan analysis. TrAC Trends Anal. Chem. 2002; 21(12): 787-798.
Luciani X, Mounier S, Redon R, Bois A. A simple correction method of inner filter effects affecting FEEM and its application to the Parafac decomposition. Chemom. Intel. Lab. Syst. 2009; 96(2): 227-238.
Paatero P. Construction and analysis of degenerate Parafac models. J.Chemom. 2000; 14(3): 285-299.
Lim LH, Comon P. Nonnegative approximations of nonnegative tensors. J. Chemom. 2009; 23: 432-441.
Reynolds DM. The differentiation of biodegradable and non-biodegradable dissolved organic matter in wastewaters using fluorescence spectroscopy. J. Chem. Technol. Biotechnol. 2002; 8(77): 965-972.
Hitchcock FL. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 1927; 6: 165-189.
Belzile C, Guo L. Optical properties of low molecular weight and colloidal organic matter: application of the ultrafiltration permeation model to DOM absorption and fluorescence. Mar. Chem. 2006; 98(2-4): 183-196.
Mehrotra S. On the implementation of a primal-dual interior point method. SIAM J. Optim. 1992; 2:575-601.
Nocedal J, Wright S. Numerical Optimization. Springer, Ed.: New York, NY, 1999.
Royer JP, Thirion-Moreau N, Comon P. Computing the polyadic decomposition of nonnegative third-order tensors. EURASIP Signal Process. 2011; 91(9): 2159-2171.
Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev. 2009; 51(3): 455-500.
Ingber L. Simulated annealing: practice versus theory. Math. Comput. Model. 1993; 18(11): 29-57.
Frenich AG, Zamora DP, Vidal JM, Galera MM. Resolution and quantitation of mixtures with overlapped spectra by orthogonal projection approach and alternating least squares. Anal. Chim. Acta 2001; 449: 143-155.
Bunker D, Han L, Zhang S. A proximal ANLS algorithm for nonnegative tensor factorization with a periodic enhanced line search. Appl. Math. 2013; 58(5): 493-509.
Ferretto N, Tedetti M, Guigue C, Mounier S, Redon R, Goutx M. Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation?emission matrices and parallel factor analysis. Source Chemosphere 2014; 107: 344-353.
Zhu B, Pennell SA, Ryan DK. Characterizing the interaction between uranyl ion and soil fulvic acid using parallel factor analysis and a two-site fluorescence quenching model. Microchem. J. 2014; 115: 51-57.
Persson T, Wedborg M. Multivariate evaluation of the fluorescence of aquatic organic matter. Anal. Chim. Acta 2001; 434: 179-192.
Kim J, Park H. Fast Nonnegative Tensor Factorization with an Active-Set-Like Method, High-Performance Scientific Computing: Algorithms and Applications. Springer: Springer London, pp. 311-326, 2012.
Carstea EM, Baker A, Bieroza M, Reynolds D. Continuous fluorescence excitation-emission matrix monitoring of river organic matter. Water Res. 2010; 44(18): 5356-5366.
Jiang JH, Wu HL, Li Y, Yu RQ. Alternating coupled vectors resolution (acover) method for trilinear analysis of three-way data. J. Chemom. 1999; 13(6): 557-578.
Kiers HAL. Towards a standardized notation and terminology in multiway analysis. J. Chemom. 2000; 14(3): 105-122.
Stedmon CA, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003; 82: 239-254.
He Z, Cichocki A, Xie S, Choi K. Detecting the number of clusters in n-way probabilistic clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2010; 32(11): 2006-2021.
Vandenhove H, Hurtgen C, Payne T. Radionuclides in the Environment: Uranium, Radionuclides in the environment. John Wiley and Sons: West Sussex, United Kingdom, pp. 261-272, May 2010.
Malinowski E. Window factor analysis: theoretical derivation and applicationto flow injection analysis data. J. Chemom. 1992; 6: 29-40.
Hu LQ, Wu HL, Jiang JH, Han QJ, Xia AL, Yu RQ. Estimating the chemical rank of three-way data arrays by a simple linear transform incorporating Monte Carlo simulation. Talanta 2007; 71: 373-380.
Coble PG. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996; 52: 325-346.
Yu YJ, Wu HL, Nie JF, Zhang SR, Li SF, Li YN, Zhhou SH, Yu RQ. A comparison of several trilinear second-order calibration algorithms. Chemom. Intell. Lab. Syst. 2011; 106(1): 93-107.
Ceulemans E, Kiers HA. Selecting among three-mode principal component models of different types and complexity: a numerical convex hull based method. Br. J. Math. Stat. Psych. 2006; 59(1): 133-150.
Jiji RD, Andersson GG, Booksh KS. Applicaton of Parafac for calibration with excitation-emission matrix fluorescence spectra of three classes of environmental pollutants. J. Chemom. 2000; 14(3): 171-185.
Bugden JBC, Yeung CW, Kepkay PE, Lee K. Application of ultraviolet fluorometry and excitation-emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oil in seawater. Mar. Pollut. Bull. 2008; 56(4): 677-685.
Smilde A, Bro R, Geladi P. Multi-Way Analysis with Applications in the Chemical Sciences. Wiley, 2004.
Bro R. Parafac: tutorial and applications. Chemometr. Intell. Lab. 1997; 38: 149-171.
Cichocki A, Zdunek R, Phan AH, Amari SI. Non Negative Matrix and Tensor Factorizations: Application to Exploratory Multi-Way Data Analysis and Blind Separation. Wiley: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom, 2009.
Timmerman ME, Kiers HA. Three-mode principal components analysis: choosing the number of components and sensitivity to local optima. Br. J. Math. Stat. Psych. 2000; 53(1): 1-16.
Polak E. Optimization Algorithms and Consistent Approximations. Springer-Verlag: New York, 1997.
Zepp RG, Sheldon WM, Moran MA. Dissolved organic fluorophores in southeastern us coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. Mar. Chem. 2004; 89(1-4): 15-36.
Price K, Storn R. Differential evolution. Dr. Dobb's J. 1997; 264: 18-24.
Khatri CG, Rao CR. Solutions to some functional equations and their applications to characterization of probability distributions. Sankhya: Indian J. Stat. 1968; Series A(30): 167-180.
Carroll P, Chang JJ. Analysis of individual differences in multi-dimensional scaling via n-way generalization of Eckart-Young decomposition. Psychometrika 1970; 35: 283-319.
Harshman RA, Sarbo WSD. An application of Parafac to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques. Stat. Anal. Données 1984; 13: 14-32.
Luenberger DG, Ye Y. Linear and Non Linear Programming (3rd edn.) Wiley: Springer, Springer Science + Business Media, LLC, 233 Spring Street, New York, NY 10013, USA, 2008.
Lacowicz JR. Principle of Fluorescence Spectroscopy. K. Academic Ed. Plenum Publishers: Springer Science + Business Media, LLC, 233 Spring Street, New York NY10013, USA, 1999.
Sternberg SR. Grayscale morphology. Comput. Vision, Graphics, Image Process. 1986; 35: 333-355.
Gonzalez R, Woods R. Digital Image Processing (2nd edn.) P. E. International, Ed. Prentice Hall: Upper Saddle River, New Jersey, USA, 2001.
Bro R, Jong SD. A fast non-negativity-constrained least squares algorithm. J. Chemom. 1997; 11(5): 393-401.
Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press: The Edinburgh Building, Cambridge, CB2 8RU, UK, 2004.
Chen ZP, Wu HL, Jiang JH, Li Y, Yu RQ. A novel trilinear decomposition algorithm for second-order linear calibration. Chemom. Intell. Lab. Syst. 2000; 1(52): 75-86.
Paatero P. A weighted non-negative least squares algorithm for three-way Parafac factor analysis. Chemom. Intell. Lab. Syst. 1997; 38(2): 223-242.
Tomasi G, Bro R. Parafac and missing values. Chemom. Intell. Lab. Syst. 2005; 75(2): 163-180.
Serra J. Image Analysis and Mathematical Morphology, vol. 2. Academic Press: New York, USA, 1988.
1986; 35
2003; 17
2007; 71
2000; 1
1970
2014; 132
2014; 450
1970; 35
1992; 6
2009; 96
2009; 51
2013; 58
2000; 14
1997; 11
2001
2000
1965; 7
1997; 264
1984; 13
2000; 53
1999; 13
2005; 75
1927; 6
1982
2003; 82
1992; 2
1988
2009; 23
2010; 32
2012
2011
2010
2006; 98
2004; 89
2006; 59
2002; 8
1998
2009
2008
1997
1996; 52
2008; 56
1995
2004
1992
1968; Series A
2001; 449
2014; 115
1999
2014; 107
2010; 44
1993; 18
2011; 106
2011; 91
2002; 21
1997; 38
2014
2013
2001; 434
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
Gonzalez R (e_1_2_8_33_1) 2001
e_1_2_8_68_1
Serra J (e_1_2_8_34_1) 1982
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
Lacowicz JR (e_1_2_8_31_1) 1999
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
Vandenhove H (e_1_2_8_58_1) 2010
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
Price K (e_1_2_8_39_1) 1997; 264
Harshman RA (e_1_2_8_49_1) 1984; 13
e_1_2_8_32_1
e_1_2_8_55_1
Khatri CG (e_1_2_8_47_1) 1968
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
Serra J (e_1_2_8_67_1) 1988
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Polak E (e_1_2_8_69_1) 1997
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Kim J (e_1_2_8_21_1) 2012
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – reference: Luciani X, Albera L. Canonical polyadic decomposition based on joint eigenvalue decomposition. Chemom.Intell. Lab. Syst. 2014; 132: 152-167.
– reference: Paatero P. Construction and analysis of degenerate Parafac models. J.Chemom. 2000; 14(3): 285-299.
– reference: Hitchcock FL. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 1927; 6: 165-189.
– reference: Bugden JBC, Yeung CW, Kepkay PE, Lee K. Application of ultraviolet fluorometry and excitation-emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oil in seawater. Mar. Pollut. Bull. 2008; 56(4): 677-685.
– reference: Smilde A, Bro R, Geladi P. Multi-Way Analysis with Applications in the Chemical Sciences. Wiley, 2004.
– reference: Harshman RA, Sarbo WSD. An application of Parafac to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques. Stat. Anal. Données 1984; 13: 14-32.
– reference: Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press: The Edinburgh Building, Cambridge, CB2 8RU, UK, 2004.
– reference: Lacowicz JR. Principle of Fluorescence Spectroscopy. K. Academic Ed. Plenum Publishers: Springer Science + Business Media, LLC, 233 Spring Street, New York NY10013, USA, 1999.
– reference: Persson T, Wedborg M. Multivariate evaluation of the fluorescence of aquatic organic matter. Anal. Chim. Acta 2001; 434: 179-192.
– reference: Gonzalez R, Woods R. Digital Image Processing (2nd edn.) P. E. International, Ed. Prentice Hall: Upper Saddle River, New Jersey, USA, 2001.
– reference: Bunker D, Han L, Zhang S. A proximal ANLS algorithm for nonnegative tensor factorization with a periodic enhanced line search. Appl. Math. 2013; 58(5): 493-509.
– reference: Timmerman ME, Kiers HA. Three-mode principal components analysis: choosing the number of components and sensitivity to local optima. Br. J. Math. Stat. Psych. 2000; 53(1): 1-16.
– reference: Coble PG. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996; 52: 325-346.
– reference: Zhu B, Pennell SA, Ryan DK. Characterizing the interaction between uranyl ion and soil fulvic acid using parallel factor analysis and a two-site fluorescence quenching model. Microchem. J. 2014; 115: 51-57.
– reference: Lim LH, Comon P. Nonnegative approximations of nonnegative tensors. J. Chemom. 2009; 23: 432-441.
– reference: Carroll P, Chang JJ. Analysis of individual differences in multi-dimensional scaling via n-way generalization of Eckart-Young decomposition. Psychometrika 1970; 35: 283-319.
– reference: Paatero P. A weighted non-negative least squares algorithm for three-way Parafac factor analysis. Chemom. Intell. Lab. Syst. 1997; 38(2): 223-242.
– reference: Bro R. Parafac: tutorial and applications. Chemometr. Intell. Lab. 1997; 38: 149-171.
– reference: Malinowski E. Window factor analysis: theoretical derivation and applicationto flow injection analysis data. J. Chemom. 1992; 6: 29-40.
– reference: Yu YJ, Wu HL, Nie JF, Zhang SR, Li SF, Li YN, Zhhou SH, Yu RQ. A comparison of several trilinear second-order calibration algorithms. Chemom. Intell. Lab. Syst. 2011; 106(1): 93-107.
– reference: Polak E. Optimization Algorithms and Consistent Approximations. Springer-Verlag: New York, 1997.
– reference: Carstea EM, Baker A, Bieroza M, Reynolds D. Continuous fluorescence excitation-emission matrix monitoring of river organic matter. Water Res. 2010; 44(18): 5356-5366.
– reference: Comon P, Luciani X, De Almeida ALF. Tensor decompositions, alternating least squares and other tales. J. Chemom. 2009; 23: 393-405.
– reference: Zepp RG, Sheldon WM, Moran MA. Dissolved organic fluorophores in southeastern us coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. Mar. Chem. 2004; 89(1-4): 15-36.
– reference: Khatri CG, Rao CR. Solutions to some functional equations and their applications to characterization of probability distributions. Sankhya: Indian J. Stat. 1968; Series A(30): 167-180.
– reference: Vandenhove H, Hurtgen C, Payne T. Radionuclides in the Environment: Uranium, Radionuclides in the environment. John Wiley and Sons: West Sussex, United Kingdom, pp. 261-272, May 2010.
– reference: Patra D, Mishra A. Recent developments in multi-component synchronous fluorescence scan analysis. TrAC Trends Anal. Chem. 2002; 21(12): 787-798.
– reference: Belzile C, Guo L. Optical properties of low molecular weight and colloidal organic matter: application of the ultrafiltration permeation model to DOM absorption and fluorescence. Mar. Chem. 2006; 98(2-4): 183-196.
– reference: Sternberg SR. Grayscale morphology. Comput. Vision, Graphics, Image Process. 1986; 35: 333-355.
– reference: Royer JP, Thirion-Moreau N, Comon P. Computing the polyadic decomposition of nonnegative third-order tensors. EURASIP Signal Process. 2011; 91(9): 2159-2171.
– reference: Cichocki A, Zdunek R, Phan AH, Amari SI. Non Negative Matrix and Tensor Factorizations: Application to Exploratory Multi-Way Data Analysis and Blind Separation. Wiley: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom, 2009.
– reference: He Z, Cichocki A, Xie S, Choi K. Detecting the number of clusters in n-way probabilistic clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2010; 32(11): 2006-2021.
– reference: Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev. 2009; 51(3): 455-500.
– reference: Jiji RD, Andersson GG, Booksh KS. Applicaton of Parafac for calibration with excitation-emission matrix fluorescence spectra of three classes of environmental pollutants. J. Chemom. 2000; 14(3): 171-185.
– reference: Nocedal J, Wright S. Numerical Optimization. Springer, Ed.: New York, NY, 1999.
– reference: Serra J. Image Analysis and Mathematical Morphology. Academic Press: New York, USA, 1982.
– reference: Kiers HAL. Towards a standardized notation and terminology in multiway analysis. J. Chemom. 2000; 14(3): 105-122.
– reference: Bro R, Jong SD. A fast non-negativity-constrained least squares algorithm. J. Chemom. 1997; 11(5): 393-401.
– reference: Price K, Storn R. Differential evolution. Dr. Dobb's J. 1997; 264: 18-24.
– reference: Coloigner J, Karfoul A, Alberra L, Comon P. Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors. Linear Algebra Appl. 2014; 450: 334-374.
– reference: Luciani X, Mounier S, Redon R, Bois A. A simple correction method of inner filter effects affecting FEEM and its application to the Parafac decomposition. Chemom. Intel. Lab. Syst. 2009; 96(2): 227-238.
– reference: Kim J, Park H. Fast Nonnegative Tensor Factorization with an Active-Set-Like Method, High-Performance Scientific Computing: Algorithms and Applications. Springer: Springer London, pp. 311-326, 2012.
– reference: Stedmon CA, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003; 82: 239-254.
– reference: Tomasi G, Bro R. Parafac and missing values. Chemom. Intell. Lab. Syst. 2005; 75(2): 163-180.
– reference: Hu LQ, Wu HL, Jiang JH, Han QJ, Xia AL, Yu RQ. Estimating the chemical rank of three-way data arrays by a simple linear transform incorporating Monte Carlo simulation. Talanta 2007; 71: 373-380.
– reference: Reynolds DM. The differentiation of biodegradable and non-biodegradable dissolved organic matter in wastewaters using fluorescence spectroscopy. J. Chem. Technol. Biotechnol. 2002; 8(77): 965-972.
– reference: Frenich AG, Zamora DP, Vidal JM, Galera MM. Resolution and quantitation of mixtures with overlapped spectra by orthogonal projection approach and alternating least squares. Anal. Chim. Acta 2001; 449: 143-155.
– reference: Nelder J, Mead R. A simplex method for function minimization. Comput. J. 1965; 7: 308-313.
– reference: Ceulemans E, Kiers HA. Selecting among three-mode principal component models of different types and complexity: a numerical convex hull based method. Br. J. Math. Stat. Psych. 2006; 59(1): 133-150.
– reference: Luenberger DG, Ye Y. Linear and Non Linear Programming (3rd edn.) Wiley: Springer, Springer Science + Business Media, LLC, 233 Spring Street, New York, NY 10013, USA, 2008.
– reference: Jiang JH, Wu HL, Li Y, Yu RQ. Alternating coupled vectors resolution (acover) method for trilinear analysis of three-way data. J. Chemom. 1999; 13(6): 557-578.
– reference: Ferretto N, Tedetti M, Guigue C, Mounier S, Redon R, Goutx M. Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation?emission matrices and parallel factor analysis. Source Chemosphere 2014; 107: 344-353.
– reference: Mehrotra S. On the implementation of a primal-dual interior point method. SIAM J. Optim. 1992; 2:575-601.
– reference: Ingber L. Simulated annealing: practice versus theory. Math. Comput. Model. 1993; 18(11): 29-57.
– reference: Bro R, Kiers HA. A new efficient method for determining the number of components in Parafac models. J. Chemom. 2003; 17: 274-286.
– reference: Serra J. Image Analysis and Mathematical Morphology, vol. 2. Academic Press: New York, USA, 1988.
– reference: Chen ZP, Wu HL, Jiang JH, Li Y, Yu RQ. A novel trilinear decomposition algorithm for second-order linear calibration. Chemom. Intell. Lab. Syst. 2000; 1(52): 75-86.
– volume: 106
  start-page: 93
  issue: 1
  year: 2011
  end-page: 107
  article-title: A comparison of several trilinear second‐order calibration algorithms
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 23
  start-page: 432
  year: 2009
  end-page: 441
  article-title: Nonnegative approximations of nonnegative tensors
  publication-title: J. Chemom.
– year: 2009
– volume: 58
  start-page: 493
  issue: 5
  year: 2013
  end-page: 509
  article-title: A proximal ANLS algorithm for nonnegative tensor factorization with a periodic enhanced line search
  publication-title: Appl. Math.
– volume: 52
  start-page: 325
  year: 1996
  end-page: 346
  article-title: Characterization of marine and terrestrial DOM in seawater using excitation‐emission matrix spectroscopy
  publication-title: Mar. Chem.
– volume: 21
  start-page: 787
  issue: 12
  year: 2002
  end-page: 798
  article-title: Recent developments in multi‐component synchronous fluorescence scan analysis
  publication-title: TrAC Trends Anal. Chem.
– volume: 11
  start-page: 393
  issue: 5
  year: 1997
  end-page: 401
  article-title: A fast non‐negativity‐constrained least squares algorithm
  publication-title: J. Chemom.
– year: 2001
– volume: 44
  start-page: 5356
  issue: 18
  year: 2010
  end-page: 5366
  article-title: Continuous fluorescence excitation‐emission matrix monitoring of river organic matter
  publication-title: Water Res.
– volume: 14
  start-page: 285
  issue: 3
  year: 2000
  end-page: 299
  article-title: Construction and analysis of degenerate Parafac models
  publication-title: J.Chemom.
– volume: 132
  start-page: 152
  year: 2014
  end-page: 167
  article-title: Canonical polyadic decomposition based on joint eigenvalue decomposition
  publication-title: Chemom.Intell. Lab. Syst.
– volume: 449
  start-page: 143
  year: 2001
  end-page: 155
  article-title: Resolution and quantitation of mixtures with overlapped spectra by orthogonal projection approach and alternating least squares
  publication-title: Anal. Chim. Acta
– volume: 450
  start-page: 334
  year: 2014
  end-page: 374
  article-title: Line search and trust region strategies for canonical decomposition of semi‐nonnegative semi‐symmetric 3rd order tensors
  publication-title: Linear Algebra Appl.
– start-page: 311
  year: 2012
  end-page: 326
– start-page: 1
  year: 2014
  end-page: 6
– start-page: 3938
  year: 2013
  end-page: 3942
– year: 1998
– volume: 6
  start-page: 29
  year: 1992
  end-page: 40
  article-title: Window factor analysis: theoretical derivation and applicationto flow injection analysis data
  publication-title: J. Chemom.
– volume: 38
  start-page: 223
  issue: 2
  year: 1997
  end-page: 242
  article-title: A weighted non‐negative least squares algorithm for three‐way Parafac factor analysis
  publication-title: Chemom. Intell. Lab. Syst.
– year: 1982
– start-page: 2365
  year: 2008
  end-page: 2368
– volume: 56
  start-page: 677
  issue: 4
  year: 2008
  end-page: 685
  article-title: Application of ultraviolet fluorometry and excitation‐emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oil in seawater
  publication-title: Mar. Pollut. Bull.
– year: 2008
– volume: 82
  start-page: 239
  year: 2003
  end-page: 254
  article-title: Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy
  publication-title: Mar. Chem.
– year: 2004
– volume: 6
  start-page: 165
  year: 1927
  end-page: 189
  article-title: The expression of a tensor or a polyadic as a sum of products
  publication-title: J. Math. Phys.
– year: 1997
– volume: 91
  start-page: 2159
  issue: 9
  year: 2011
  end-page: 2171
  article-title: Computing the polyadic decomposition of nonnegative third‐order tensors
  publication-title: EURASIP Signal Process.
– volume: 96
  start-page: 227
  issue: 2
  year: 2009
  end-page: 238
  article-title: A simple correction method of inner filter effects affecting FEEM and its application to the Parafac decomposition
  publication-title: Chemom. Intel. Lab. Syst.
– start-page: 261
  year: 2010
  end-page: 272
– start-page: 510
  year: 2008
  end-page: 514
– volume: 35
  start-page: 283
  year: 1970
  end-page: 319
  article-title: Analysis of individual differences in multi‐dimensional scaling via n‐way generalization of Eckart‐Young decomposition
  publication-title: Psychometrika
– start-page: 2732
  year: 2011
  end-page: 2735
– volume: 32
  start-page: 2006
  issue: 11
  year: 2010
  end-page: 2021
  article-title: Detecting the number of clusters in n‐way probabilistic clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 23
  start-page: 393
  year: 2009
  end-page: 405
  article-title: Tensor decompositions, alternating least squares and other tales
  publication-title: J. Chemom.
– volume: 434
  start-page: 179
  year: 2001
  end-page: 192
  article-title: Multivariate evaluation of the fluorescence of aquatic organic matter
  publication-title: Anal. Chim. Acta
– start-page: 1095
  year: 2004
  end-page: 1098
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  end-page: 500
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
– volume: 115
  start-page: 51
  year: 2014
  end-page: 57
  article-title: Characterizing the interaction between uranyl ion and soil fulvic acid using parallel factor analysis and a two‐site fluorescence quenching model
  publication-title: Microchem. J.
– volume: 35
  start-page: 333
  year: 1986
  end-page: 355
  article-title: Grayscale morphology
  publication-title: Comput. Vision, Graphics, Image Process
– volume: 89
  start-page: 15
  issue: 1–4
  year: 2004
  end-page: 36
  article-title: Dissolved organic fluorophores in southeastern us coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation‐emission matrices
  publication-title: Mar. Chem.
– volume: Series A
  start-page: 167
  issue: 30
  year: 1968
  end-page: 180
  article-title: Solutions to some functional equations and their applications to characterization of probability distributions
  publication-title: Sankhya: Indian J. Stat.
– volume: 107
  start-page: 344
  year: 2014
  end-page: 353
  article-title: Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation?emission matrices and parallel factor analysis
  publication-title: Source Chemosphere
– start-page: 648
  year: 1995
  end-page: 652
– volume: 53
  start-page: 1
  issue: 1
  year: 2000
  end-page: 16
  article-title: Three‐mode principal components analysis: choosing the number of components and sensitivity to local optima
  publication-title: Br. J. Math. Stat. Psych.
– volume: 13
  start-page: 557
  issue: 6
  year: 1999
  end-page: 578
  article-title: Alternating coupled vectors resolution (acover) method for trilinear analysis of three‐way data
  publication-title: J. Chemom.
– volume: 18
  start-page: 29
  issue: 11
  year: 1993
  end-page: 57
  article-title: Simulated annealing: practice versus theory
  publication-title: Math. Comput. Model.
– year: 1992
– volume: 1
  start-page: 75
  issue: 52
  year: 2000
  end-page: 86
  article-title: A novel trilinear decomposition algorithm for second‐order linear calibration
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 13
  start-page: 14
  year: 1984
  end-page: 32
  article-title: An application of Parafac to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split‐half diagnostic techniques
  publication-title: Stat. Anal. Données
– volume: 8
  start-page: 965
  issue: 77
  year: 2002
  end-page: 972
  article-title: The differentiation of biodegradable and non‐biodegradable dissolved organic matter in wastewaters using fluorescence spectroscopy
  publication-title: J. Chem. Technol. Biotechnol.
– year: 2000
  article-title: N‐Way toolbox for Matlab
– start-page: 4114
  year: 2010
  end-page: 4117
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– volume: 71
  start-page: 373
  year: 2007
  end-page: 380
  article-title: Estimating the chemical rank of three‐way data arrays by a simple linear transform incorporating Monte Carlo simulation
  publication-title: Talanta
– volume: 14
  start-page: 171
  issue: 3
  year: 2000
  end-page: 185
  article-title: Applicaton of Parafac for calibration with excitation‐emission matrix fluorescence spectra of three classes of environmental pollutants
  publication-title: J. Chemom.
– start-page: 1
  year: 1970
  end-page: 84
– volume: 59
  start-page: 133
  issue: 1
  year: 2006
  end-page: 150
  article-title: Selecting among three‐mode principal component models of different types and complexity: a numerical convex hull based method
  publication-title: Br. J. Math. Stat. Psych.
– volume: 264
  start-page: 18
  year: 1997
  end-page: 24
  article-title: Differential evolution
  publication-title: Dr. Dobb's J.
– year: 1988
– volume: 75
  start-page: 163
  issue: 2
  year: 2005
  end-page: 180
  article-title: Parafac and missing values
  publication-title: Chemom. Intell. Lab. Syst
– volume: 17
  start-page: 274
  year: 2003
  end-page: 286
  article-title: A new efficient method for determining the number of components in Parafac models
  publication-title: J. Chemom.
– volume: 38
  start-page: 149
  year: 1997
  end-page: 171
  article-title: Parafac: tutorial and applications
  publication-title: Chemometr. Intell. Lab.
– volume: 14
  start-page: 105
  issue: 3
  year: 2000
  end-page: 122
  article-title: Towards a standardized notation and terminology in multiway analysis
  publication-title: J. Chemom.
– volume: 2
  start-page: 575
  year: 1992
  end-page: 601
  article-title: On the implementation of a primal‐dual interior point method
  publication-title: SIAM J. Optim.
– start-page: 71
  year: 2012
  end-page: 75
– volume: 98
  start-page: 183
  issue: 2–4
  year: 2006
  end-page: 196
  article-title: Optical properties of low molecular weight and colloidal organic matter: application of the ultrafiltration permeation model to DOM absorption and fluorescence
  publication-title: Mar. Chem.
– year: 1999
– ident: e_1_2_8_37_1
  doi: 10.1137/0802028
– ident: e_1_2_8_12_1
  doi: 10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1
– ident: e_1_2_8_29_1
  doi: 10.1016/j.chemolab.2004.07.003
– ident: e_1_2_8_36_1
  doi: 10.1007/s10492-013-0026-2
– ident: e_1_2_8_66_1
  doi: 10.1016/j.microc.2014.02.004
– volume-title: Optimization Algorithms and Consistent Approximations
  year: 1997
  ident: e_1_2_8_69_1
– ident: e_1_2_8_60_1
  doi: 10.1016/j.marchem.2005.08.009
– ident: e_1_2_8_50_1
  doi: 10.1002/cem.801
– ident: e_1_2_8_2_1
  doi: 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
– ident: e_1_2_8_62_1
  doi: 10.1002/1099-128X(200005/06)14:3<171::AID-CEM591>3.0.CO;2-P
– volume-title: Principle of Fluorescence Spectroscopy
  year: 1999
  ident: e_1_2_8_31_1
  doi: 10.1007/978-1-4757-3061-6
– ident: e_1_2_8_35_1
  doi: 10.1007/978-0-387-74503-9
– ident: e_1_2_8_32_1
  doi: 10.1016/j.marchem.2004.02.006
– ident: e_1_2_8_56_1
  doi: 10.1109/ICASSP.2013.6638397
– ident: e_1_2_8_59_1
  doi: 10.1016/j.watres.2010.06.036
– ident: e_1_2_8_55_1
  doi: 10.1109/TPAMI.2010.15
– ident: e_1_2_8_9_1
  doi: 10.1016/S0304-4203(03)00072-0
– ident: e_1_2_8_16_1
  doi: 10.1016/S0169-7439(00)00081-2
– ident: e_1_2_8_44_1
  doi: 10.1109/MLSP.2014.6958896
– ident: e_1_2_8_5_1
  doi: 10.1002/cem.1180060104
– ident: e_1_2_8_11_1
  doi: 10.1002/cem.1236
– ident: e_1_2_8_20_1
  doi: 10.1002/(SICI)1099-128X(199911/12)13:6<557::AID-CEM563>3.0.CO;2-C
– ident: e_1_2_8_71_1
– ident: e_1_2_8_40_1
  doi: 10.1016/0895-7177(93)90204-C
– ident: e_1_2_8_51_1
  doi: 10.1016/j.talanta.2006.04.014
– ident: e_1_2_8_61_1
  doi: 10.1016/j.marpolbul.2007.12.022
– volume-title: Digital Image Processing
  year: 2001
  ident: e_1_2_8_33_1
– ident: e_1_2_8_15_1
  doi: 10.1007/BF02310791
– ident: e_1_2_8_17_1
  doi: 10.1002/9780470747278
– ident: e_1_2_8_52_1
  doi: 10.1109/SAM.2008.4606923
– volume: 264
  start-page: 18
  year: 1997
  ident: e_1_2_8_39_1
  article-title: Differential evolution
  publication-title: Dr. Dobb's J.
– ident: e_1_2_8_30_1
  doi: 10.1016/j.chemolab.2010.03.006
– ident: e_1_2_8_48_1
  doi: 10.1016/j.chemolab.2009.02.008
– ident: e_1_2_8_13_1
  doi: 10.1002/cem.1244
– ident: e_1_2_8_18_1
– ident: e_1_2_8_27_1
  doi: 10.1016/j.sigpro.2011.03.006
– ident: e_1_2_8_57_1
  doi: 10.1016/j.chemosphere.2013.12.087
– ident: e_1_2_8_10_1
  doi: 10.1002/0470012110
– ident: e_1_2_8_26_1
  doi: 10.1109/ICASSP.2011.5947050
– ident: e_1_2_8_42_1
– ident: e_1_2_8_63_1
  doi: 10.1117/12.203507
– ident: e_1_2_8_6_1
  doi: 10.1016/S0003-2670(01)00812-1
– ident: e_1_2_8_4_1
  doi: 10.1016/S0003-2670(01)01354-X
– volume-title: Image Analysis and Mathematical Morphology
  year: 1982
  ident: e_1_2_8_34_1
– ident: e_1_2_8_38_1
  doi: 10.1093/comjnl/7.4.308
– ident: e_1_2_8_64_1
  doi: 10.1016/S0165-9936(02)01201-3
– ident: e_1_2_8_54_1
  doi: 10.1348/000711005X64817
– volume-title: Image Analysis and Mathematical Morphology
  year: 1988
  ident: e_1_2_8_67_1
– ident: e_1_2_8_45_1
  doi: 10.1016/S0169-7439(97)00032-4
– ident: e_1_2_8_70_1
  doi: 10.1017/CBO9780511804441
– ident: e_1_2_8_46_1
  doi: 10.1002/sapm192761164
– ident: e_1_2_8_43_1
  doi: 10.1016/j.laa.2014.02.001
– start-page: 261
  volume-title: Radionuclides in the Environment: Uranium
  year: 2010
  ident: e_1_2_8_58_1
– start-page: 311
  volume-title: Fast Nonnegative Tensor Factorization with an Active‐Set‐Like Method
  year: 2012
  ident: e_1_2_8_21_1
– ident: e_1_2_8_7_1
– ident: e_1_2_8_3_1
  doi: 10.1016/0304-4203(95)00062-3
– ident: e_1_2_8_25_1
  doi: 10.1109/ICASSP.2008.4518122
– ident: e_1_2_8_65_1
  doi: 10.1002/jctb.664
– start-page: 167
  issue: 30
  year: 1968
  ident: e_1_2_8_47_1
  article-title: Solutions to some functional equations and their applications to characterization of probability distributions
  publication-title: Sankhya: Indian J. Stat.
– ident: e_1_2_8_19_1
– ident: e_1_2_8_24_1
  doi: 10.1016/S0169-7439(97)00031-2
– ident: e_1_2_8_8_1
– ident: e_1_2_8_23_1
  doi: 10.1016/j.chemolab.2013.12.009
– ident: e_1_2_8_53_1
  doi: 10.1348/000711000159132
– ident: e_1_2_8_22_1
  doi: 10.1137/07070111X
– volume: 13
  start-page: 14
  year: 1984
  ident: e_1_2_8_49_1
  article-title: An application of Parafac to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split‐half diagnostic techniques
  publication-title: Stat. Anal. Données
– ident: e_1_2_8_14_1
  doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
– ident: e_1_2_8_68_1
  doi: 10.1016/0734-189X(86)90004-6
– ident: e_1_2_8_28_1
  doi: 10.1109/ICASSP.2010.5495727
– ident: e_1_2_8_41_1
  doi: 10.1007/b98874
SSID ssj0009934
Score 2.1383066
Snippet We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process...
SourceID hal
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 253
SubjectTerms 3D fluorescence spectroscopy
Algorithms
Chains
Chemical analysis
Computer Science
Computer simulation
Decomposition
Fluorescence
Mathematical analysis
nonnegative Canonical Polyadic decomposition
nonnegative tensor factorization
optimization
Preprocessing
Regularization
Scattering
Signal and Image Processing
Spectroscopy
Spectrum analysis
Three dimensional
Title A regularized nonnegative canonical polyadic decomposition algorithm with preprocessing for 3D fluorescence spectroscopy
URI https://api.istex.fr/ark:/67375/WNG-83RKNV6J-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.2709
https://www.proquest.com/docview/1674473630
https://www.proquest.com/docview/1685778310
https://hal.science/hal-01126693
Volume 29
WOSCitedRecordID wos000352582800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-128X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009934
  issn: 0886-9383
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgRWIvg_EhOjbkoQmewhI7iePHqlupYFTTxGBvlms7W7WuqdJ22vjruXM-tkkgIfFkyb4olu3z_Wzf_Y6QPR1muTFpGhgdwwElj3QgHWyGBtA4B_vHbGJ8sgkxGmVnZ_K49qrEWJiKH6K9cEPN8Ps1KrgeL_bvSEONu_rEBMbudTCmCg5enYOTwenRHeWu9G_KoEZpIOEg1lDPhmy_-faBMXp8ga6QHRzdmwd48z5q9WZn8Ox_OvycbNRgk_aq1bFJHrnZC_K03-R4e0luerT0yejLyS9n6Qy9Xs49FTiFIS98zCSdF9NbbSeGWocO6LWXF9XT86KcLC-uKN7l0jnSY_qgAzCGFKAw5Qc0n66K0hNGGUd9UCeSZxbz21fkdHD4vT8M6lwMgYk5k0FiokxG0kLhcse0YxE3Ng4NA4hhpBSRzMEaagsIxoU2tCaPtclCze04i63kr8kadNu9IRRqHaxfkcrExGPNNHNOWAA-WuRcR7pLPjaTokxNVI75MqaqolhmCkZS4Uh2yW4rOa_IOf4g8x7mtW1GNu1h70hhXYjhU6nk11GXfPDT3orp8hI93kSifo4-q4yffB39SL-oYZdsN-tC1cq-UBjIEQue8hA61DbDTOLbi565YoUyWSIEZnWDf_lV8tceq_7hNyy3_lXwLVkHGJdU_kTbZG1ZrtwOeWKul5NF-a5Wi98ABxLw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdGizRe-EZ0DDAIwVNYYidxLJ6qbqWwrkLTBnuzPNvZqnVNlbXTxl_PnfMxJoGExJMl-6JYts_3s333O0Le6TDLjUnTwOgYDih5pAPpYDM0gMY52D9mE-OTTYjJJDs6kt_WyKcmFqbih2gv3FAz_H6NCo4X0ls3rKHGnX9kAoP3unHKRdYh3e394eH4hnNX-kdl0KM0kHASa7hnQ7bVfHvLGt05RV_ILg7v1S3A-Tts9XZn-OC_evyQ3K_hJu1X6-MRWXPzx2R90GR5e0Ku-rT06ejL6U9n6Rz9Xk48GTiFQS981CRdFLNrbaeGWocu6LWfF9Wzk6KcLk_PKd7m0gUSZPqwAzCHFMAw5ds0n62K0lNGGUd9WCfSZxaL66fkcLhzMBgFdTaGwMScySAxUSYjaaFwuWPasYgbG4eGAcgwUopI5mAPtQUM40IbWpPH2mSh5vY4i63kz0gHuu2eEwq1DlawSGVi4mPNNHNOWIA-WuRcR7pHPjSzokxNVY4ZM2aqIllmCkZS4Uj2yJtWclHRc_xB5i1MbNuMfNqj_lhhXYgBVKnkl1GPvPfz3orp8gx93kSifkw-q4zv706-p1_VqEc2m4WhanW_UBjKEQue8hA61DbDTOLri567YoUyWSIE5nWDf_ll8tceq8HOHpYb_yr4mqyPDvbGavxlsvuC3ANQl1TeRZuksyxX7iW5ay6X04vyVa0jvwBiqhbg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdGi4AXvhGFAQYheApL7HxZPFXtSmElmibG9mZ5trNVdE2UtdPGX8-d8zEmgYTEkyX7oli2z_ezffc7Qt4qP821jmNPqxAOKHmgPGFhM9SAxjnYP2Yi7ZJNJFmWHh6K3Q3ysY2Fqfkhugs31Ay3X6OC29LkW1esodqefmAJBu_1w0hEYY_0x3uT_dkV565wj8qgR7En4CTWcs_6bKv99po1unGCvpB9HN6La4Dzd9jq7M7k3n_1-D6528BNOqzXxwOyYZcPye1Rm-XtEbkY0sqlo6_mP62hS_R7OXZk4BQGvXBRk7QsFpfKzDU1Fl3QGz8vqhbHRTVfnZxSvM2lJRJkurADMIcUwDDlY5ov1kXlKKO0pS6sE-kzi_LyMdmfbH8bTb0mG4OnQ86EF-kgFYEwUNjcMmVZwLUJfc0AZGghkkDkYA-VAQxjfeMbnYdKp77i5igNjeBPSA-6bZ8SCrUWVnASi0iHR4opZm1iAPqoJOcqUAPyvp0VqRuqcsyYsZA1yTKTMJISR3JAXneSZU3P8QeZNzCxXTPyaU-HM4l1PgZQxYKfBwPyzs17J6aqH-jzlkTyIPskU763k32Pv8jpgGy2C0M26n4mMZQjTHjMfehQ1wwzia8vammLNcqkUZJgXjf4l1smf-2xHG1_xfLZvwq-Ird2xxM5-5ztPCd3ANNFtXPRJumtqrV9QW7q89X8rHrZqMgvzegWWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+regularized+nonnegative+canonical+polyadic+decomposition+algorithm+with+preprocessing+for+3D+fluorescence+spectroscopy&rft.jtitle=Journal+of+chemometrics&rft.au=Royer%2C+Jean-Philip&rft.au=Thirion-Moreau%2C+Nad%C3%A8ge&rft.au=Comon%2C+Pierre&rft.au=Redon%2C+Roland&rft.date=2015-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0886-9383&rft.eissn=1099-128X&rft.volume=29&rft.issue=4&rft.spage=253&rft_id=info:doi/10.1002%2Fcem.2709&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3660509711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon