Double Averaging and Gradient Projection: Convergence Guarantees for Decentralized Constrained Optimization

We consider a generic decentralized constrained optimization problem over static, directed communication networks, where each agent has exclusive access to only one convex, differentiable, local objective term and one convex constraint set. For this setup, we propose a novel decentralized algorithm,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 70; číslo 5; s. 3433 - 3440
Hlavní autoři: Shahriari-Mehr, Firooz, Panahi, Ashkan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider a generic decentralized constrained optimization problem over static, directed communication networks, where each agent has exclusive access to only one convex, differentiable, local objective term and one convex constraint set. For this setup, we propose a novel decentralized algorithm, called double averaging and gradient projection (DAGP). We achieve global optimality through a novel distributed tracking technique we call distributed null projection. Further, we show that DAGP can be used to solve unconstrained problems with nondifferentiable objective terms with a problem reduction scheme. Assuming only smoothness of the objective terms, we study the convergence of DAGP and establish sublinear rates of convergence in terms of feasibility, consensus, and optimality, with no extra assumption (e.g., strong convexity). For the analysis, we forego the difficulties of selecting Lyapunov functions by proposing a new methodology of convergence analysis, which we refer to as aggregate lower-bounding. To demonstrate the generality of this method, we also provide an alternative convergence proof for the standard gradient descent algorithm with smooth functions.
AbstractList We consider a generic decentralized constrained optimization problem over static, directed communication networks, where each agent has exclusive access to only one convex, differentiable, local objective term and one convex constraint set. For this setup, we propose a novel decentralized algorithm, called double averaging and gradient projection (DAGP). We achieve global optimality through a novel distributed tracking technique we call distributed null projection. Further, we show that DAGP can be used to solve unconstrained problems with nondifferentiable objective terms with a problem reduction scheme. Assuming only smoothness of the objective terms, we study the convergence of DAGP and establish sublinear rates of convergence in terms of feasibility, consensus, and optimality, with no extra assumption (e.g., strong convexity). For the analysis, we forego the difficulties of selecting Lyapunov functions by proposing a new methodology of convergence analysis, which we refer to as aggregate lower-bounding. To demonstrate the generality of this method, we also provide an alternative convergence proof for the standard gradient descent algorithm with smooth functions.
We consider a generic decentralized constrained optimization problem over static, directed communication networks, where each agent has exclusive access to only one convex, differentiable, local objective term and one convex constraint set. For this setup, we propose a novel decentralized algorithm, called DAGP (Double Averaging and Gradient Projection). We achieve global optimality through a novel distributed tracking technique we call distributed null projection. Further, we show that DAGP can be used to solve unconstrained problems with non-differentiable objective terms with a problem reduction scheme. Assuming only smoothness of the objective terms, we study the convergence of DAGP and establish sub-linear rates of convergence in terms of feasibility, consensus, and optimality, with no extra assumption (e.g. strong convexity). For the analysis, we forego the difficulties of selecting Lyapunov functions by proposing a new methodology of convergence analysis, which we refer to as aggregate lower-bounding. To demonstrate the generality of this method, we also provide an alternative convergence proof for the standard gradient descent algorithm with smooth functions.
Author Shahriari-Mehr, Firooz
Panahi, Ashkan
Author_xml – sequence: 1
  givenname: Firooz
  orcidid: 0000-0003-2374-2341
  surname: Shahriari-Mehr
  fullname: Shahriari-Mehr, Firooz
  email: firooz@chalmers.se
  organization: Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
– sequence: 2
  givenname: Ashkan
  orcidid: 0000-0003-2085-7127
  surname: Panahi
  fullname: Panahi, Ashkan
  email: ashkan.panahi@chalmers.se
  organization: Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
BackLink https://gup.ub.gu.se/publication/350004$$DView record from Swedish Publication Index (Göteborgs universitet)
https://research.chalmers.se/publication/544526$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp1kU1v1DAQhiNUJLaFOwcOkThnO44_YnNbbWGLVKlIlLNlx-M0y6692AmI_nocbYW4cJoPPfNIo_eyuggxYFW9JbAmBNT1w2a7bqFla8pb4IS-qFaEc9m0vKUX1QqAyEa1UryqLnPel1EwRlbV95s42wPWm5-YzDCGoTbB1btk3Ihhqr-kuMd-GmP4UG9jKNCAocd6N5tkwoSYax9TfYN9oZM5jE_oFjCXYQylvz9N43F8MovidfXSm0PGN8_1qvr26ePD9ra5u9993m7ump5RMjXOIIhOCAtSKapU50lnwTLpvXQ94WCNd6TljAuiWmGlM-Ba3xIurBLI6VX19ezNv_A0W31K49Gk3zqaUSfMaFL_qPtHczhiyjqjtt5zgeC0cT1oZqXUEqTTHBwwYoBKqoq1-a91mE-6rIZ5sVEOAKzw78_8KcUfM-ZJ7-OcQnlcU6JYJzrJRaHgTPUp5pzQ__US0EuwugSrl2D1c7Dl5N35ZETEf3BJQAhC_wBl0KI4
CODEN IETAA9
Cites_doi 10.1109/TSIPN.2016.2524588
10.1109/TSP.2009.2038417
10.1109/TAC.2022.3192316
10.1109/TIT.2006.874516
10.1109/TAC.2008.2009515
10.1016/j.automatica.2009.10.021
10.1137/S003614450037906X
10.1109/JPROC.2018.2817461
10.1109/LCSYS.2018.2834316
10.1007/s10107-018-01357-w
10.1016/j.arcontrol.2019.05.006
10.1109/MSP.2020.2975210
10.1137/16M1084316
10.1109/JSTSP.2013.2247023
10.1109/SFCS.2003.1238221
10.1137/14096668X
10.1109/TAC.2010.2041686
10.1561/2400000003
10.1109/TIT.2012.2191450
10.1007/978-1-4615-0363-7
10.1109/TAC.2016.2615066
10.1007/s10957-010-9737-7
10.1109/CDC.2012.6426375
10.1109/TAC.2010.2091295
10.1109/TAC.2017.2672698
10.1109/TCNS.2023.3338236
10.1109/JPROC.2020.3024266
10.1109/TAC.2017.2737582
10.1109/TAC.2012.2209984
10.1007/s10107-011-0467-x
10.1109/MSP.2020.2974267
10.1109/TAC.2014.2364096
10.1109/TAC.2020.2972824
10.1007/BF00994018
10.3166/EJC.18.539-557
10.1007/s00026-005-0237-z
10.1109/CDC45484.2021.9683355
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
F1U
F1S
DOI 10.1109/TAC.2024.3520513
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database



Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 3440
ExternalDocumentID oai_research_chalmers_se_bff56e0d_adc0_4b88_808d_50d041a03839
oai_gup_ub_gu_se_350004
10_1109_TAC_2024_3520513
10810661
Genre orig-research
GrantInformation_xml – fundername: Wallenberg AI
– fundername: Autonomous Systems
– fundername: Software Program
– fundername: Alice Wallenberg Foundation
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
F1U
F1S
ID FETCH-LOGICAL-c431t-dae06766b08993997f17b0b48ff8dc150bafd1254561926b8da0d2f2156b96e53
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001477383000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
1558-2523
IngestDate Wed Nov 05 04:11:00 EST 2025
Tue Nov 04 16:25:48 EST 2025
Mon Jun 30 10:16:36 EDT 2025
Sat Nov 29 07:58:03 EST 2025
Wed Aug 27 02:03:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-dae06766b08993997f17b0b48ff8dc150bafd1254561926b8da0d2f2156b96e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2374-2341
0000-0003-2085-7127
PQID 3194767856
PQPubID 85475
PageCount 8
ParticipantIDs swepub_primary_oai_research_chalmers_se_bff56e0d_adc0_4b88_808d_50d041a03839
swepub_primary_oai_gup_ub_gu_se_350004
ieee_primary_10810661
crossref_primary_10_1109_TAC_2024_3520513
proquest_journals_3194767856
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
Forero (ref38) 2010; 11
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref39
ref16
ref19
Wang (ref34) 2015
Shahriari-Mehr (ref43) 2023
Tsianos (ref18) 2012; 25
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
Bishop (ref6) 2006
ref29
Calafiore (ref40) 2014
ref8
ref7
ref9
ref4
ref3
ref5
Ram (ref17) 2010; 147
Beck (ref44) 2010
References_xml – ident: ref25
  doi: 10.1109/TSIPN.2016.2524588
– ident: ref2
  doi: 10.1109/TSP.2009.2038417
– ident: ref19
  doi: 10.1109/TAC.2022.3192316
– volume: 25
  start-page: 1943
  volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
  year: 2012
  ident: ref18
  article-title: Communication/computation tradeoffs in consensus-based distributed optimization
– ident: ref11
  doi: 10.1109/TIT.2006.874516
– ident: ref20
  doi: 10.1109/TAC.2008.2009515
– ident: ref22
  doi: 10.1016/j.automatica.2009.10.021
– ident: ref39
  doi: 10.1137/S003614450037906X
– ident: ref7
  doi: 10.1109/JPROC.2018.2817461
– ident: ref14
  doi: 10.1109/LCSYS.2018.2834316
– ident: ref31
  doi: 10.1007/s10107-018-01357-w
– ident: ref8
  doi: 10.1016/j.arcontrol.2019.05.006
– ident: ref10
  doi: 10.1109/MSP.2020.2975210
– ident: ref23
  doi: 10.1137/16M1084316
– ident: ref37
  doi: 10.1109/JSTSP.2013.2247023
– ident: ref27
  doi: 10.1109/SFCS.2003.1238221
– ident: ref24
  doi: 10.1137/14096668X
– ident: ref36
  doi: 10.1109/TAC.2010.2041686
– ident: ref41
  doi: 10.1561/2400000003
– ident: ref3
  doi: 10.1109/TIT.2012.2191450
– ident: ref4
  doi: 10.1007/978-1-4615-0363-7
– ident: ref15
  doi: 10.1109/TAC.2016.2615066
– volume: 147
  start-page: 516
  issue: 3
  year: 2010
  ident: ref17
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9737-7
– ident: ref28
  doi: 10.1109/CDC.2012.6426375
– ident: ref21
  doi: 10.1109/TAC.2010.2091295
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: ref6
– ident: ref30
  doi: 10.1109/TAC.2017.2672698
– ident: ref33
  doi: 10.1109/TCNS.2023.3338236
– volume: 11
  start-page: 1663
  issue: 55
  year: 2010
  ident: ref38
  article-title: Consensus-based distributed support vector machines
  publication-title: J. Mach. Learn. Res.
– ident: ref12
  doi: 10.1109/JPROC.2020.3024266
– ident: ref32
  doi: 10.1109/TAC.2017.2737582
– volume-title: Convex Optimization in Signal Processing and Communications
  year: 2010
  ident: ref44
  article-title: Gradient-based algorithms with applications to signal-recovery problems
– ident: ref16
  doi: 10.1109/TAC.2012.2209984
– ident: ref35
  doi: 10.1007/s10107-011-0467-x
– ident: ref9
  doi: 10.1109/MSP.2020.2974267
– ident: ref29
  doi: 10.1109/TAC.2014.2364096
– ident: ref13
  doi: 10.1109/TAC.2020.2972824
– ident: ref5
  doi: 10.1007/BF00994018
– volume-title: Optimization Models, Ser. Control Systems and Optimization Series
  year: 2014
  ident: ref40
– ident: ref26
  doi: 10.3166/EJC.18.539-557
– year: 2015
  ident: ref34
  article-title: Random multi-constraint projection: Stochastic gradient methods for convex optimization with many constraints
– ident: ref42
  doi: 10.1007/s00026-005-0237-z
– ident: ref1
  doi: 10.1109/CDC45484.2021.9683355
– year: 2023
  ident: ref43
  article-title: Double averaging and gradient projection: Convergence guarantees for decentralized constrained optimization
SSID ssj0016441
Score 2.477806
Snippet We consider a generic decentralized constrained optimization problem over static, directed communication networks, where each agent has exclusive access to...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3433
SubjectTerms Algorithms
Communication networks
Computer architecture
Computer Sciences
Constrained optimization
Constraints
Convergence
convergence analysis
Convex functions
convex optimization
Convexity
Datavetenskap (datalogi)
Directed graphs
distributed optimization
Liapunov functions
Linear programming
Lyapunov methods
Networked, Parallel and Distributed Computing
Nätverks-, parallell- och distribuerad beräkning
Optimization
Optimization methods
Smoothness
Vectors
Title Double Averaging and Gradient Projection: Convergence Guarantees for Decentralized Constrained Optimization
URI https://ieeexplore.ieee.org/document/10810661
https://www.proquest.com/docview/3194767856
https://gup.ub.gu.se/publication/350004
https://research.chalmers.se/publication/544526
Volume 70
WOSCitedRecordID wos001477383000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 1558-2523
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTxQxFG-QcNCDimIYQdMDMeEw2HZn-uFtswocCHJAwq3pxysQZSE7ux7863ntDJsl0YO3ZtJmmvde-36v74uQPeH4qHFoqcYkUt1Aq2vPoqrDSBrNQxKmdIm4OFGnp_ry0pwNyeolFwYASvAZHORh8eXHu7DIT2V4wjVaMNnYeaaU6pO1li6DrNj7axdPsNBLnyQzn8_HE7QERXOAaAOFcPREB5WmKk_x5WrN0KJnDl_95w5fk5cDoKTjXgI2yRpM35AXK2UG35KfiJL9L6BjFNvSlIi6aaRHsxLtNadn_WMMMugLneQg9JKPCTRLT6Y7dBSRLf0KQyDnzR-IeWJX2kvg-DteO7dDPucW-XH47XxyXA9NFuqA2GFeRweosKT02f-HaEUlrjzzjU5Jx4Bw0bsUEQVloGWE9Do6FkVCpCC9kdCO3pH16d0Utgl1SQdIaN8ZHnNjSu0RHvHIA1cSuICK7D-S3d73tTRssUGYscgim1lkBxZVZCtTd2VeT9iK7D4yyg6nrbN4jTQKtW4rK_KpZ95yYS6ffbW4t_jpamE7wB9kHFuRk79MHAosXdtwXbrXdHmBT6mVwKJ1MTDbeK2tZjralkXWcMfQxjfv_7HdHfJc5IbBJUJyl6zPZwv4QDbC7_lNN_tYBPgBNAPwDg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZQQQIOPItYKOADQuKwxXa8XptbFChFhNBDQL1ZfozbCkirbMKBX8_Yu41SCQ7crJWttWbGnm88L0JeCsdH0qGlGpNItYRG157Ftg4jZTQPSZjSJeLbtJ3N9PGxORqS1UsuDACU4DPYz8Piy4_nYZ2fyvCEa7RgsrFzvZFS8D5da-M0yKq9v3jxDAu98Uoy82Y-nqAtKOQ-4g0Uw9EVLVTaqlxFmNtVQ4umObj7n3u8R-4MkJKOexm4T67B4gG5vVVo8CH5jjjZ_wA6RsEtbYmoW0T6YVnivVb0qH-OQRa9pZMchl4yMoFm-cmUh44itqXvYAjlPPsNMU_sSoMJHH_Bi-fnkNG5S74evJ9PDuuhzUIdED2s6ugAVZZSPnsAEa-0ibeeealT0jEgYPQuRcRBGWoZobyOjkWRECsobxQ0o0dkZ3G-gMeEuqQDJLTwDI-5NaX2CJB45IG3CriAiry-JLu96Ktp2GKFMGORRTazyA4sqshupu7WvJ6wFdm7ZJQdzltn8SKRLerdRlXkVc-8zcJcQPtkfWHx08nadoA_yEi2ItO_TBxKLJ3acFr613R5gU-pUcCidTEwK73WVjMdbcMik9wxtPLNk39s9wW5eTj_PLXTj7NPT8ktkdsHl3jJPbKzWq7hGbkRfq3OuuXzIsx_AM-S81U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double+Averaging+and+Gradient+Projection%3A+Convergence+Guarantees+for+Decentralized+Constrained+Optimization&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Shahriari+Mehr%2C+Firooz&rft.au=Panahi%2C+Ashkan&rft.date=2025-05-01&rft.issn=1558-2523&rft.volume=70&rft.issue=5&rft.spage=3433&rft_id=info:doi/10.1109%2FTAC.2024.3520513&rft.externalDocID=oai_research_chalmers_se_bff56e0d_adc0_4b88_808d_50d041a03839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon