Sample-Pair Envelope Diamond Autoencoder Ensemble Algorithm for Chronic Disease Recognition

Chronic diseases are severe and life-threatening, and their accurate early diagnosis is difficult. Machine-learning-based processes of data collected from the human body using wearable sensors are a valid method currently usable for diagnosis. However, it is difficult for wearable sensor systems to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 13; číslo 12; s. 7322
Hlavní autoři: Zhang, Yi, Ma, Jie, Qin, Xiaolin, Li, Yongming, Zhang, Zuwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2023
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Chronic diseases are severe and life-threatening, and their accurate early diagnosis is difficult. Machine-learning-based processes of data collected from the human body using wearable sensors are a valid method currently usable for diagnosis. However, it is difficult for wearable sensor systems to obtain high-quality and large amounts of data to meet the demands of diagnostic accuracy. Furthermore, existing feature-learning methods do not deal with this problem well. To address the above issues, a sample-pair envelope diamond autoencoder ensemble algorithm (SP_DFsaeLA) is proposed. The proposed algorithm has four main components. Firstly, sample-pair envelope manifold neighborhood concatenation mechanism (SP_EMNCM) is designed to find pairs of samples that are close to each other in a manifold neighborhood. Secondly, the feature-embedding stacked sparse autoencoder (FESSAE) is designed to extend features. Thirdly, a staged feature reduction mechanism is designed to reduce redundancy in the extended features. Fourthly, the sample-pair-based model and single-sample-based model are combined by weighted fusion. The proposed algorithm was experimentally validated on nine datasets and compared with the latest algorithm. The experimental results show that the algorithm is significantly better than existing representative algorithms and it achieves the highest improvement of 22.77%, 21.03%, 24.5%, 27.89%, and 10.65% on five criteria over the state-of-the-art methods.
AbstractList Chronic diseases are severe and life-threatening, and their accurate early diagnosis is difficult. Machine-learning-based processes of data collected from the human body using wearable sensors are a valid method currently usable for diagnosis. However, it is difficult for wearable sensor systems to obtain high-quality and large amounts of data to meet the demands of diagnostic accuracy. Furthermore, existing feature-learning methods do not deal with this problem well. To address the above issues, a sample-pair envelope diamond autoencoder ensemble algorithm (SP_DFsaeLA) is proposed. The proposed algorithm has four main components. Firstly, sample-pair envelope manifold neighborhood concatenation mechanism (SP_EMNCM) is designed to find pairs of samples that are close to each other in a manifold neighborhood. Secondly, the feature-embedding stacked sparse autoencoder (FESSAE) is designed to extend features. Thirdly, a staged feature reduction mechanism is designed to reduce redundancy in the extended features. Fourthly, the sample-pair-based model and single-sample-based model are combined by weighted fusion. The proposed algorithm was experimentally validated on nine datasets and compared with the latest algorithm. The experimental results show that the algorithm is significantly better than existing representative algorithms and it achieves the highest improvement of 22.77%, 21.03%, 24.5%, 27.89%, and 10.65% on five criteria over the state-of-the-art methods.
Audience Academic
Author Zhang, Zuwei
Li, Yongming
Zhang, Yi
Qin, Xiaolin
Ma, Jie
Author_xml – sequence: 1
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
– sequence: 2
  givenname: Jie
  surname: Ma
  fullname: Ma, Jie
– sequence: 3
  givenname: Xiaolin
  surname: Qin
  fullname: Qin, Xiaolin
– sequence: 4
  givenname: Yongming
  orcidid: 0000-0002-7542-4356
  surname: Li
  fullname: Li, Yongming
– sequence: 5
  givenname: Zuwei
  surname: Zhang
  fullname: Zhang, Zuwei
BookMark eNptkU1v1DAQhi1UJErpiT8QiSNK8UcS28fVUqBSJRAfJw7WxB5vvUrsYGeR-Pd4WRAF1T54PPM-r0YzT8lZTBEJec7olRCavoJlYYJxKTh_RM45lUMrOibP7sVPyGUpe1qPZkIxek6-foJ5mbD9ACE31_E7TmnB5nWAOUXXbA5rwmiTw2Ox4DxO2GymXcphvZsbn3KzvcspBluRglCw-Yg27WJYQ4rPyGMPU8HL3-8F-fLm-vP2XXv7_u3NdnPb2k6wtbUce40jSE9d7XEQkvOxr9_B18oolNe2H0YuQOFAmWVOU6VG5NA73jklLsjNydcl2JslhxnyD5MgmF-JlHcG8hrshEZ02DHhOUjuOs0VKC90b6l04IZBYfV6cfJacvp2wLKafTrkWNs3XHEtGddC_VXtoJqG6NOawc6hWLORfadlNe2q6uoBVb0O52Dr8nyo-X8AdgJsTqVk9MaGFY6jrGCYDKPmuGlzb9OVefkf82cAD6l_AnbZqUw
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125338
Cites_doi 10.1007/s10489-017-1037-6
10.1007/s12652-019-01193-6
10.1109/ACCESS.2021.3088613
10.1016/j.inffus.2019.06.021
10.1016/j.asoc.2019.106060
10.1109/ACCESS.2020.2989857
10.1038/s41581-019-0120-0
10.1109/HNICEM48295.2019.9073568
10.1108/IJPCC-04-2020-0018
10.1109/COMPSAC.2017.84
10.1109/TMSCS.2017.2710194
10.1016/j.jesit.2017.06.004
10.1007/s10489-021-02533-w
10.1038/nm733
10.1109/ICCIT51783.2020.9392694
10.1016/0169-7439(87)80084-9
10.1145/2988544
10.1109/TIFS.2017.2668221
10.1109/JSYST.2020.3024816
10.1186/s12938-018-0489-1
10.1007/978-3-319-95162-1_30
10.1109/JBHI.2013.2245674
10.1109/MERCon50084.2020.9185249
10.3389/fgene.2018.00515
10.1186/s13014-021-01906-2
10.1109/TFUZZ.2010.2089631
10.3390/app10186626
10.1016/j.cmpb.2017.09.004
10.1109/TBME.2008.2005954
10.1016/j.ijmedinf.2018.04.001
10.1162/NECO_a_00537
10.1007/s00521-018-3471-8
10.1109/ACCESS.2019.2929866
10.1126/science.1127647
10.1016/j.future.2019.09.056
10.1007/s00521-014-1731-9
10.1016/j.cmpb.2015.08.007
10.1016/j.asoc.2017.06.032
10.1186/s12859-022-04965-8
10.1109/BIBE.2017.00-39
10.1287/opre.43.4.570
10.1016/j.asoc.2018.07.029
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app13127322
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_34e413f2a72d4928a8f395c07dad668e
A754973954
10_3390_app13127322
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c431t-c2e59eba7f0d41763722b5a7f6f2e5b38f9c56b23a8e601c1d9088be2a5d24d83
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001016941100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:42:38 EDT 2025
Mon Jun 30 07:30:08 EDT 2025
Tue Nov 11 10:26:09 EST 2025
Tue Nov 04 17:43:49 EST 2025
Sat Nov 29 07:11:44 EST 2025
Tue Nov 18 22:35:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-c2e59eba7f0d41763722b5a7f6f2e5b38f9c56b23a8e601c1d9088be2a5d24d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7542-4356
OpenAccessLink https://www.proquest.com/docview/2829712938?pq-origsite=%requestingapplication%
PQID 2829712938
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_34e413f2a72d4928a8f395c07dad668e
proquest_journals_2829712938
gale_infotracmisc_A754973954
gale_infotracacademiconefile_A754973954
crossref_citationtrail_10_3390_app13127322
crossref_primary_10_3390_app13127322
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lu (ref_21) 2022; 52
Cheruku (ref_27) 2017; 67
Rubini (ref_9) 2015; 5
ref_57
Hegde (ref_33) 2020; 17
ref_56
ref_11
Yamada (ref_44) 2014; 26
Paul (ref_17) 2018; 48
Hasan (ref_54) 2020; 8
Zou (ref_8) 2018; 9
ref_16
ref_15
Rasitha (ref_18) 2016; 4
Beer (ref_43) 2002; 8
Zhu (ref_53) 2020; 88
Sinha (ref_10) 2015; 4
Ge (ref_24) 2020; 127
Alhassan (ref_1) 2021; 9
(ref_25) 2015; 26
ref_22
Goswami (ref_50) 2017; 12
Li (ref_47) 2010; 19
Wu (ref_3) 2020; 15
ref_29
Muzammal (ref_4) 2020; 53
Simon (ref_34) 2019; 15
Wang (ref_55) 2019; 7
Chormunge (ref_14) 2018; 5
Sakar (ref_37) 2013; 17
ref_36
ref_35
Mohamed (ref_19) 2002; 15
ref_31
ref_30
Mangasarian (ref_39) 1995; 43
Ahmed (ref_12) 2020; 111
Simsek (ref_51) 2019; 355
Khan (ref_23) 2018; 115
Wold (ref_46) 1987; 2
Little (ref_40) 2009; 56
Hinton (ref_49) 2006; 313
Maniruzzaman (ref_28) 2017; 152
Sun (ref_45) 2011; 8
ref_42
Shrivas (ref_13) 2018; 4
ref_41
Rezaeijo (ref_32) 2021; 16
Tan (ref_38) 2018; 17
Abreu (ref_5) 2016; 49
Kampffmeyer (ref_52) 2018; 71
Shahbazi (ref_20) 2015; 122
He (ref_48) 2003; 16
Yin (ref_2) 2017; 3
ref_7
ref_6
Polat (ref_26) 2018; 30
References_xml – volume: 48
  start-page: 1739
  year: 2018
  ident: ref_17
  article-title: Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1037-6
– ident: ref_16
  doi: 10.1007/s12652-019-01193-6
– volume: 9
  start-page: 87310
  year: 2021
  ident: ref_1
  article-title: Review of feature selection, dimensionality reduction and classification for chronic disease diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3088613
– volume: 53
  start-page: 155
  year: 2020
  ident: ref_4
  article-title: A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.06.021
– volume: 88
  start-page: 106060
  year: 2020
  ident: ref_53
  article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106060
– volume: 355
  start-page: 325
  year: 2019
  ident: ref_51
  article-title: Face recognition via deep stacked denoising sparse autoencoders (DSDSA)
  publication-title: Appl. Math. Comput.
– volume: 8
  start-page: 76516
  year: 2020
  ident: ref_54
  article-title: Diabetes prediction using ensembling of different machine learning classifiers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2989857
– ident: ref_42
– ident: ref_35
– volume: 15
  start-page: 193
  year: 2019
  ident: ref_34
  article-title: Kidney disease in the global burden of disease study 2017
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-019-0120-0
– ident: ref_56
  doi: 10.1109/HNICEM48295.2019.9073568
– volume: 17
  start-page: 20
  year: 2020
  ident: ref_33
  article-title: Early prediction of chronic disease using an efficient machine learning algorithm through adaptive probabilistic divergence based feature selection approach
  publication-title: Int. J. Pervasive Comput. Commun.
  doi: 10.1108/IJPCC-04-2020-0018
– ident: ref_7
  doi: 10.1109/COMPSAC.2017.84
– volume: 4
  start-page: 608
  year: 2015
  ident: ref_10
  article-title: Comparative study of chronic kidney disease prediction using KNN and SVM
  publication-title: Int. J. Eng. Res. Technol.
– ident: ref_31
– volume: 3
  start-page: 228
  year: 2017
  ident: ref_2
  article-title: A health decision support system for disease diagnosis based on wearable medical sensors and machine learning ensembles
  publication-title: IEEE Trans. Multi Scale Comput. Syst.
  doi: 10.1109/TMSCS.2017.2710194
– volume: 5
  start-page: 49
  year: 2015
  ident: ref_9
  article-title: Generating comparative analysis of early stage prediction of chronic kidney disease
  publication-title: Int. J. Mod. Eng. Res.
– volume: 5
  start-page: 542
  year: 2018
  ident: ref_14
  article-title: Correlation based feature selection with clustering for high dimensional data
  publication-title: J. Electr. Syst. Inf. Technol.
  doi: 10.1016/j.jesit.2017.06.004
– volume: 52
  start-page: 2411
  year: 2022
  ident: ref_21
  article-title: A patient network-based machine learning model for disease prediction: The case of type 2 diabetes mellitus
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02533-w
– volume: 8
  start-page: 816
  year: 2002
  ident: ref_43
  article-title: Gene-expression profiles predict survival of patients with lung adenocarcinoma
  publication-title: Nat. Med.
  doi: 10.1038/nm733
– ident: ref_57
  doi: 10.1109/ICCIT51783.2020.9392694
– volume: 2
  start-page: 37
  year: 1987
  ident: ref_46
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(87)80084-9
– volume: 49
  start-page: 1
  year: 2016
  ident: ref_5
  article-title: Predicting breast cancer recurrence using machine learning techniques: A systematic review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2988544
– ident: ref_41
– volume: 12
  start-page: 1686
  year: 2017
  ident: ref_50
  article-title: Face verification via learned representation on feature-rich video frames
  publication-title: IEEE Trans. Inf. Secur.
  doi: 10.1109/TIFS.2017.2668221
– volume: 15
  start-page: 5537
  year: 2020
  ident: ref_3
  article-title: Effective data decision-making and transmission system based on mobile health for chronic disease management in the elderly
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2020.3024816
– volume: 17
  start-page: 49
  year: 2018
  ident: ref_38
  article-title: Localized instance fusion of MRI data of Alzheimer’s disease for classification based on instance transfer ensemble learning
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-018-0489-1
– ident: ref_15
  doi: 10.1007/978-3-319-95162-1_30
– volume: 17
  start-page: 828
  year: 2013
  ident: ref_37
  article-title: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2245674
– ident: ref_11
  doi: 10.1109/MERCon50084.2020.9185249
– volume: 4
  start-page: 4
  year: 2016
  ident: ref_18
  article-title: Predicting thyroid disease using linear discriminant analysis (LDA) data mining technique
  publication-title: Int. J. Mod. Trends Eng. Res.
– volume: 9
  start-page: 515
  year: 2018
  ident: ref_8
  article-title: Predicting diabetes mellitus with machine learning techniques
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00515
– volume: 16
  start-page: 182
  year: 2021
  ident: ref_32
  article-title: The feasibility of a dose painting procedure to treat prostate cancer based on mpMR images and hierarchical clustering
  publication-title: Radiat. Oncol.
  doi: 10.1186/s13014-021-01906-2
– volume: 19
  start-page: 152
  year: 2010
  ident: ref_47
  article-title: LDA-based clustering algorithm and its application to an unsupervised feature extraction
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2010.2089631
– ident: ref_29
  doi: 10.3390/app10186626
– volume: 152
  start-page: 23
  year: 2017
  ident: ref_28
  article-title: Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.004
– volume: 4
  start-page: 26
  year: 2018
  ident: ref_13
  article-title: Classification of chronic kidney disease with proposed union based feature selection technique
  publication-title: Soc. Sci. Res. Netw. Electron. J.
– volume: 15
  start-page: 215
  year: 2002
  ident: ref_19
  article-title: Predicting type 2 diabetes using an electronic nose-based artificial neural network analysis
  publication-title: Diabetes Nutr. Metab.
– ident: ref_30
– volume: 56
  start-page: 1015
  year: 2009
  ident: ref_40
  article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease
  publication-title: IEEE Trans. Bio-Med. Eng.
  doi: 10.1109/TBME.2008.2005954
– volume: 115
  start-page: 1
  year: 2018
  ident: ref_23
  article-title: Comorbidity network for chronic disease: A novel approach to understand type 2 diabetes progression
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2018.04.001
– volume: 26
  start-page: 185
  year: 2014
  ident: ref_44
  article-title: High-dimensional feature selection by feature-wise kernelized lasso
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00537
– volume: 30
  start-page: 987
  year: 2018
  ident: ref_26
  article-title: Similarity-based attribute weighting methods via clustering algorithms in the classification of imbalanced medical datasets
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3471-8
– volume: 7
  start-page: 102232
  year: 2019
  ident: ref_55
  article-title: DMP_MI: An effective diabetes mellitus classification algorithm on imbalanced data with missing values
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929866
– volume: 313
  start-page: 504
  year: 2006
  ident: ref_49
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 111
  start-page: 714
  year: 2020
  ident: ref_12
  article-title: Heart disease identification from patients’ social posts, machine learning solution on spark
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.09.056
– volume: 127
  start-page: 24
  year: 2020
  ident: ref_24
  article-title: Prediction of chronic diseases with multi-label neural network
  publication-title: IEEE Access
– volume: 26
  start-page: 437
  year: 2015
  ident: ref_25
  article-title: Hybrid intelligent system-based rough set and ensemble classifier for breast cancer diagnosis
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1731-9
– volume: 122
  start-page: 191
  year: 2015
  ident: ref_20
  article-title: Generalized discriminant analysis for congestive heart failure risk assessment based on long-term heart rate variability
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2015.08.007
– volume: 67
  start-page: 764
  year: 2017
  ident: ref_27
  article-title: RST-BatMiner: A fuzzy rule miner integrating rough set feature selection and bat optimization for detection of diabetes disease
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.032
– ident: ref_22
  doi: 10.1186/s12859-022-04965-8
– volume: 8
  start-page: 3921
  year: 2011
  ident: ref_45
  article-title: A novel relief feature selection algorithm based on mean-variance model
  publication-title: J. Inf. Comput. Sci.
– volume: 16
  start-page: 153
  year: 2003
  ident: ref_48
  article-title: Locality preserving projections
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_6
  doi: 10.1109/BIBE.2017.00-39
– ident: ref_36
– volume: 43
  start-page: 570
  year: 1995
  ident: ref_39
  article-title: Breast cancer diagnosis and prognosis via linear programming
  publication-title: Oper. Res.
  doi: 10.1287/opre.43.4.570
– volume: 71
  start-page: 816
  year: 2018
  ident: ref_52
  article-title: The deep kernelized autoencoder
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.029
SSID ssj0000913810
Score 2.2569485
Snippet Chronic diseases are severe and life-threatening, and their accurate early diagnosis is difficult. Machine-learning-based processes of data collected from the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7322
SubjectTerms Accuracy
Algorithms
Cardiovascular disease
Chronic diseases
Chronic illnesses
Decision trees
Deep learning
diamond-like feature learning
Discriminant analysis
envelope learning
Feature selection
feature-embedded stacked sparse autoencoder
Machine learning
Neural networks
Physiology
recognition of chronic disease
sample-pair envelope concatenation
Sensors
Type 2 diabetes
wearable sensor monitoring
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SfNAHsVXxtEoeCn7A4m6yuSSPp7b4IKX4RcGHMPmyB9c9udv27-_Mbq7cgeKLj7uZDdnJzGSGmfyGsSNV5xos6EqlrKsWpK68UqmKwnrA8EPEoXj8x2d9emrOz-3ZVqsvqgkb4YFHxr2TbUI7mwVoEVsrDJgsrQq1jhCnU5PI-tbabgVTgw22DUFXjRfyJMb1lA9uZIOHtRA7R9CA1P83ezwcMicP2YPiHfLZuKp9did1B-z-FmbgAdsv2rjmrwtk9JtH7OdXIJTf6gzmK37cDXVAiX-cUyuhyGdX_ZLwKmOiwXW69IvEZ4tfy9W8v7jk6LbygpGLnwz5Gv5lU1e07B6z7yfH3z58qkrbhCqgN9BXQSRlkwed69g2aD-0EF7h4zTjiJcm26CmXkgwCcOx0ESqdfJJgIqijUY-YXvdsktPGY-tbwFyxFkyzq0MiBxtBtXghsicJuzthpMuFExxam2xcBhbENvdFtsn7OiW-PcIpfFnsve0JbckhH89vECpcEUq3L-kYsJe0YY60lJcUIBy2QB_i_Cu3ExjXEw5ynbCDncoUbvC7vBGJFzR7rWj7LMmR8k8-x-Lfc7uURP7sQDtkO31q6v0gt0N1_18vXo5CPYNIDH8Yw
  priority: 102
  providerName: Directory of Open Access Journals
Title Sample-Pair Envelope Diamond Autoencoder Ensemble Algorithm for Chronic Disease Recognition
URI https://www.proquest.com/docview/2829712938
https://doaj.org/article/34e413f2a72d4928a8f395c07dad668e
Volume 13
WOSCitedRecordID wos001016941100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAPQAuoW9rKh0o8JIvEidfOCW3LViDBKioPFXGwHD_KStuk3aT8fmay3qUrAReOjp1oonl5PONvCDkSSUhMYSQTPkiWm0yySgjPHC8qA-EHd33x-NcPcjJR5-dFGQ_c2lhWubSJvaF2jcUz8teY8ZPonNSbq2uGXaMwuxpbaNwlm4hUBnK-eTyelGerUxZEvVRpsriYl0F8j3nhNEvBaXO-5op6xP6_2eXe2Zw-_F8yH5EHcZtJRwu52CZ3fL1Dtm6BD-6Q7ajWLX0RsadfPibfPxmEC2almc7puO4Lijx9O8WeRI6ObroGgS-dx8nWX1YzT0ezCyCg-3FJYf9LI9guvNInfujZskCpqZ-QL6fjzyfvWOy_wCxsKzpmuReFr4wMictTMESS80rAcBhgpspUKKwYVjwzykNcZ1OHRVOV50Y4njuVPSUbdVP7XUJdXuXGBAdfCfBtoQwPrghGpIGbLPgBebVkhbYRnBx7ZMw0BCnIN32LbwNytFp8tcDk-POyY-TpagkCafcPmvmFjnqps9yDGwciJHd5wZVRISuETaQzbjhUQNhzlAiN6g4EWRNvLcBvIXCWHkkIsDHZmQ_I_tpKUFO7Pr0UGB3NRKt_S8vev6efkfvY535Ro7ZPNrr5jT8g9-zPbtrOD6PUH_YHCjAq338sv_0CERAOxQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgl4ADaYKAzwwxA_pGiJEzfxA0KFbVq1rqpgoCEeghPbo1KXjiYD8U_xN3KXOGWVgLc98JjYsez4893Zd_4OYEv41ldSxZ4wNvYiFcZeJoTxNJeZwu0H13Xw-IdhPBolx8dyvAI_27swFFbZysRaUOtZTmfk2-Txi0k5Ja_OvnqUNYq8q20KjQYWB-bHd9yylS8HOzi_Tzjf2z16s--5rAJejsqy8nJuhDSZiq2vowCXV8x5JvCxZ7EkCxMrc9HLeKgSg7uVPNAUCpQZroTmkU5CbPcKrEYE9g6sjgeH44-LUx1i2UwCv7kIGIbSJz90EAZoJHC-pPrqDAF_0wO1ctu79b_9lttw05nRrN_gfg1WTLEONy6QK67DmhNbJXvmuLWf34FP7xTRIXtjNZmz3aIOmDJsZ0I5lzTrn1czIvbUhgpLc5pNDetPT3DA1ZdThvY9c2TC-Ent2GJv2wCsWXEX3l_KkDegU8wKcw-YjrJIKauxFYtti0Rxq6VVIrBchdZ04UU79WnuyNcpB8g0xU0Y4SS9gJMubC0qnzWcI3-u9powtKhCROH1i9n8JHVyJw0jg2YKdiLmOpI8UYkNpcj9WCvd6yXYsaeEwJTEGXYoV-5WBg6LiMHSfiwiSc7cqAubSzVRDOXLxS1AUycGy_Q3Ou__u_gxXNs_Ohymw8Ho4AFc52hJNvF4m9Cp5ufmIVzNv1WTcv7IrTgGny8bzb8A1W9pgA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLULlALRQsVDAhyIeUtTEiTfJAaGF7YpVyyripSIOwYntstI2KZsUxF_j1zGTOEtXAm49cEzsWHbyeR6Z8TcAu8I1roxl6AhtQieQfuhkQmhH8TiT6H5w1SSPfzgMp9Po6ChO1uBndxaG0io7mdgIalXm9I98jyJ-ISmnaM_YtIhkNH5--tWhClIUae3KabQQOdA_vqP7Vj2bjPBbP-R8vP_u5SvHVhhwclSctZNzLWKdydC4KvBwq4WcZwIvBwZbMj8ycS4GGfdlpNFzyT1FaUGZ5lIoHqjIx3EvwTqa5AHvwXoyeZ18XP7hIcbNyHPbQ4G-H7sUk_Z8Dw0GzlfUYFMt4G86oVF04-v_8yu6Adesec2G7X7YhDVdbMHVc6SLW7BpxVnFHlvO7Sc34dNbSTTJTiJnC7ZfNIlUmo1mVItJseFZXRLhp9LUWOmTbK7ZcH6MC66_nDC0-5klGcZHmoAXe9MlZpXFLXh_IUvehl5RFvo2MBVkgZRG4SgGxxaR5EbFRgrPcOkb3YenHQzS3JKyU22QeYrOGWEmPYeZPuwuO5-2XCR_7vaC8LTsQgTizY1ycZxaeZT6gUbzBScRchXEPJKR8WORu6GSajCIcGKPCI0piTmcUC7taQ1cFhGGpcNQBDEFeYM-7Kz0RPGUrzZ3YE2teKzS30i98-_mB3AFIZweTqYHd2GDo4HZpuntQK9enOl7cDn_Vs-qxX27-Rh8vmgw_wItFnJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample-Pair+Envelope+Diamond+Autoencoder+Ensemble+Algorithm+for+Chronic+Disease+Recognition&rft.jtitle=Applied+sciences&rft.au=Zhang%2C+Yi&rft.au=Ma%2C+Jie&rft.au=Qin%2C+Xiaolin&rft.au=Li%2C+Yongming&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=12&rft.spage=7322&rft_id=info:doi/10.3390%2Fapp13127322&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon