Global convergence of a proximal linearized algorithm for difference of convex functions

A proximal linearized algorithm for minimizing difference of two convex functions is proposed. If the sequence generated by the algorithm is bounded it is proved that every cluster point is a critical point of the function under consideration, even if the auxiliary minimizations are performed inexac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization letters Ročník 10; číslo 7; s. 1529 - 1539
Hlavní autoři: Souza, João Carlos O., Oliveira, Paulo Roberto, Soubeyran, Antoine
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2016
Springer Verlag
Témata:
ISSN:1862-4472, 1862-4480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A proximal linearized algorithm for minimizing difference of two convex functions is proposed. If the sequence generated by the algorithm is bounded it is proved that every cluster point is a critical point of the function under consideration, even if the auxiliary minimizations are performed inexactly at each iteration. Linear convergence of the sequence is established under suitable additional assumptions.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-015-0969-1