Global convergence of a proximal linearized algorithm for difference of convex functions
A proximal linearized algorithm for minimizing difference of two convex functions is proposed. If the sequence generated by the algorithm is bounded it is proved that every cluster point is a critical point of the function under consideration, even if the auxiliary minimizations are performed inexac...
Uloženo v:
| Vydáno v: | Optimization letters Ročník 10; číslo 7; s. 1529 - 1539 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2016
Springer Verlag |
| Témata: | |
| ISSN: | 1862-4472, 1862-4480 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A proximal linearized algorithm for minimizing difference of two convex functions is proposed. If the sequence generated by the algorithm is bounded it is proved that every cluster point is a critical point of the function under consideration, even if the auxiliary minimizations are performed inexactly at each iteration. Linear convergence of the sequence is established under suitable additional assumptions. |
|---|---|
| ISSN: | 1862-4472 1862-4480 |
| DOI: | 10.1007/s11590-015-0969-1 |