A regularized nonnegative canonical polyadic decomposition algorithm with preprocessing for 3D fluorescence spectroscopy
We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation‐Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks t...
Uložené v:
| Vydané v: | Journal of chemometrics Ročník 29; číslo 4; s. 253 - 265 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Chichester
Blackwell Publishing Ltd
01.04.2015
Wiley Subscription Services, Inc Wiley |
| Predmet: | |
| ISSN: | 0886-9383, 1099-128X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation‐Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks that clutter the FEEM. To improve its robustness versus possible improper settings, we suggest to associate the classical Zepp's method with a morphological image filtering technique. Then, in the second stage, the Canonical Polyadic (CP or Candecomp/Parafac) decomposition of a nonnegative three‐way array has to be computed. In the fluorescence spectroscopy context, the constituent vectors of the loading matrices should be nonnegative (since standing for spectra and concentrations). Thus, we suggest a new nonnegative third order CP decomposition algorithm (NNCP) based on a nonlinear conjugate gradient optimization algorithm with regularization terms and periodic restarts. Computer simulations performed on real experimental data are provided to enlighten the effectiveness and robustness of the whole processing chain and to validate the approach. Copyright © 2015 John Wiley & Sons, Ltd.
Focusing on the fluorescence spectroscopy framework, we suggest a novel approach to handle the preprocessing of Fluorescence ExcitationŰEmission Matrices (FEEM) and the nonnegative Canonical Polyadic decomposition of the resulting three‐way tensor of FEEM. We also illustrate the importance of additional regularization terms in the case of overfactoring and show that the calibration of the whole processing chain on known but experimental mixtures remains an important stage to adjust the different parameters. The influence of the preprocessing on the obtained results should not be underestimated. |
|---|---|
| AbstractList | We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation-Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks that clutter the FEEM. To improve its robustness versus possible improper settings, we suggest to associate the classical Zepp's method with a morphological image filtering technique. Then, in a second stage, the Canonical Polyadic (CP or Cande-comp/Parafac) decomposition of a nonnegative 3-way array has to be computed. In the fluorescence spectroscopy context, the constituent vectors of the loading matrices should be nonnegative (since standing for spectra and concentrations). Thus, we suggest a new NonNegative third order CP decomposition algorithm (NNCP) based on a non linear conjugate gradient optimisation algorithm with regularization terms and periodic restarts. Computer simulations performed on real experimental data are provided to enlighten the effectiveness and robustness of the whole processing chain and to validate the approach. We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation-Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks that clutter the FEEM. To improve its robustness versus possible improper settings, we suggest to associate the classical Zepp's method with a morphological image filtering technique. Then, in the second stage, the Canonical Polyadic (CP or Candecomp/Parafac) decomposition of a nonnegative three-way array has to be computed. In the fluorescence spectroscopy context, the constituent vectors of the loading matrices should be nonnegative (since standing for spectra and concentrations). Thus, we suggest a new nonnegative third order CP decomposition algorithm (NNCP) based on a nonlinear conjugate gradient optimization algorithm with regularization terms and periodic restarts. Computer simulations performed on real experimental data are provided to enlighten the effectiveness and robustness of the whole processing chain and to validate the approach. Copyright copyright 2015John Wiley & Sons, Ltd. Focusing on the fluorescence spectroscopy framework, we suggest a novel approach to handle the preprocessing of Fluorescence ExcitationEmission Matrices (FEEM) and the nonnegative Canonical Polyadic decomposition of the resulting three-way tensor of FEEM. We also illustrate the importance of additional regularization terms in the case of overfactoring and show that the calibration of the whole processing chain on known but experimental mixtures remains an important stage to adjust the different parameters. The influence of the preprocessing on the obtained results should not be underestimated. We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation‐Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks that clutter the FEEM. To improve its robustness versus possible improper settings, we suggest to associate the classical Zepp's method with a morphological image filtering technique. Then, in the second stage, the Canonical Polyadic (CP or Candecomp/Parafac) decomposition of a nonnegative three‐way array has to be computed. In the fluorescence spectroscopy context, the constituent vectors of the loading matrices should be nonnegative (since standing for spectra and concentrations). Thus, we suggest a new nonnegative third order CP decomposition algorithm (NNCP) based on a nonlinear conjugate gradient optimization algorithm with regularization terms and periodic restarts. Computer simulations performed on real experimental data are provided to enlighten the effectiveness and robustness of the whole processing chain and to validate the approach. Copyright © 2015 John Wiley & Sons, Ltd. Focusing on the fluorescence spectroscopy framework, we suggest a novel approach to handle the preprocessing of Fluorescence ExcitationŰEmission Matrices (FEEM) and the nonnegative Canonical Polyadic decomposition of the resulting three‐way tensor of FEEM. We also illustrate the importance of additional regularization terms in the case of overfactoring and show that the calibration of the whole processing chain on known but experimental mixtures remains an important stage to adjust the different parameters. The influence of the preprocessing on the obtained results should not be underestimated. We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation-Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks that clutter the FEEM. To improve its robustness versus possible improper settings, we suggest to associate the classical Zepp's method with a morphological image filtering technique. Then, in the second stage, the Canonical Polyadic (CP or Candecomp/Parafac) decomposition of a nonnegative three-way array has to be computed. In the fluorescence spectroscopy context, the constituent vectors of the loading matrices should be nonnegative (since standing for spectra and concentrations). Thus, we suggest a new nonnegative third order CP decomposition algorithm (NNCP) based on a nonlinear conjugate gradient optimization algorithm with regularization terms and periodic restarts. Computer simulations performed on real experimental data are provided to enlighten the effectiveness and robustness of the whole processing chain and to validate the approach. |
| Author | Thirion-Moreau, Nadège Comon, Pierre Mounier, Stéphane Royer, Jean-Philip Redon, Roland |
| Author_xml | – sequence: 1 givenname: Jean-Philip surname: Royer fullname: Royer, Jean-Philip organization: Aix-Marseille Université CNRS, ENSAM, LSIS, UMR 7296, F-13397 Marseille, France – sequence: 2 givenname: Nadège surname: Thirion-Moreau fullname: Thirion-Moreau, Nadège email: Correspondence to: Nadège Thirion-Moreau, Aix-Marseille Université, CNRS, ENSAM, LSIS, UMR 7296, F-13397 Marseille., thirion@univ-tln.fr organization: Aix-Marseille Université CNRS, ENSAM, LSIS, UMR 7296, F-13397 Marseille, France – sequence: 3 givenname: Pierre surname: Comon fullname: Comon, Pierre organization: GIPSA-Lab, CNRS UMR 5216, Grenoble Campus, BP 46, F-38402 St Martin d'Hères Cédex, France – sequence: 4 givenname: Roland surname: Redon fullname: Redon, Roland organization: PROTEE, Université de Toulon, F-83957, La Garde, France – sequence: 5 givenname: Stéphane surname: Mounier fullname: Mounier, Stéphane organization: PROTEE, Université de Toulon, F-83957, La Garde, France |
| BackLink | https://hal.science/hal-01126693$$DView record in HAL |
| BookMark | eNp1kU9v1DAQxS1UJLYFiY9giQscsthxNrGPq6V0gaVIiH83y4wnWxcnTu2k7fLp8WpRERVcPPL4N0_z_I7JUR96JOQpZ3POWPkSsJuXDVMPyIwzpQpeym9HZMakrAslpHhEjlO6ZCy_iWpGbpc04nbyJrqfaGkW63FrRneNFEy-OTCeDsHvjHVALULohpDc6EJPjd-G6MaLjt7kkw4RhxgAU3L9lrYhUvGKtn4KERNgD0jTgDDGkCAMu8fkYWt8wie_6wn5_Pr002pdbD6cvVktNwVUolTFArhUXNlcsMXSYMkF2IpB2cgSlGq4agUTxta1QGaZhbYyIJkR9rusrBIn5MVB98J4PUTXmbjTwTi9Xm70vsc4L-taiWue2ecHNvu4mjCNunN5de9Nj2FKmtdy0TRScJbRZ_fQyzDFPjvJVFNVjagF-yMI2XWK2N5twJnex6VzXHofV0bn91Bwo9n_8xiN8_8aKA4DN87j7r_CenX6_m_epRFv73gTf-i6Ec1Cfz0_01J8fHf-pX6r1-IXeoC4nQ |
| CitedBy_id | crossref_primary_10_1016_j_chemolab_2022_104550 crossref_primary_10_1007_s11045_021_00818_4 crossref_primary_10_1109_LSP_2017_2751038 crossref_primary_10_1109_LSP_2015_2427456 crossref_primary_10_1080_09720529_2018_1445813 crossref_primary_10_1002_cem_2859 |
| Cites_doi | 10.1137/0802028 10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1 10.1016/j.chemolab.2004.07.003 10.1007/s10492-013-0026-2 10.1016/j.microc.2014.02.004 10.1016/j.marchem.2005.08.009 10.1002/cem.801 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I 10.1002/1099-128X(200005/06)14:3<171::AID-CEM591>3.0.CO;2-P 10.1007/978-1-4757-3061-6 10.1007/978-0-387-74503-9 10.1016/j.marchem.2004.02.006 10.1109/ICASSP.2013.6638397 10.1016/j.watres.2010.06.036 10.1109/TPAMI.2010.15 10.1016/S0304-4203(03)00072-0 10.1016/S0169-7439(00)00081-2 10.1109/MLSP.2014.6958896 10.1002/cem.1180060104 10.1002/cem.1236 10.1002/(SICI)1099-128X(199911/12)13:6<557::AID-CEM563>3.0.CO;2-C 10.1016/0895-7177(93)90204-C 10.1016/j.talanta.2006.04.014 10.1016/j.marpolbul.2007.12.022 10.1007/BF02310791 10.1002/9780470747278 10.1109/SAM.2008.4606923 10.1016/j.chemolab.2010.03.006 10.1016/j.chemolab.2009.02.008 10.1002/cem.1244 10.1016/j.sigpro.2011.03.006 10.1016/j.chemosphere.2013.12.087 10.1002/0470012110 10.1109/ICASSP.2011.5947050 10.1117/12.203507 10.1016/S0003-2670(01)00812-1 10.1016/S0003-2670(01)01354-X 10.1093/comjnl/7.4.308 10.1016/S0165-9936(02)01201-3 10.1348/000711005X64817 10.1016/S0169-7439(97)00032-4 10.1017/CBO9780511804441 10.1002/sapm192761164 10.1016/j.laa.2014.02.001 10.1016/0304-4203(95)00062-3 10.1109/ICASSP.2008.4518122 10.1002/jctb.664 10.1016/S0169-7439(97)00031-2 10.1016/j.chemolab.2013.12.009 10.1348/000711000159132 10.1137/07070111X 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L 10.1016/0734-189X(86)90004-6 10.1109/ICASSP.2010.5495727 10.1007/b98874 |
| ContentType | Journal Article |
| Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Copyright Wiley Subscription Services, Inc. Apr 2015 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright Wiley Subscription Services, Inc. Apr 2015 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | BSCLL AAYXX CITATION 7SC 7U5 8FD JQ2 L7M L~C L~D 1XC VOOES |
| DOI | 10.1002/cem.2709 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Computer Science |
| EISSN | 1099-128X |
| EndPage | 265 |
| ExternalDocumentID | oai:HAL:hal-01126693v1 3660509711 10_1002_cem_2709 CEM2709 ark_67375_WNG_83RKNV6J_H |
| Genre | article Feature |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ UB1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC AAYXX CITATION O8X 7SC 7U5 8FD JQ2 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c4329-5c18919dc18efe2ae213cd40c2782c99719f303ad663e0d0dcf4ac80a3db84d93 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352582800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0886-9383 |
| IngestDate | Tue Oct 14 20:49:52 EDT 2025 Thu Oct 02 05:17:19 EDT 2025 Fri Jul 25 10:45:21 EDT 2025 Sat Nov 29 07:12:19 EST 2025 Tue Nov 18 22:14:37 EST 2025 Wed Jan 22 16:33:45 EST 2025 Sun Sep 21 06:18:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Nway fluorescence FEEM canonical polyadic decomposition Raman tensor Rayleigh |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4329-5c18919dc18efe2ae213cd40c2782c99719f303ad663e0d0dcf4ac80a3db84d93 |
| Notes | ArticleID:CEM2709 istex:EE131ADAB6C4B75C7E52A4E6C172273DA66ADD5F ark:/67375/WNG-83RKNV6J-H SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9245-3407 0000-0002-9624-0230 0000-0001-9436-9228 0000-0002-9344-4844 |
| OpenAccessLink | https://hal.science/hal-01126693 |
| PQID | 1674473630 |
| PQPubID | 37374 |
| PageCount | 13 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01126693v1 proquest_miscellaneous_1685778310 proquest_journals_1674473630 crossref_primary_10_1002_cem_2709 crossref_citationtrail_10_1002_cem_2709 wiley_primary_10_1002_cem_2709_CEM2709 istex_primary_ark_67375_WNG_83RKNV6J_H |
| PublicationCentury | 2000 |
| PublicationDate | April 2015 |
| PublicationDateYYYYMMDD | 2015-04-01 |
| PublicationDate_xml | – month: 04 year: 2015 text: April 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | Journal of chemometrics |
| PublicationTitleAlternate | J. Chemometrics |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
| References | Serra J. Image Analysis and Mathematical Morphology. Academic Press: New York, USA, 1982. Comon P, Luciani X, De Almeida ALF. Tensor decompositions, alternating least squares and other tales. J. Chemom. 2009; 23: 393-405. Coloigner J, Karfoul A, Alberra L, Comon P. Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors. Linear Algebra Appl. 2014; 450: 334-374. Bro R, Kiers HA. A new efficient method for determining the number of components in Parafac models. J. Chemom. 2003; 17: 274-286. Luciani X, Albera L. Canonical polyadic decomposition based on joint eigenvalue decomposition. Chemom.Intell. Lab. Syst. 2014; 132: 152-167. Nelder J, Mead R. A simplex method for function minimization. Comput. J. 1965; 7: 308-313. Patra D, Mishra A. Recent developments in multi-component synchronous fluorescence scan analysis. TrAC Trends Anal. Chem. 2002; 21(12): 787-798. Luciani X, Mounier S, Redon R, Bois A. A simple correction method of inner filter effects affecting FEEM and its application to the Parafac decomposition. Chemom. Intel. Lab. Syst. 2009; 96(2): 227-238. Paatero P. Construction and analysis of degenerate Parafac models. J.Chemom. 2000; 14(3): 285-299. Lim LH, Comon P. Nonnegative approximations of nonnegative tensors. J. Chemom. 2009; 23: 432-441. Reynolds DM. The differentiation of biodegradable and non-biodegradable dissolved organic matter in wastewaters using fluorescence spectroscopy. J. Chem. Technol. Biotechnol. 2002; 8(77): 965-972. Hitchcock FL. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 1927; 6: 165-189. Belzile C, Guo L. Optical properties of low molecular weight and colloidal organic matter: application of the ultrafiltration permeation model to DOM absorption and fluorescence. Mar. Chem. 2006; 98(2-4): 183-196. Mehrotra S. On the implementation of a primal-dual interior point method. SIAM J. Optim. 1992; 2:575-601. Nocedal J, Wright S. Numerical Optimization. Springer, Ed.: New York, NY, 1999. Royer JP, Thirion-Moreau N, Comon P. Computing the polyadic decomposition of nonnegative third-order tensors. EURASIP Signal Process. 2011; 91(9): 2159-2171. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev. 2009; 51(3): 455-500. Ingber L. Simulated annealing: practice versus theory. Math. Comput. Model. 1993; 18(11): 29-57. Frenich AG, Zamora DP, Vidal JM, Galera MM. Resolution and quantitation of mixtures with overlapped spectra by orthogonal projection approach and alternating least squares. Anal. Chim. Acta 2001; 449: 143-155. Bunker D, Han L, Zhang S. A proximal ANLS algorithm for nonnegative tensor factorization with a periodic enhanced line search. Appl. Math. 2013; 58(5): 493-509. Ferretto N, Tedetti M, Guigue C, Mounier S, Redon R, Goutx M. Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation?emission matrices and parallel factor analysis. Source Chemosphere 2014; 107: 344-353. Zhu B, Pennell SA, Ryan DK. Characterizing the interaction between uranyl ion and soil fulvic acid using parallel factor analysis and a two-site fluorescence quenching model. Microchem. J. 2014; 115: 51-57. Persson T, Wedborg M. Multivariate evaluation of the fluorescence of aquatic organic matter. Anal. Chim. Acta 2001; 434: 179-192. Kim J, Park H. Fast Nonnegative Tensor Factorization with an Active-Set-Like Method, High-Performance Scientific Computing: Algorithms and Applications. Springer: Springer London, pp. 311-326, 2012. Carstea EM, Baker A, Bieroza M, Reynolds D. Continuous fluorescence excitation-emission matrix monitoring of river organic matter. Water Res. 2010; 44(18): 5356-5366. Jiang JH, Wu HL, Li Y, Yu RQ. Alternating coupled vectors resolution (acover) method for trilinear analysis of three-way data. J. Chemom. 1999; 13(6): 557-578. Kiers HAL. Towards a standardized notation and terminology in multiway analysis. J. Chemom. 2000; 14(3): 105-122. Stedmon CA, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003; 82: 239-254. He Z, Cichocki A, Xie S, Choi K. Detecting the number of clusters in n-way probabilistic clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2010; 32(11): 2006-2021. Vandenhove H, Hurtgen C, Payne T. Radionuclides in the Environment: Uranium, Radionuclides in the environment. John Wiley and Sons: West Sussex, United Kingdom, pp. 261-272, May 2010. Malinowski E. Window factor analysis: theoretical derivation and applicationto flow injection analysis data. J. Chemom. 1992; 6: 29-40. Hu LQ, Wu HL, Jiang JH, Han QJ, Xia AL, Yu RQ. Estimating the chemical rank of three-way data arrays by a simple linear transform incorporating Monte Carlo simulation. Talanta 2007; 71: 373-380. Coble PG. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996; 52: 325-346. Yu YJ, Wu HL, Nie JF, Zhang SR, Li SF, Li YN, Zhhou SH, Yu RQ. A comparison of several trilinear second-order calibration algorithms. Chemom. Intell. Lab. Syst. 2011; 106(1): 93-107. Ceulemans E, Kiers HA. Selecting among three-mode principal component models of different types and complexity: a numerical convex hull based method. Br. J. Math. Stat. Psych. 2006; 59(1): 133-150. Jiji RD, Andersson GG, Booksh KS. Applicaton of Parafac for calibration with excitation-emission matrix fluorescence spectra of three classes of environmental pollutants. J. Chemom. 2000; 14(3): 171-185. Bugden JBC, Yeung CW, Kepkay PE, Lee K. Application of ultraviolet fluorometry and excitation-emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oil in seawater. Mar. Pollut. Bull. 2008; 56(4): 677-685. Smilde A, Bro R, Geladi P. Multi-Way Analysis with Applications in the Chemical Sciences. Wiley, 2004. Bro R. Parafac: tutorial and applications. Chemometr. Intell. Lab. 1997; 38: 149-171. Cichocki A, Zdunek R, Phan AH, Amari SI. Non Negative Matrix and Tensor Factorizations: Application to Exploratory Multi-Way Data Analysis and Blind Separation. Wiley: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom, 2009. Timmerman ME, Kiers HA. Three-mode principal components analysis: choosing the number of components and sensitivity to local optima. Br. J. Math. Stat. Psych. 2000; 53(1): 1-16. Polak E. Optimization Algorithms and Consistent Approximations. Springer-Verlag: New York, 1997. Zepp RG, Sheldon WM, Moran MA. Dissolved organic fluorophores in southeastern us coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. Mar. Chem. 2004; 89(1-4): 15-36. Price K, Storn R. Differential evolution. Dr. Dobb's J. 1997; 264: 18-24. Khatri CG, Rao CR. Solutions to some functional equations and their applications to characterization of probability distributions. Sankhya: Indian J. Stat. 1968; Series A(30): 167-180. Carroll P, Chang JJ. Analysis of individual differences in multi-dimensional scaling via n-way generalization of Eckart-Young decomposition. Psychometrika 1970; 35: 283-319. Harshman RA, Sarbo WSD. An application of Parafac to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques. Stat. Anal. Données 1984; 13: 14-32. Luenberger DG, Ye Y. Linear and Non Linear Programming (3rd edn.) Wiley: Springer, Springer Science + Business Media, LLC, 233 Spring Street, New York, NY 10013, USA, 2008. Lacowicz JR. Principle of Fluorescence Spectroscopy. K. Academic Ed. Plenum Publishers: Springer Science + Business Media, LLC, 233 Spring Street, New York NY10013, USA, 1999. Sternberg SR. Grayscale morphology. Comput. Vision, Graphics, Image Process. 1986; 35: 333-355. Gonzalez R, Woods R. Digital Image Processing (2nd edn.) P. E. International, Ed. Prentice Hall: Upper Saddle River, New Jersey, USA, 2001. Bro R, Jong SD. A fast non-negativity-constrained least squares algorithm. J. Chemom. 1997; 11(5): 393-401. Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press: The Edinburgh Building, Cambridge, CB2 8RU, UK, 2004. Chen ZP, Wu HL, Jiang JH, Li Y, Yu RQ. A novel trilinear decomposition algorithm for second-order linear calibration. Chemom. Intell. Lab. Syst. 2000; 1(52): 75-86. Paatero P. A weighted non-negative least squares algorithm for three-way Parafac factor analysis. Chemom. Intell. Lab. Syst. 1997; 38(2): 223-242. Tomasi G, Bro R. Parafac and missing values. Chemom. Intell. Lab. Syst. 2005; 75(2): 163-180. Serra J. Image Analysis and Mathematical Morphology, vol. 2. Academic Press: New York, USA, 1988. 1986; 35 2003; 17 2007; 71 2000; 1 1970 2014; 132 2014; 450 1970; 35 1992; 6 2009; 96 2009; 51 2013; 58 2000; 14 1997; 11 2001 2000 1965; 7 1997; 264 1984; 13 2000; 53 1999; 13 2005; 75 1927; 6 1982 2003; 82 1992; 2 1988 2009; 23 2010; 32 2012 2011 2010 2006; 98 2004; 89 2006; 59 2002; 8 1998 2009 2008 1997 1996; 52 2008; 56 1995 2004 1992 1968; Series A 2001; 449 2014; 115 1999 2014; 107 2010; 44 1993; 18 2011; 106 2011; 91 2002; 21 1997; 38 2014 2013 2001; 434 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 Gonzalez R (e_1_2_8_33_1) 2001 e_1_2_8_68_1 Serra J (e_1_2_8_34_1) 1982 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 Lacowicz JR (e_1_2_8_31_1) 1999 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 Vandenhove H (e_1_2_8_58_1) 2010 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 Price K (e_1_2_8_39_1) 1997; 264 Harshman RA (e_1_2_8_49_1) 1984; 13 e_1_2_8_32_1 e_1_2_8_55_1 Khatri CG (e_1_2_8_47_1) 1968 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 Serra J (e_1_2_8_67_1) 1988 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Polak E (e_1_2_8_69_1) 1997 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Kim J (e_1_2_8_21_1) 2012 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – reference: Luciani X, Albera L. Canonical polyadic decomposition based on joint eigenvalue decomposition. Chemom.Intell. Lab. Syst. 2014; 132: 152-167. – reference: Paatero P. Construction and analysis of degenerate Parafac models. J.Chemom. 2000; 14(3): 285-299. – reference: Hitchcock FL. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 1927; 6: 165-189. – reference: Bugden JBC, Yeung CW, Kepkay PE, Lee K. Application of ultraviolet fluorometry and excitation-emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oil in seawater. Mar. Pollut. Bull. 2008; 56(4): 677-685. – reference: Smilde A, Bro R, Geladi P. Multi-Way Analysis with Applications in the Chemical Sciences. Wiley, 2004. – reference: Harshman RA, Sarbo WSD. An application of Parafac to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques. Stat. Anal. Données 1984; 13: 14-32. – reference: Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press: The Edinburgh Building, Cambridge, CB2 8RU, UK, 2004. – reference: Lacowicz JR. Principle of Fluorescence Spectroscopy. K. Academic Ed. Plenum Publishers: Springer Science + Business Media, LLC, 233 Spring Street, New York NY10013, USA, 1999. – reference: Persson T, Wedborg M. Multivariate evaluation of the fluorescence of aquatic organic matter. Anal. Chim. Acta 2001; 434: 179-192. – reference: Gonzalez R, Woods R. Digital Image Processing (2nd edn.) P. E. International, Ed. Prentice Hall: Upper Saddle River, New Jersey, USA, 2001. – reference: Bunker D, Han L, Zhang S. A proximal ANLS algorithm for nonnegative tensor factorization with a periodic enhanced line search. Appl. Math. 2013; 58(5): 493-509. – reference: Timmerman ME, Kiers HA. Three-mode principal components analysis: choosing the number of components and sensitivity to local optima. Br. J. Math. Stat. Psych. 2000; 53(1): 1-16. – reference: Coble PG. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996; 52: 325-346. – reference: Zhu B, Pennell SA, Ryan DK. Characterizing the interaction between uranyl ion and soil fulvic acid using parallel factor analysis and a two-site fluorescence quenching model. Microchem. J. 2014; 115: 51-57. – reference: Lim LH, Comon P. Nonnegative approximations of nonnegative tensors. J. Chemom. 2009; 23: 432-441. – reference: Carroll P, Chang JJ. Analysis of individual differences in multi-dimensional scaling via n-way generalization of Eckart-Young decomposition. Psychometrika 1970; 35: 283-319. – reference: Paatero P. A weighted non-negative least squares algorithm for three-way Parafac factor analysis. Chemom. Intell. Lab. Syst. 1997; 38(2): 223-242. – reference: Bro R. Parafac: tutorial and applications. Chemometr. Intell. Lab. 1997; 38: 149-171. – reference: Malinowski E. Window factor analysis: theoretical derivation and applicationto flow injection analysis data. J. Chemom. 1992; 6: 29-40. – reference: Yu YJ, Wu HL, Nie JF, Zhang SR, Li SF, Li YN, Zhhou SH, Yu RQ. A comparison of several trilinear second-order calibration algorithms. Chemom. Intell. Lab. Syst. 2011; 106(1): 93-107. – reference: Polak E. Optimization Algorithms and Consistent Approximations. Springer-Verlag: New York, 1997. – reference: Carstea EM, Baker A, Bieroza M, Reynolds D. Continuous fluorescence excitation-emission matrix monitoring of river organic matter. Water Res. 2010; 44(18): 5356-5366. – reference: Comon P, Luciani X, De Almeida ALF. Tensor decompositions, alternating least squares and other tales. J. Chemom. 2009; 23: 393-405. – reference: Zepp RG, Sheldon WM, Moran MA. Dissolved organic fluorophores in southeastern us coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. Mar. Chem. 2004; 89(1-4): 15-36. – reference: Khatri CG, Rao CR. Solutions to some functional equations and their applications to characterization of probability distributions. Sankhya: Indian J. Stat. 1968; Series A(30): 167-180. – reference: Vandenhove H, Hurtgen C, Payne T. Radionuclides in the Environment: Uranium, Radionuclides in the environment. John Wiley and Sons: West Sussex, United Kingdom, pp. 261-272, May 2010. – reference: Patra D, Mishra A. Recent developments in multi-component synchronous fluorescence scan analysis. TrAC Trends Anal. Chem. 2002; 21(12): 787-798. – reference: Belzile C, Guo L. Optical properties of low molecular weight and colloidal organic matter: application of the ultrafiltration permeation model to DOM absorption and fluorescence. Mar. Chem. 2006; 98(2-4): 183-196. – reference: Sternberg SR. Grayscale morphology. Comput. Vision, Graphics, Image Process. 1986; 35: 333-355. – reference: Royer JP, Thirion-Moreau N, Comon P. Computing the polyadic decomposition of nonnegative third-order tensors. EURASIP Signal Process. 2011; 91(9): 2159-2171. – reference: Cichocki A, Zdunek R, Phan AH, Amari SI. Non Negative Matrix and Tensor Factorizations: Application to Exploratory Multi-Way Data Analysis and Blind Separation. Wiley: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom, 2009. – reference: He Z, Cichocki A, Xie S, Choi K. Detecting the number of clusters in n-way probabilistic clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2010; 32(11): 2006-2021. – reference: Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev. 2009; 51(3): 455-500. – reference: Jiji RD, Andersson GG, Booksh KS. Applicaton of Parafac for calibration with excitation-emission matrix fluorescence spectra of three classes of environmental pollutants. J. Chemom. 2000; 14(3): 171-185. – reference: Nocedal J, Wright S. Numerical Optimization. Springer, Ed.: New York, NY, 1999. – reference: Serra J. Image Analysis and Mathematical Morphology. Academic Press: New York, USA, 1982. – reference: Kiers HAL. Towards a standardized notation and terminology in multiway analysis. J. Chemom. 2000; 14(3): 105-122. – reference: Bro R, Jong SD. A fast non-negativity-constrained least squares algorithm. J. Chemom. 1997; 11(5): 393-401. – reference: Price K, Storn R. Differential evolution. Dr. Dobb's J. 1997; 264: 18-24. – reference: Coloigner J, Karfoul A, Alberra L, Comon P. Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors. Linear Algebra Appl. 2014; 450: 334-374. – reference: Luciani X, Mounier S, Redon R, Bois A. A simple correction method of inner filter effects affecting FEEM and its application to the Parafac decomposition. Chemom. Intel. Lab. Syst. 2009; 96(2): 227-238. – reference: Kim J, Park H. Fast Nonnegative Tensor Factorization with an Active-Set-Like Method, High-Performance Scientific Computing: Algorithms and Applications. Springer: Springer London, pp. 311-326, 2012. – reference: Stedmon CA, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003; 82: 239-254. – reference: Tomasi G, Bro R. Parafac and missing values. Chemom. Intell. Lab. Syst. 2005; 75(2): 163-180. – reference: Hu LQ, Wu HL, Jiang JH, Han QJ, Xia AL, Yu RQ. Estimating the chemical rank of three-way data arrays by a simple linear transform incorporating Monte Carlo simulation. Talanta 2007; 71: 373-380. – reference: Reynolds DM. The differentiation of biodegradable and non-biodegradable dissolved organic matter in wastewaters using fluorescence spectroscopy. J. Chem. Technol. Biotechnol. 2002; 8(77): 965-972. – reference: Frenich AG, Zamora DP, Vidal JM, Galera MM. Resolution and quantitation of mixtures with overlapped spectra by orthogonal projection approach and alternating least squares. Anal. Chim. Acta 2001; 449: 143-155. – reference: Nelder J, Mead R. A simplex method for function minimization. Comput. J. 1965; 7: 308-313. – reference: Ceulemans E, Kiers HA. Selecting among three-mode principal component models of different types and complexity: a numerical convex hull based method. Br. J. Math. Stat. Psych. 2006; 59(1): 133-150. – reference: Luenberger DG, Ye Y. Linear and Non Linear Programming (3rd edn.) Wiley: Springer, Springer Science + Business Media, LLC, 233 Spring Street, New York, NY 10013, USA, 2008. – reference: Jiang JH, Wu HL, Li Y, Yu RQ. Alternating coupled vectors resolution (acover) method for trilinear analysis of three-way data. J. Chemom. 1999; 13(6): 557-578. – reference: Ferretto N, Tedetti M, Guigue C, Mounier S, Redon R, Goutx M. Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation?emission matrices and parallel factor analysis. Source Chemosphere 2014; 107: 344-353. – reference: Mehrotra S. On the implementation of a primal-dual interior point method. SIAM J. Optim. 1992; 2:575-601. – reference: Ingber L. Simulated annealing: practice versus theory. Math. Comput. Model. 1993; 18(11): 29-57. – reference: Bro R, Kiers HA. A new efficient method for determining the number of components in Parafac models. J. Chemom. 2003; 17: 274-286. – reference: Serra J. Image Analysis and Mathematical Morphology, vol. 2. Academic Press: New York, USA, 1988. – reference: Chen ZP, Wu HL, Jiang JH, Li Y, Yu RQ. A novel trilinear decomposition algorithm for second-order linear calibration. Chemom. Intell. Lab. Syst. 2000; 1(52): 75-86. – volume: 106 start-page: 93 issue: 1 year: 2011 end-page: 107 article-title: A comparison of several trilinear second‐order calibration algorithms publication-title: Chemom. Intell. Lab. Syst. – volume: 23 start-page: 432 year: 2009 end-page: 441 article-title: Nonnegative approximations of nonnegative tensors publication-title: J. Chemom. – year: 2009 – volume: 58 start-page: 493 issue: 5 year: 2013 end-page: 509 article-title: A proximal ANLS algorithm for nonnegative tensor factorization with a periodic enhanced line search publication-title: Appl. Math. – volume: 52 start-page: 325 year: 1996 end-page: 346 article-title: Characterization of marine and terrestrial DOM in seawater using excitation‐emission matrix spectroscopy publication-title: Mar. Chem. – volume: 21 start-page: 787 issue: 12 year: 2002 end-page: 798 article-title: Recent developments in multi‐component synchronous fluorescence scan analysis publication-title: TrAC Trends Anal. Chem. – volume: 11 start-page: 393 issue: 5 year: 1997 end-page: 401 article-title: A fast non‐negativity‐constrained least squares algorithm publication-title: J. Chemom. – year: 2001 – volume: 44 start-page: 5356 issue: 18 year: 2010 end-page: 5366 article-title: Continuous fluorescence excitation‐emission matrix monitoring of river organic matter publication-title: Water Res. – volume: 14 start-page: 285 issue: 3 year: 2000 end-page: 299 article-title: Construction and analysis of degenerate Parafac models publication-title: J.Chemom. – volume: 132 start-page: 152 year: 2014 end-page: 167 article-title: Canonical polyadic decomposition based on joint eigenvalue decomposition publication-title: Chemom.Intell. Lab. Syst. – volume: 449 start-page: 143 year: 2001 end-page: 155 article-title: Resolution and quantitation of mixtures with overlapped spectra by orthogonal projection approach and alternating least squares publication-title: Anal. Chim. Acta – volume: 450 start-page: 334 year: 2014 end-page: 374 article-title: Line search and trust region strategies for canonical decomposition of semi‐nonnegative semi‐symmetric 3rd order tensors publication-title: Linear Algebra Appl. – start-page: 311 year: 2012 end-page: 326 – start-page: 1 year: 2014 end-page: 6 – start-page: 3938 year: 2013 end-page: 3942 – year: 1998 – volume: 6 start-page: 29 year: 1992 end-page: 40 article-title: Window factor analysis: theoretical derivation and applicationto flow injection analysis data publication-title: J. Chemom. – volume: 38 start-page: 223 issue: 2 year: 1997 end-page: 242 article-title: A weighted non‐negative least squares algorithm for three‐way Parafac factor analysis publication-title: Chemom. Intell. Lab. Syst. – year: 1982 – start-page: 2365 year: 2008 end-page: 2368 – volume: 56 start-page: 677 issue: 4 year: 2008 end-page: 685 article-title: Application of ultraviolet fluorometry and excitation‐emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oil in seawater publication-title: Mar. Pollut. Bull. – year: 2008 – volume: 82 start-page: 239 year: 2003 end-page: 254 article-title: Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy publication-title: Mar. Chem. – year: 2004 – volume: 6 start-page: 165 year: 1927 end-page: 189 article-title: The expression of a tensor or a polyadic as a sum of products publication-title: J. Math. Phys. – year: 1997 – volume: 91 start-page: 2159 issue: 9 year: 2011 end-page: 2171 article-title: Computing the polyadic decomposition of nonnegative third‐order tensors publication-title: EURASIP Signal Process. – volume: 96 start-page: 227 issue: 2 year: 2009 end-page: 238 article-title: A simple correction method of inner filter effects affecting FEEM and its application to the Parafac decomposition publication-title: Chemom. Intel. Lab. Syst. – start-page: 261 year: 2010 end-page: 272 – start-page: 510 year: 2008 end-page: 514 – volume: 35 start-page: 283 year: 1970 end-page: 319 article-title: Analysis of individual differences in multi‐dimensional scaling via n‐way generalization of Eckart‐Young decomposition publication-title: Psychometrika – start-page: 2732 year: 2011 end-page: 2735 – volume: 32 start-page: 2006 issue: 11 year: 2010 end-page: 2021 article-title: Detecting the number of clusters in n‐way probabilistic clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 23 start-page: 393 year: 2009 end-page: 405 article-title: Tensor decompositions, alternating least squares and other tales publication-title: J. Chemom. – volume: 434 start-page: 179 year: 2001 end-page: 192 article-title: Multivariate evaluation of the fluorescence of aquatic organic matter publication-title: Anal. Chim. Acta – start-page: 1095 year: 2004 end-page: 1098 – volume: 51 start-page: 455 issue: 3 year: 2009 end-page: 500 article-title: Tensor decompositions and applications publication-title: SIAM Rev. – volume: 115 start-page: 51 year: 2014 end-page: 57 article-title: Characterizing the interaction between uranyl ion and soil fulvic acid using parallel factor analysis and a two‐site fluorescence quenching model publication-title: Microchem. J. – volume: 35 start-page: 333 year: 1986 end-page: 355 article-title: Grayscale morphology publication-title: Comput. Vision, Graphics, Image Process – volume: 89 start-page: 15 issue: 1–4 year: 2004 end-page: 36 article-title: Dissolved organic fluorophores in southeastern us coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation‐emission matrices publication-title: Mar. Chem. – volume: Series A start-page: 167 issue: 30 year: 1968 end-page: 180 article-title: Solutions to some functional equations and their applications to characterization of probability distributions publication-title: Sankhya: Indian J. Stat. – volume: 107 start-page: 344 year: 2014 end-page: 353 article-title: Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation?emission matrices and parallel factor analysis publication-title: Source Chemosphere – start-page: 648 year: 1995 end-page: 652 – volume: 53 start-page: 1 issue: 1 year: 2000 end-page: 16 article-title: Three‐mode principal components analysis: choosing the number of components and sensitivity to local optima publication-title: Br. J. Math. Stat. Psych. – volume: 13 start-page: 557 issue: 6 year: 1999 end-page: 578 article-title: Alternating coupled vectors resolution (acover) method for trilinear analysis of three‐way data publication-title: J. Chemom. – volume: 18 start-page: 29 issue: 11 year: 1993 end-page: 57 article-title: Simulated annealing: practice versus theory publication-title: Math. Comput. Model. – year: 1992 – volume: 1 start-page: 75 issue: 52 year: 2000 end-page: 86 article-title: A novel trilinear decomposition algorithm for second‐order linear calibration publication-title: Chemom. Intell. Lab. Syst. – volume: 13 start-page: 14 year: 1984 end-page: 32 article-title: An application of Parafac to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split‐half diagnostic techniques publication-title: Stat. Anal. Données – volume: 8 start-page: 965 issue: 77 year: 2002 end-page: 972 article-title: The differentiation of biodegradable and non‐biodegradable dissolved organic matter in wastewaters using fluorescence spectroscopy publication-title: J. Chem. Technol. Biotechnol. – year: 2000 article-title: N‐Way toolbox for Matlab – start-page: 4114 year: 2010 end-page: 4117 – volume: 7 start-page: 308 year: 1965 end-page: 313 article-title: A simplex method for function minimization publication-title: Comput. J. – volume: 71 start-page: 373 year: 2007 end-page: 380 article-title: Estimating the chemical rank of three‐way data arrays by a simple linear transform incorporating Monte Carlo simulation publication-title: Talanta – volume: 14 start-page: 171 issue: 3 year: 2000 end-page: 185 article-title: Applicaton of Parafac for calibration with excitation‐emission matrix fluorescence spectra of three classes of environmental pollutants publication-title: J. Chemom. – start-page: 1 year: 1970 end-page: 84 – volume: 59 start-page: 133 issue: 1 year: 2006 end-page: 150 article-title: Selecting among three‐mode principal component models of different types and complexity: a numerical convex hull based method publication-title: Br. J. Math. Stat. Psych. – volume: 264 start-page: 18 year: 1997 end-page: 24 article-title: Differential evolution publication-title: Dr. Dobb's J. – year: 1988 – volume: 75 start-page: 163 issue: 2 year: 2005 end-page: 180 article-title: Parafac and missing values publication-title: Chemom. Intell. Lab. Syst – volume: 17 start-page: 274 year: 2003 end-page: 286 article-title: A new efficient method for determining the number of components in Parafac models publication-title: J. Chemom. – volume: 38 start-page: 149 year: 1997 end-page: 171 article-title: Parafac: tutorial and applications publication-title: Chemometr. Intell. Lab. – volume: 14 start-page: 105 issue: 3 year: 2000 end-page: 122 article-title: Towards a standardized notation and terminology in multiway analysis publication-title: J. Chemom. – volume: 2 start-page: 575 year: 1992 end-page: 601 article-title: On the implementation of a primal‐dual interior point method publication-title: SIAM J. Optim. – start-page: 71 year: 2012 end-page: 75 – volume: 98 start-page: 183 issue: 2–4 year: 2006 end-page: 196 article-title: Optical properties of low molecular weight and colloidal organic matter: application of the ultrafiltration permeation model to DOM absorption and fluorescence publication-title: Mar. Chem. – year: 1999 – ident: e_1_2_8_37_1 doi: 10.1137/0802028 – ident: e_1_2_8_12_1 doi: 10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1 – ident: e_1_2_8_29_1 doi: 10.1016/j.chemolab.2004.07.003 – ident: e_1_2_8_36_1 doi: 10.1007/s10492-013-0026-2 – ident: e_1_2_8_66_1 doi: 10.1016/j.microc.2014.02.004 – volume-title: Optimization Algorithms and Consistent Approximations year: 1997 ident: e_1_2_8_69_1 – ident: e_1_2_8_60_1 doi: 10.1016/j.marchem.2005.08.009 – ident: e_1_2_8_50_1 doi: 10.1002/cem.801 – ident: e_1_2_8_2_1 doi: 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I – ident: e_1_2_8_62_1 doi: 10.1002/1099-128X(200005/06)14:3<171::AID-CEM591>3.0.CO;2-P – volume-title: Principle of Fluorescence Spectroscopy year: 1999 ident: e_1_2_8_31_1 doi: 10.1007/978-1-4757-3061-6 – ident: e_1_2_8_35_1 doi: 10.1007/978-0-387-74503-9 – ident: e_1_2_8_32_1 doi: 10.1016/j.marchem.2004.02.006 – ident: e_1_2_8_56_1 doi: 10.1109/ICASSP.2013.6638397 – ident: e_1_2_8_59_1 doi: 10.1016/j.watres.2010.06.036 – ident: e_1_2_8_55_1 doi: 10.1109/TPAMI.2010.15 – ident: e_1_2_8_9_1 doi: 10.1016/S0304-4203(03)00072-0 – ident: e_1_2_8_16_1 doi: 10.1016/S0169-7439(00)00081-2 – ident: e_1_2_8_44_1 doi: 10.1109/MLSP.2014.6958896 – ident: e_1_2_8_5_1 doi: 10.1002/cem.1180060104 – ident: e_1_2_8_11_1 doi: 10.1002/cem.1236 – ident: e_1_2_8_20_1 doi: 10.1002/(SICI)1099-128X(199911/12)13:6<557::AID-CEM563>3.0.CO;2-C – ident: e_1_2_8_71_1 – ident: e_1_2_8_40_1 doi: 10.1016/0895-7177(93)90204-C – ident: e_1_2_8_51_1 doi: 10.1016/j.talanta.2006.04.014 – ident: e_1_2_8_61_1 doi: 10.1016/j.marpolbul.2007.12.022 – volume-title: Digital Image Processing year: 2001 ident: e_1_2_8_33_1 – ident: e_1_2_8_15_1 doi: 10.1007/BF02310791 – ident: e_1_2_8_17_1 doi: 10.1002/9780470747278 – ident: e_1_2_8_52_1 doi: 10.1109/SAM.2008.4606923 – volume: 264 start-page: 18 year: 1997 ident: e_1_2_8_39_1 article-title: Differential evolution publication-title: Dr. Dobb's J. – ident: e_1_2_8_30_1 doi: 10.1016/j.chemolab.2010.03.006 – ident: e_1_2_8_48_1 doi: 10.1016/j.chemolab.2009.02.008 – ident: e_1_2_8_13_1 doi: 10.1002/cem.1244 – ident: e_1_2_8_18_1 – ident: e_1_2_8_27_1 doi: 10.1016/j.sigpro.2011.03.006 – ident: e_1_2_8_57_1 doi: 10.1016/j.chemosphere.2013.12.087 – ident: e_1_2_8_10_1 doi: 10.1002/0470012110 – ident: e_1_2_8_26_1 doi: 10.1109/ICASSP.2011.5947050 – ident: e_1_2_8_42_1 – ident: e_1_2_8_63_1 doi: 10.1117/12.203507 – ident: e_1_2_8_6_1 doi: 10.1016/S0003-2670(01)00812-1 – ident: e_1_2_8_4_1 doi: 10.1016/S0003-2670(01)01354-X – volume-title: Image Analysis and Mathematical Morphology year: 1982 ident: e_1_2_8_34_1 – ident: e_1_2_8_38_1 doi: 10.1093/comjnl/7.4.308 – ident: e_1_2_8_64_1 doi: 10.1016/S0165-9936(02)01201-3 – ident: e_1_2_8_54_1 doi: 10.1348/000711005X64817 – volume-title: Image Analysis and Mathematical Morphology year: 1988 ident: e_1_2_8_67_1 – ident: e_1_2_8_45_1 doi: 10.1016/S0169-7439(97)00032-4 – ident: e_1_2_8_70_1 doi: 10.1017/CBO9780511804441 – ident: e_1_2_8_46_1 doi: 10.1002/sapm192761164 – ident: e_1_2_8_43_1 doi: 10.1016/j.laa.2014.02.001 – start-page: 261 volume-title: Radionuclides in the Environment: Uranium year: 2010 ident: e_1_2_8_58_1 – start-page: 311 volume-title: Fast Nonnegative Tensor Factorization with an Active‐Set‐Like Method year: 2012 ident: e_1_2_8_21_1 – ident: e_1_2_8_7_1 – ident: e_1_2_8_3_1 doi: 10.1016/0304-4203(95)00062-3 – ident: e_1_2_8_25_1 doi: 10.1109/ICASSP.2008.4518122 – ident: e_1_2_8_65_1 doi: 10.1002/jctb.664 – start-page: 167 issue: 30 year: 1968 ident: e_1_2_8_47_1 article-title: Solutions to some functional equations and their applications to characterization of probability distributions publication-title: Sankhya: Indian J. Stat. – ident: e_1_2_8_19_1 – ident: e_1_2_8_24_1 doi: 10.1016/S0169-7439(97)00031-2 – ident: e_1_2_8_8_1 – ident: e_1_2_8_23_1 doi: 10.1016/j.chemolab.2013.12.009 – ident: e_1_2_8_53_1 doi: 10.1348/000711000159132 – ident: e_1_2_8_22_1 doi: 10.1137/07070111X – volume: 13 start-page: 14 year: 1984 ident: e_1_2_8_49_1 article-title: An application of Parafac to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split‐half diagnostic techniques publication-title: Stat. Anal. Données – ident: e_1_2_8_14_1 doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L – ident: e_1_2_8_68_1 doi: 10.1016/0734-189X(86)90004-6 – ident: e_1_2_8_28_1 doi: 10.1109/ICASSP.2010.5495727 – ident: e_1_2_8_41_1 doi: 10.1007/b98874 |
| SSID | ssj0009934 |
| Score | 2.1383066 |
| Snippet | We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process... |
| SourceID | hal proquest crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 253 |
| SubjectTerms | 3D fluorescence spectroscopy Algorithms Chains Chemical analysis Computer Science Computer simulation Decomposition Fluorescence Mathematical analysis nonnegative Canonical Polyadic decomposition nonnegative tensor factorization optimization Preprocessing Regularization Scattering Signal and Image Processing Spectroscopy Spectrum analysis Three dimensional |
| Title | A regularized nonnegative canonical polyadic decomposition algorithm with preprocessing for 3D fluorescence spectroscopy |
| URI | https://api.istex.fr/ark:/67375/WNG-83RKNV6J-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.2709 https://www.proquest.com/docview/1674473630 https://www.proquest.com/docview/1685778310 https://hal.science/hal-01126693 |
| Volume | 29 |
| WOSCitedRecordID | wos000352582800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-128X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009934 issn: 0886-9383 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgRWIvg_EhOjbkoQmewhI7iePHqlupYFTTxGBvlms7W7WuqdJ22vjruXM-tkkgIfFkyb4olu3z_Wzf_Y6QPR1muTFpGhgdwwElj3QgHWyGBtA4B_vHbGJ8sgkxGmVnZ_K49qrEWJiKH6K9cEPN8Ps1KrgeL_bvSEONu_rEBMbudTCmCg5enYOTwenRHeWu9G_KoEZpIOEg1lDPhmy_-faBMXp8ga6QHRzdmwd48z5q9WZn8Ox_OvycbNRgk_aq1bFJHrnZC_K03-R4e0luerT0yejLyS9n6Qy9Xs49FTiFIS98zCSdF9NbbSeGWocO6LWXF9XT86KcLC-uKN7l0jnSY_qgAzCGFKAw5Qc0n66K0hNGGUd9UCeSZxbz21fkdHD4vT8M6lwMgYk5k0FiokxG0kLhcse0YxE3Ng4NA4hhpBSRzMEaagsIxoU2tCaPtclCze04i63kr8kadNu9IRRqHaxfkcrExGPNNHNOWAA-WuRcR7pLPjaTokxNVI75MqaqolhmCkZS4Uh2yW4rOa_IOf4g8x7mtW1GNu1h70hhXYjhU6nk11GXfPDT3orp8hI93kSifo4-q4yffB39SL-oYZdsN-tC1cq-UBjIEQue8hA61DbDTOLbi565YoUyWSIEZnWDf_lV8tceq_7hNyy3_lXwLVkHGJdU_kTbZG1ZrtwOeWKul5NF-a5Wi98ABxLw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdGizRe-EZ0DDAIwVNYYidxLJ6qbqWwrkLTBnuzPNvZqnVNlbXTxl_PnfMxJoGExJMl-6JYts_3s333O0Le6TDLjUnTwOgYDih5pAPpYDM0gMY52D9mE-OTTYjJJDs6kt_WyKcmFqbih2gv3FAz_H6NCo4X0ls3rKHGnX9kAoP3unHKRdYh3e394eH4hnNX-kdl0KM0kHASa7hnQ7bVfHvLGt05RV_ILg7v1S3A-Tts9XZn-OC_evyQ3K_hJu1X6-MRWXPzx2R90GR5e0Ku-rT06ejL6U9n6Rz9Xk48GTiFQS981CRdFLNrbaeGWocu6LWfF9Wzk6KcLk_PKd7m0gUSZPqwAzCHFMAw5ds0n62K0lNGGUd9WCfSZxaL66fkcLhzMBgFdTaGwMScySAxUSYjaaFwuWPasYgbG4eGAcgwUopI5mAPtQUM40IbWpPH2mSh5vY4i63kz0gHuu2eEwq1DlawSGVi4mPNNHNOWIA-WuRcR7pHPjSzokxNVY4ZM2aqIllmCkZS4Uj2yJtWclHRc_xB5i1MbNuMfNqj_lhhXYgBVKnkl1GPvPfz3orp8gx93kSifkw-q4zv706-p1_VqEc2m4WhanW_UBjKEQue8hA61DbDTOLri567YoUyWSIE5nWDf_ll8tceq8HOHpYb_yr4mqyPDvbGavxlsvuC3ANQl1TeRZuksyxX7iW5ay6X04vyVa0jvwBiqhbg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdGi4AXvhGFAQYheApL7HxZPFXtSmElmibG9mZ5trNVdE2UtdPGX8-d8zEmgYTEkyX7oli2z_ezffc7Qt4qP821jmNPqxAOKHmgPGFhM9SAxjnYP2Yi7ZJNJFmWHh6K3Q3ysY2Fqfkhugs31Ay3X6OC29LkW1esodqefmAJBu_1w0hEYY_0x3uT_dkV565wj8qgR7En4CTWcs_6bKv99po1unGCvpB9HN6La4Dzd9jq7M7k3n_1-D6528BNOqzXxwOyYZcPye1Rm-XtEbkY0sqlo6_mP62hS_R7OXZk4BQGvXBRk7QsFpfKzDU1Fl3QGz8vqhbHRTVfnZxSvM2lJRJkurADMIcUwDDlY5ov1kXlKKO0pS6sE-kzi_LyMdmfbH8bTb0mG4OnQ86EF-kgFYEwUNjcMmVZwLUJfc0AZGghkkDkYA-VAQxjfeMbnYdKp77i5igNjeBPSA-6bZ8SCrUWVnASi0iHR4opZm1iAPqoJOcqUAPyvp0VqRuqcsyYsZA1yTKTMJISR3JAXneSZU3P8QeZNzCxXTPyaU-HM4l1PgZQxYKfBwPyzs17J6aqH-jzlkTyIPskU763k32Pv8jpgGy2C0M26n4mMZQjTHjMfehQ1wwzia8vammLNcqkUZJgXjf4l1smf-2xHG1_xfLZvwq-Ird2xxM5-5ztPCd3ANNFtXPRJumtqrV9QW7q89X8rHrZqMgvzegWWw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+regularized+nonnegative+canonical+polyadic+decomposition+algorithm+with+preprocessing+for+3D+fluorescence+spectroscopy&rft.jtitle=Journal+of+chemometrics&rft.au=Royer%2C+Jean-Philip&rft.au=Thirion-Moreau%2C+Nad%C3%A8ge&rft.au=Comon%2C+Pierre&rft.au=Redon%2C+Roland&rft.date=2015-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0886-9383&rft.eissn=1099-128X&rft.volume=29&rft.issue=4&rft.spage=253&rft_id=info:doi/10.1002%2Fcem.2709&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3660509711 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon |