Multiobjective DC programs with infinite convex constraints
New results are established for multiobjective DC programs with infinite convex constraints (MOPIC) that are defined on Banach spaces (finite or infinite dimensional) with objectives given as the difference of convex functions. This class of problems can also be called multiobjective DC semi-infinit...
Uložené v:
| Vydané v: | Journal of global optimization Ročník 59; číslo 1; s. 41 - 58 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
Springer US
01.05.2014
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | New results are established for multiobjective DC programs with infinite convex constraints (MOPIC) that are defined on Banach spaces (finite or infinite dimensional) with objectives given as the difference of convex functions. This class of problems can also be called multiobjective DC semi-infinite and infinite programs, where decision variables run over finite-dimensional and infinite-dimensional spaces, respectively. Such problems have not been studied as yet. Necessary and sufficient optimality conditions for the weak Pareto efficiency are introduced. Further, we seek a connection between multiobjective linear infinite programs and MOPIC. Both Wolfe and Mond-Weir dual problems are presented, and corresponding weak, strong, and strict converse duality theorems are derived for these two problems respectively. We also extend above results to multiobjective fractional DC programs with infinite convex constraints. The results obtained are new in both semi-infinite and infinite frameworks. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-013-0091-9 |