Global convergence of a proximal linearized algorithm for difference of convex functions

A proximal linearized algorithm for minimizing difference of two convex functions is proposed. If the sequence generated by the algorithm is bounded it is proved that every cluster point is a critical point of the function under consideration, even if the auxiliary minimizations are performed inexac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters Jg. 10; H. 7; S. 1529 - 1539
Hauptverfasser: Souza, João Carlos O., Oliveira, Paulo Roberto, Soubeyran, Antoine
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2016
Springer Verlag
Schlagworte:
ISSN:1862-4472, 1862-4480
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A proximal linearized algorithm for minimizing difference of two convex functions is proposed. If the sequence generated by the algorithm is bounded it is proved that every cluster point is a critical point of the function under consideration, even if the auxiliary minimizations are performed inexactly at each iteration. Linear convergence of the sequence is established under suitable additional assumptions.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-015-0969-1