Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal

•Co-pyrolysis behavior of lignocellulosic biomass components and bituminous coal was explored.•Positive and/or negative synergistic effects were observed during co-pyrolysis of the mixtures.•Kinetic parameter was solved via using model-free method (Kissinger–Akahira–Sunose).•Nonadditivity performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology Jg. 169; S. 220 - 228
Hauptverfasser: Wu, Zhiqiang, Wang, Shuzhong, Zhao, Jun, Chen, Lin, Meng, Haiyu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.10.2014
Elsevier
Schlagworte:
ISSN:0960-8524, 1873-2976, 1873-2976
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Co-pyrolysis behavior of lignocellulosic biomass components and bituminous coal was explored.•Positive and/or negative synergistic effects were observed during co-pyrolysis of the mixtures.•Kinetic parameter was solved via using model-free method (Kissinger–Akahira–Sunose).•Nonadditivity performance on the activation energy values of the mixtures was observed. Co-thermochemical conversion of lignocellulosic biomass and coal has been investigated as an effective way to reduce the carbon footprint. Successful evaluating on thermal behavior of the co-pyrolysis is prerequisite for predicting performance and optimizing efficiency of this process. In this paper, pyrolysis and kinetics characteristics of three kinds of lignocellulosic biomass model components (cellulose, hemicellulose, and lignin) blended with a kind of Chinese bituminous coal were explored by thermogravimetric analyzer and Kissinger–Akahira–Sunose method. The results indicated that the addition of model compounds had different synergistic effects on thermal behavior of the bituminous coal. The cellulose showed positive synergistic effects on the thermal decomposition of the coal bituminous coal with lower char yield than calculated value. For hemicellulose and lignin, whether positive or negative synergistic was related to the mixed ratio and temperature range. The distribution of the average activation energy values for the mixtures showed nonadditivity performance.
AbstractList Co-thermochemical conversion of lignocellulosic biomass and coal has been investigated as an effective way to reduce the carbon footprint. Successful evaluating on thermal behavior of the co-pyrolysis is prerequisite for predicting performance and optimizing efficiency of this process. In this paper, pyrolysis and kinetics characteristics of three kinds of lignocellulosic biomass model components (cellulose, hemicellulose, and lignin) blended with a kind of Chinese bituminous coal were explored by thermogravimetric analyzer and Kissinger-Akahira-Sunose method. The results indicated that the addition of model compounds had different synergistic effects on thermal behavior of the bituminous coal. The cellulose showed positive synergistic effects on the thermal decomposition of the coal bituminous coal with lower char yield than calculated value. For hemicellulose and lignin, whether positive or negative synergistic was related to the mixed ratio and temperature range. The distribution of the average activation energy values for the mixtures showed nonadditivity performance.Co-thermochemical conversion of lignocellulosic biomass and coal has been investigated as an effective way to reduce the carbon footprint. Successful evaluating on thermal behavior of the co-pyrolysis is prerequisite for predicting performance and optimizing efficiency of this process. In this paper, pyrolysis and kinetics characteristics of three kinds of lignocellulosic biomass model components (cellulose, hemicellulose, and lignin) blended with a kind of Chinese bituminous coal were explored by thermogravimetric analyzer and Kissinger-Akahira-Sunose method. The results indicated that the addition of model compounds had different synergistic effects on thermal behavior of the bituminous coal. The cellulose showed positive synergistic effects on the thermal decomposition of the coal bituminous coal with lower char yield than calculated value. For hemicellulose and lignin, whether positive or negative synergistic was related to the mixed ratio and temperature range. The distribution of the average activation energy values for the mixtures showed nonadditivity performance.
Co-thermochemical conversion of lignocellulosic biomass and coal has been investigated as an effective way to reduce the carbon footprint. Successful evaluating on thermal behavior of the co-pyrolysis is prerequisite for predicting performance and optimizing efficiency of this process. In this paper, pyrolysis and kinetics characteristics of three kinds of lignocellulosic biomass model components (cellulose, hemicellulose, and lignin) blended with a kind of Chinese bituminous coal were explored by thermogravimetric analyzer and Kissinger–Akahira–Sunose method. The results indicated that the addition of model compounds had different synergistic effects on thermal behavior of the bituminous coal. The cellulose showed positive synergistic effects on the thermal decomposition of the coal bituminous coal with lower char yield than calculated value. For hemicellulose and lignin, whether positive or negative synergistic was related to the mixed ratio and temperature range. The distribution of the average activation energy values for the mixtures showed nonadditivity performance.
•Co-pyrolysis behavior of lignocellulosic biomass components and bituminous coal was explored.•Positive and/or negative synergistic effects were observed during co-pyrolysis of the mixtures.•Kinetic parameter was solved via using model-free method (Kissinger–Akahira–Sunose).•Nonadditivity performance on the activation energy values of the mixtures was observed. Co-thermochemical conversion of lignocellulosic biomass and coal has been investigated as an effective way to reduce the carbon footprint. Successful evaluating on thermal behavior of the co-pyrolysis is prerequisite for predicting performance and optimizing efficiency of this process. In this paper, pyrolysis and kinetics characteristics of three kinds of lignocellulosic biomass model components (cellulose, hemicellulose, and lignin) blended with a kind of Chinese bituminous coal were explored by thermogravimetric analyzer and Kissinger–Akahira–Sunose method. The results indicated that the addition of model compounds had different synergistic effects on thermal behavior of the bituminous coal. The cellulose showed positive synergistic effects on the thermal decomposition of the coal bituminous coal with lower char yield than calculated value. For hemicellulose and lignin, whether positive or negative synergistic was related to the mixed ratio and temperature range. The distribution of the average activation energy values for the mixtures showed nonadditivity performance.
Author Zhao, Jun
Meng, Haiyu
Wu, Zhiqiang
Wang, Shuzhong
Chen, Lin
Author_xml – sequence: 1
  givenname: Zhiqiang
  surname: Wu
  fullname: Wu, Zhiqiang
– sequence: 2
  givenname: Shuzhong
  surname: Wang
  fullname: Wang, Shuzhong
  email: szwang@aliyun.com
– sequence: 3
  givenname: Jun
  surname: Zhao
  fullname: Zhao, Jun
– sequence: 4
  givenname: Lin
  surname: Chen
  fullname: Chen, Lin
– sequence: 5
  givenname: Haiyu
  surname: Meng
  fullname: Meng, Haiyu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28750529$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/25058297$$D View this record in MEDLINE/PubMed
BookMark eNqFks2KFDEUhYOMOD2jrzBkI7ipNkklqSpwoQz-wYALdR2S1K3uNKmkTVIjvfTNTdM9CG56Fbh859zDPblBVyEGQOiOkjUlVL7drY2LqYDdrhmhfE1knYtnaEX7rm3Y0MkrtCKDJE0vGL9GNznvCCEt7dgLdM0EEX2FVujP90OAtHG5OIthmsAWHAMuW0iz9tjAVj_WRXhckgsbbGOzP6ToD9llHCfs3SZEC94vPubqUEPNOmc8xxF8ped9jR1KxsZDGPFvV7aVKcvsQlxyBbR_iZ5P2md4dX5v0c9PH3_cf2kevn3-ev_hobG8paUxQ9cyM2kGzBhLBw6UdgNnwgxyJKaduJDcyBE6wVk3Ek6FHYSgkuletFK3t-jNyXef4q8FclGzy8foOkDNomjfSikI7-RlVAjJ-m7oeUXvzuhiZhjVPrlZp4N6unAFXp8Bna32U9LBuvyP67tKsqFy706cTTHnBJOyrujiYihJO68oUcfi1U49Fa-OxSsi61xUufxP_rThovD9SQj19o8OksrWQbAwulQ_gxqju2TxF1aZzZA
CitedBy_id crossref_primary_10_1016_j_fuel_2021_120305
crossref_primary_10_1016_j_biortech_2017_09_059
crossref_primary_10_2174_1381612829666230717121632
crossref_primary_10_1155_2016_6197867
crossref_primary_10_1016_j_jclepro_2023_140166
crossref_primary_10_1016_j_biortech_2016_03_024
crossref_primary_10_1016_j_fuel_2015_12_057
crossref_primary_10_1016_j_enconman_2017_02_077
crossref_primary_10_1016_j_fuel_2016_06_066
crossref_primary_10_1016_j_renene_2021_06_109
crossref_primary_10_1016_j_egypro_2018_09_093
crossref_primary_10_1016_j_joei_2021_04_009
crossref_primary_10_1016_S1872_5813_23_60393_7
crossref_primary_10_1002_isd2_12120
crossref_primary_10_1016_j_cej_2020_125372
crossref_primary_10_1016_j_fuel_2018_08_116
crossref_primary_10_1016_j_fuel_2021_121648
crossref_primary_10_1016_j_jaap_2024_106873
crossref_primary_10_2298_TSCI240324211D
crossref_primary_10_1016_j_renene_2019_01_119
crossref_primary_10_1016_j_biortech_2016_12_004
crossref_primary_10_1016_j_biortech_2016_01_033
crossref_primary_10_1016_j_renene_2024_121225
crossref_primary_10_1155_2020_5024369
crossref_primary_10_2298_TSCI210516310B
crossref_primary_10_1016_j_joei_2020_06_003
crossref_primary_10_22395_rium_v21n40a4
crossref_primary_10_1016_j_apenergy_2015_05_092
crossref_primary_10_1016_j_fuel_2022_125216
crossref_primary_10_1177_0957650920942999
crossref_primary_10_1080_19392699_2022_2061473
crossref_primary_10_1007_s11431_015_5967_0
crossref_primary_10_1016_j_joei_2023_101243
crossref_primary_10_1016_j_fuel_2024_134213
crossref_primary_10_3390_su17177654
crossref_primary_10_1016_j_tsep_2020_100523
crossref_primary_10_1177_0143831X20958478
crossref_primary_10_1111_wej_12355
crossref_primary_10_1016_j_biortech_2019_122627
crossref_primary_10_1016_j_jenvman_2025_126327
crossref_primary_10_1177_0734242X14557381
crossref_primary_10_1016_j_biortech_2019_122508
crossref_primary_10_1016_j_applthermaleng_2016_08_104
crossref_primary_10_1016_j_tca_2021_179033
crossref_primary_10_1016_j_fuel_2017_11_080
crossref_primary_10_1016_j_biortech_2018_07_022
crossref_primary_10_1016_j_est_2023_107142
crossref_primary_10_1007_s11814_016_0129_z
crossref_primary_10_1088_1757_899X_778_1_012114
crossref_primary_10_1016_j_biortech_2017_09_196
crossref_primary_10_1016_j_jaap_2016_12_031
crossref_primary_10_1016_j_renene_2019_01_015
crossref_primary_10_1016_j_biortech_2018_03_043
crossref_primary_10_1007_s13399_023_05232_3
crossref_primary_10_1016_j_fuel_2021_122399
crossref_primary_10_1016_j_jaap_2016_07_001
crossref_primary_10_3390_en15176277
crossref_primary_10_1016_j_fuproc_2018_04_018
crossref_primary_10_1039_C4CS00453A
crossref_primary_10_1016_j_fuel_2021_122151
crossref_primary_10_1007_s10973_015_4834_3
crossref_primary_10_1016_j_biortech_2018_05_048
crossref_primary_10_1016_j_fuel_2018_11_015
crossref_primary_10_1016_j_jclepro_2019_118713
crossref_primary_10_1016_j_jaap_2024_106806
crossref_primary_10_1088_1755_1315_847_1_012017
crossref_primary_10_1016_j_renene_2018_08_002
crossref_primary_10_1007_s41207_025_00931_x
crossref_primary_10_3390_en15093347
crossref_primary_10_1039_D2SE01773C
crossref_primary_10_1080_07373937_2016_1171234
crossref_primary_10_1016_j_biortech_2014_11_035
crossref_primary_10_1016_j_wasman_2016_11_012
crossref_primary_10_1016_j_fuel_2020_118665
crossref_primary_10_1016_j_psep_2023_12_027
crossref_primary_10_1016_j_enconman_2018_05_012
crossref_primary_10_1016_j_joei_2021_11_004
crossref_primary_10_1016_j_applthermaleng_2019_02_026
crossref_primary_10_1016_j_renene_2019_10_103
crossref_primary_10_1016_j_biortech_2015_01_066
crossref_primary_10_1016_j_renene_2025_124082
crossref_primary_10_1016_j_renene_2024_120961
crossref_primary_10_1016_j_biortech_2018_12_038
crossref_primary_10_1016_j_indcrop_2024_120100
crossref_primary_10_1016_j_sajce_2024_03_003
crossref_primary_10_1016_j_fuel_2019_03_100
crossref_primary_10_4491_eer_2017_012
crossref_primary_10_1016_j_joei_2022_01_003
crossref_primary_10_1039_C9RA03938D
crossref_primary_10_1016_j_fuproc_2016_05_011
crossref_primary_10_3389_fenrg_2020_608756
crossref_primary_10_1016_j_biortech_2015_07_120
crossref_primary_10_1016_S1006_706X_16_30139_X
crossref_primary_10_1016_j_applthermaleng_2017_01_061
crossref_primary_10_1016_j_tca_2017_11_005
crossref_primary_10_1016_j_jaap_2016_08_020
crossref_primary_10_1016_j_rser_2018_12_047
crossref_primary_10_1016_j_enconman_2016_03_013
crossref_primary_10_1016_j_renene_2018_08_021
crossref_primary_10_3390_app11041692
crossref_primary_10_1007_s13399_020_00924_6
crossref_primary_10_5004_dwt_2020_26337
crossref_primary_10_1088_1757_899X_358_1_012003
crossref_primary_10_1016_j_jclepro_2024_140750
crossref_primary_10_1016_j_tmp_2022_100963
crossref_primary_10_1016_j_fuel_2016_10_083
crossref_primary_10_1016_j_jclepro_2019_119185
crossref_primary_10_1016_j_energy_2017_11_141
crossref_primary_10_1002_er_7547
crossref_primary_10_1016_j_apenergy_2021_117372
crossref_primary_10_1016_j_fuel_2020_119221
crossref_primary_10_1016_j_tsep_2022_101346
crossref_primary_10_1016_j_wasman_2020_03_010
crossref_primary_10_1016_j_indcrop_2023_117689
crossref_primary_10_1016_j_joei_2024_101662
crossref_primary_10_1016_j_joei_2021_01_011
crossref_primary_10_3390_pr10112264
crossref_primary_10_1080_00102202_2024_2368756
crossref_primary_10_1016_j_inoche_2024_113760
crossref_primary_10_1016_j_chemosphere_2021_131116
crossref_primary_10_3390_microorganisms10051007
crossref_primary_10_1177_0144598719877759
crossref_primary_10_1016_j_biteb_2022_101128
crossref_primary_10_1016_j_fuel_2021_121098
crossref_primary_10_3103_S1068364X2560054X
crossref_primary_10_1016_j_fuel_2021_122585
crossref_primary_10_1016_j_enconman_2016_12_060
crossref_primary_10_1016_j_energy_2022_125238
crossref_primary_10_4236_ojapps_2025_154077
crossref_primary_10_1016_j_fuel_2022_125745
crossref_primary_10_3390_en11123436
crossref_primary_10_3390_en15030755
crossref_primary_10_1016_j_renene_2017_11_006
crossref_primary_10_1007_s12010_023_04556_0
crossref_primary_10_1016_j_energy_2022_124388
crossref_primary_10_1016_j_biortech_2018_09_076
crossref_primary_10_1016_j_enconman_2017_08_084
crossref_primary_10_1016_j_biombioe_2024_107080
crossref_primary_10_1108_JOPP_04_2020_0031
crossref_primary_10_1016_j_applthermaleng_2017_07_012
crossref_primary_10_1016_j_apenergy_2020_115461
crossref_primary_10_4491_eer_2016_159
crossref_primary_10_1016_j_cjche_2023_12_013
crossref_primary_10_1016_j_biortech_2016_09_026
crossref_primary_10_3390_en15197157
crossref_primary_10_1007_s13399_023_04161_5
crossref_primary_10_1016_j_ijhydene_2017_05_144
crossref_primary_10_1016_j_enconman_2020_112777
crossref_primary_10_1016_j_fuel_2022_124540
crossref_primary_10_3390_en14248227
crossref_primary_10_1016_j_jclepro_2021_130168
crossref_primary_10_1016_j_renene_2023_118936
crossref_primary_10_1016_j_jaap_2017_12_019
crossref_primary_10_1016_j_jaap_2019_104742
crossref_primary_10_1007_s12649_016_9524_2
Cites_doi 10.1021/ef500261q
10.1021/ef301567h
10.1016/j.biortech.2012.01.019
10.1016/j.biortech.2010.02.087
10.1021/ef401748e
10.1021/ef700230s
10.1016/j.biortech.2013.07.086
10.1016/j.renene.2009.08.001
10.1016/j.fuproc.2012.08.014
10.1016/j.biortech.2012.12.073
10.1016/j.biortech.2008.03.047
10.1016/j.jaap.2014.04.015
10.1016/j.biortech.2011.08.022
10.1016/j.fuel.2011.10.046
10.1016/j.fuel.2003.05.003
10.1016/j.carbpol.2010.04.018
10.1021/ac60131a045
10.1016/j.tca.2010.11.006
10.1016/j.biortech.2012.04.077
10.1016/0016-2361(95)00275-8
10.1016/j.biortech.2012.09.042
10.1016/0960-8524(92)90025-S
10.1016/j.jaap.2014.01.011
10.1016/j.biortech.2013.06.052
10.1016/0165-2370(87)80006-2
10.1016/j.biortech.2013.10.057
10.1016/j.biortech.2012.01.001
10.1016/j.fuel.2013.04.073
10.1016/j.tca.2011.09.021
10.1021/ef201097d
10.1016/j.fuel.2012.04.023
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2014.06.105
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 228
ExternalDocumentID 25058297
28750529
10_1016_j_biortech_2014_06_105
S0960852414009596
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c431t-b9732bfa2e2bbc194e1179425b96d0b3f4564b6de75427d0415c955162a8536a3
ISICitedReferencesCount 178
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340894400030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-8524
1873-2976
IngestDate Sat Sep 27 22:53:07 EDT 2025
Thu Oct 02 19:11:48 EDT 2025
Mon Jul 21 05:49:36 EDT 2025
Wed Apr 02 07:15:15 EDT 2025
Sat Nov 29 03:25:26 EST 2025
Tue Nov 18 21:26:59 EST 2025
Fri Feb 23 02:16:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Co-pyrolysis
Synergistic effect
Kinetics
Lignocellulosic biomass
Coal
Pyrolysis
Thermal behavior
Lignocellulosics
Biomass
Modeling
Synergism
Mixture
Bituminous coal
Language English
License CC BY 4.0
Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c431t-b9732bfa2e2bbc194e1179425b96d0b3f4564b6de75427d0415c955162a8536a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25058297
PQID 1556287984
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1836650476
proquest_miscellaneous_1556287984
pubmed_primary_25058297
pascalfrancis_primary_28750529
crossref_citationtrail_10_1016_j_biortech_2014_06_105
crossref_primary_10_1016_j_biortech_2014_06_105
elsevier_sciencedirect_doi_10_1016_j_biortech_2014_06_105
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Guo, Yuan, Yin, Wu, Wu, Zhou (b0025) 2014; 152
Sadhukhan, Gupta, Goyal, Saha (b0105) 2008; 99
Jianguo, Zhaolong (b0040) 1999; 5
Wang, Guo, Zhu, Qu, Li, Rong, Wang, Liu (b0135) 2011; 512
Parshetti, Hoekman, Balasubramanian (b0090) 2013; 135
Park, Kim, Lee, Lee (b0085) 2010; 101
Weiland, Means, Morreale (b0140) 2012; 94
Yuan, Dai, Zhou, Chen, Yu, Wang (b0165) 2012; 109
Kar (b0045) 2011; 102
Cai, Wu, Liu (b0010) 2013; 132
Soncini, Means, Weiland (b0120) 2013; 112
Chen, Ma, He (b0015) 2012; 117
Onay, Bayram, Koçkar (b0075) 2007; 21
Haykiri-Acma, Yaman (b0035) 2010; 35
Matsuoka, Kawamoto, Saka (b0065) 2014; 106
Shen, Gu, Bridgwater (b0115) 2010; 82
Wu, Wang, Zhao, Chen, Meng (b0145) 2014; 28
Xu, Chen (b0150) 2013; 146
Aboyade, Görgens, Carrier, Meyer, Knoetze (b0005) 2013; 106
Pan, Velo, Puigjaner (b0080) 1996; 75
Pottmaier, Costa, Farrow, Oliveira, Alarcon, Snape (b0095) 2013; 27
Zhang, Yang, Blasiak (b0170) 2011; 25
Habibi, Kopyscinski, Masnadi, Lam, Grace, Mims, Hill (b0030) 2013; 27
Sonoyama, Hayashi (b0125) 2013; 114
Maschio, Koufopanos, Lucchesi (b0060) 1992; 42
Dumitriu (b0020) 2012
Vamvuka, Sfakiotakis (b0130) 2011; 526
Lopez-Gonzalez, Fernandez-Lopez, Valverde, Sanchez-Silva (b0055) 2013; 143
Kissinger (b0050) 1957; 29
Richards (b0100) 1987; 10
Yangali, P., Celaya, A.M., Goldfarb, J.L., 2014. Co-pyrolysis reaction rates and activation energies of West Virginia coal and cherry pit blends. J. Anal. Appl. Pyrolysis. (in press).
Yan, Chen (b0155) 2007; 27
Moghtaderi, Meesri, Wall (b0070) 2004; 83
Sanchez-Silva, Lopez-Gonzalez, Villasenor, Sanchez, Valverde (b0110) 2012; 109
Pottmaier (10.1016/j.biortech.2014.06.105_b0095) 2013; 27
Vamvuka (10.1016/j.biortech.2014.06.105_b0130) 2011; 526
Kar (10.1016/j.biortech.2014.06.105_b0045) 2011; 102
Habibi (10.1016/j.biortech.2014.06.105_b0030) 2013; 27
Yan (10.1016/j.biortech.2014.06.105_b0155) 2007; 27
Chen (10.1016/j.biortech.2014.06.105_b0015) 2012; 117
Wang (10.1016/j.biortech.2014.06.105_b0135) 2011; 512
Jianguo (10.1016/j.biortech.2014.06.105_b0040) 1999; 5
Richards (10.1016/j.biortech.2014.06.105_b0100) 1987; 10
Wu (10.1016/j.biortech.2014.06.105_b0145) 2014; 28
Sonoyama (10.1016/j.biortech.2014.06.105_b0125) 2013; 114
Sadhukhan (10.1016/j.biortech.2014.06.105_b0105) 2008; 99
Soncini (10.1016/j.biortech.2014.06.105_b0120) 2013; 112
Yuan (10.1016/j.biortech.2014.06.105_b0165) 2012; 109
Cai (10.1016/j.biortech.2014.06.105_b0010) 2013; 132
Dumitriu (10.1016/j.biortech.2014.06.105_b0020) 2012
Maschio (10.1016/j.biortech.2014.06.105_b0060) 1992; 42
Moghtaderi (10.1016/j.biortech.2014.06.105_b0070) 2004; 83
Lopez-Gonzalez (10.1016/j.biortech.2014.06.105_b0055) 2013; 143
Matsuoka (10.1016/j.biortech.2014.06.105_b0065) 2014; 106
Sanchez-Silva (10.1016/j.biortech.2014.06.105_b0110) 2012; 109
Pan (10.1016/j.biortech.2014.06.105_b0080) 1996; 75
Parshetti (10.1016/j.biortech.2014.06.105_b0090) 2013; 135
Guo (10.1016/j.biortech.2014.06.105_b0025) 2014; 152
Haykiri-Acma (10.1016/j.biortech.2014.06.105_b0035) 2010; 35
Weiland (10.1016/j.biortech.2014.06.105_b0140) 2012; 94
Kissinger (10.1016/j.biortech.2014.06.105_b0050) 1957; 29
Shen (10.1016/j.biortech.2014.06.105_b0115) 2010; 82
10.1016/j.biortech.2014.06.105_b0160
Zhang (10.1016/j.biortech.2014.06.105_b0170) 2011; 25
Aboyade (10.1016/j.biortech.2014.06.105_b0005) 2013; 106
Onay (10.1016/j.biortech.2014.06.105_b0075) 2007; 21
Park (10.1016/j.biortech.2014.06.105_b0085) 2010; 101
Xu (10.1016/j.biortech.2014.06.105_b0150) 2013; 146
References_xml – volume: 75
  start-page: 412
  year: 1996
  end-page: 418
  ident: b0080
  article-title: Pyrolysis of blends of biomass with poor coals
  publication-title: Fuel
– volume: 152
  start-page: 147
  year: 2014
  end-page: 153
  ident: b0025
  article-title: Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis
  publication-title: Bioresour. Technol.
– volume: 10
  start-page: 251
  year: 1987
  end-page: 255
  ident: b0100
  article-title: Glycolaldehyde from pyrolysis of cellulose
  publication-title: J. Anal. Appl. Pyrol.
– volume: 27
  start-page: 80
  year: 2007
  end-page: 86
  ident: b0155
  article-title: Interaction performance of co-pyrolysis of biomass mixture and coal of different rank
  publication-title: Proc. CSEE
– year: 2012
  ident: b0020
  article-title: Polysaccharides: Structural Diversity and Functional Versatility
– volume: 27
  start-page: 7115
  year: 2013
  end-page: 7125
  ident: b0095
  article-title: Comparison of rice husk and wheat straw: from slow and fast pyrolysis to char combustion
  publication-title: Energy Fuels
– volume: 27
  start-page: 494
  year: 2013
  end-page: 500
  ident: b0030
  article-title: Co-gasification of biomass and non-biomass feedstocks: synergistic and inhibition effects of switchgrass mixed with sub-bituminous coal and fluid coke during CO
  publication-title: Energy Fuels
– volume: 29
  start-page: 1702
  year: 1957
  end-page: 1706
  ident: b0050
  article-title: Reaction kinetics in differential thermal analysis
  publication-title: Anal. Chem.
– volume: 143
  start-page: 562
  year: 2013
  end-page: 574
  ident: b0055
  article-title: Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass
  publication-title: Bioresour. Technol.
– volume: 114
  start-page: 206
  year: 2013
  end-page: 215
  ident: b0125
  article-title: Characterisation of coal and biomass based on kinetic parameter distributions for pyrolysis
  publication-title: Fuel
– volume: 102
  start-page: 9800
  year: 2011
  end-page: 9805
  ident: b0045
  article-title: Co-pyrolysis of walnut shell and tar sand in a fixed-bed reactor
  publication-title: Bioresour. Technol.
– volume: 35
  start-page: 288
  year: 2010
  end-page: 292
  ident: b0035
  article-title: Interaction between biomass and different rank coals during co-pyrolysis
  publication-title: Renewable Energy
– volume: 28
  start-page: 1792
  year: 2014
  end-page: 1801
  ident: b0145
  article-title: Thermal behavior and char structure evolution of bituminous coal blends with edible fungi residue during co-pyrolysis
  publication-title: Energy Fuels
– volume: 99
  start-page: 8022
  year: 2008
  end-page: 8026
  ident: b0105
  article-title: Modelling of pyrolysis of coal–biomass blends using thermogravimetric analysis
  publication-title: Bioresour. Technol.
– volume: 117
  start-page: 264
  year: 2012
  end-page: 273
  ident: b0015
  article-title: Co-pyrolysis characteristics of microalgae
  publication-title: Bioresour. Technol.
– volume: 106
  start-page: 138
  year: 2014
  end-page: 146
  ident: b0065
  article-title: What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end
  publication-title: J. Anal. Appl. Pyrol.
– volume: 109
  start-page: 188
  year: 2012
  end-page: 197
  ident: b0165
  article-title: Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char
  publication-title: Bioresour. Technol.
– volume: 512
  start-page: 254
  year: 2011
  end-page: 257
  ident: b0135
  article-title: Investigation on catalyzed combustion of wheat straw by thermal analysis
  publication-title: Thermochim. Acta
– volume: 94
  start-page: 563
  year: 2012
  end-page: 570
  ident: b0140
  article-title: Product distributions from isothermal co-pyrolysis of coal and biomass
  publication-title: Fuel
– volume: 526
  start-page: 192
  year: 2011
  end-page: 199
  ident: b0130
  article-title: Combustion behaviour of biomass fuels and their blends with lignite
  publication-title: Thermochim. Acta
– volume: 82
  start-page: 39
  year: 2010
  end-page: 45
  ident: b0115
  article-title: The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose
  publication-title: Carbohydr. Polym.
– volume: 132
  start-page: 423
  year: 2013
  end-page: 426
  ident: b0010
  article-title: Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis
  publication-title: Bioresour. Technol.
– volume: 83
  start-page: 745
  year: 2004
  end-page: 750
  ident: b0070
  article-title: Pyrolytic characteristics of blended coal and woody biomass
  publication-title: Fuel
– volume: 101
  start-page: 6151
  year: 2010
  end-page: 6156
  ident: b0085
  article-title: Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor
  publication-title: Bioresour. Technol.
– volume: 106
  start-page: 310
  year: 2013
  end-page: 320
  ident: b0005
  article-title: Thermogravimetric study of the pyrolysis characteristics and kinetics of coal blends with corn and sugarcane residues
  publication-title: Fuel Process. Technol.
– volume: 21
  start-page: 3049
  year: 2007
  end-page: 3056
  ident: b0075
  article-title: Copyrolysis of seyitömer−lignite and safflower seed: influence of the blending ratio and pyrolysis temperature on product yields and oil characterization
  publication-title: Energy Fuels
– volume: 135
  start-page: 683
  year: 2013
  end-page: 689
  ident: b0090
  article-title: Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches
  publication-title: Bioresour. Technol.
– volume: 109
  start-page: 163
  year: 2012
  end-page: 172
  ident: b0110
  article-title: Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis
  publication-title: Bioresour. Technol.
– volume: 146
  start-page: 485
  year: 2013
  end-page: 493
  ident: b0150
  article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis
  publication-title: Bioresour. Technol.
– volume: 25
  start-page: 4786
  year: 2011
  end-page: 4795
  ident: b0170
  article-title: Modeling study of woody biomass: interactions of cellulose, hemicellulose, and lignin
  publication-title: Energy Fuels
– reference: Yangali, P., Celaya, A.M., Goldfarb, J.L., 2014. Co-pyrolysis reaction rates and activation energies of West Virginia coal and cherry pit blends. J. Anal. Appl. Pyrolysis. (in press).
– volume: 42
  start-page: 219
  year: 1992
  end-page: 231
  ident: b0060
  article-title: Pyrolysis, a promising route for biomass utilization
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 175
  year: 1999
  end-page: 179
  ident: b0040
  article-title: The study of pyrolysis property of pulverized coal by thermogravimetry
  publication-title: J. Combust. Sci. Technol.
– volume: 112
  start-page: 74
  year: 2013
  end-page: 82
  ident: b0120
  article-title: Co-pyrolysis of low rank coals and biomass: product distributions
  publication-title: Fuel
– volume: 28
  start-page: 1792
  issue: 3
  year: 2014
  ident: 10.1016/j.biortech.2014.06.105_b0145
  article-title: Thermal behavior and char structure evolution of bituminous coal blends with edible fungi residue during co-pyrolysis
  publication-title: Energy Fuels
  doi: 10.1021/ef500261q
– volume: 27
  start-page: 494
  issue: 1
  year: 2013
  ident: 10.1016/j.biortech.2014.06.105_b0030
  article-title: Co-gasification of biomass and non-biomass feedstocks: synergistic and inhibition effects of switchgrass mixed with sub-bituminous coal and fluid coke during CO2 gasification
  publication-title: Energy Fuels
  doi: 10.1021/ef301567h
– volume: 109
  start-page: 188
  year: 2012
  ident: 10.1016/j.biortech.2014.06.105_b0165
  article-title: Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.019
– volume: 101
  start-page: 6151
  issue: 15
  year: 2010
  ident: 10.1016/j.biortech.2014.06.105_b0085
  article-title: Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.02.087
– volume: 27
  start-page: 7115
  issue: 11
  year: 2013
  ident: 10.1016/j.biortech.2014.06.105_b0095
  article-title: Comparison of rice husk and wheat straw: from slow and fast pyrolysis to char combustion
  publication-title: Energy Fuels
  doi: 10.1021/ef401748e
– volume: 21
  start-page: 3049
  issue: 5
  year: 2007
  ident: 10.1016/j.biortech.2014.06.105_b0075
  article-title: Copyrolysis of seyitömer−lignite and safflower seed: influence of the blending ratio and pyrolysis temperature on product yields and oil characterization
  publication-title: Energy Fuels
  doi: 10.1021/ef700230s
– volume: 146
  start-page: 485
  year: 2013
  ident: 10.1016/j.biortech.2014.06.105_b0150
  article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.07.086
– volume: 35
  start-page: 288
  issue: 1
  year: 2010
  ident: 10.1016/j.biortech.2014.06.105_b0035
  article-title: Interaction between biomass and different rank coals during co-pyrolysis
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2009.08.001
– volume: 106
  start-page: 310
  year: 2013
  ident: 10.1016/j.biortech.2014.06.105_b0005
  article-title: Thermogravimetric study of the pyrolysis characteristics and kinetics of coal blends with corn and sugarcane residues
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2012.08.014
– volume: 132
  start-page: 423
  year: 2013
  ident: 10.1016/j.biortech.2014.06.105_b0010
  article-title: Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.12.073
– volume: 99
  start-page: 8022
  issue: 17
  year: 2008
  ident: 10.1016/j.biortech.2014.06.105_b0105
  article-title: Modelling of pyrolysis of coal–biomass blends using thermogravimetric analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.03.047
– ident: 10.1016/j.biortech.2014.06.105_b0160
  doi: 10.1016/j.jaap.2014.04.015
– volume: 102
  start-page: 9800
  issue: 20
  year: 2011
  ident: 10.1016/j.biortech.2014.06.105_b0045
  article-title: Co-pyrolysis of walnut shell and tar sand in a fixed-bed reactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.08.022
– volume: 94
  start-page: 563
  issue: 1
  year: 2012
  ident: 10.1016/j.biortech.2014.06.105_b0140
  article-title: Product distributions from isothermal co-pyrolysis of coal and biomass
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.10.046
– volume: 27
  start-page: 80
  issue: 2
  year: 2007
  ident: 10.1016/j.biortech.2014.06.105_b0155
  article-title: Interaction performance of co-pyrolysis of biomass mixture and coal of different rank
  publication-title: Proc. CSEE
– volume: 83
  start-page: 745
  issue: 6
  year: 2004
  ident: 10.1016/j.biortech.2014.06.105_b0070
  article-title: Pyrolytic characteristics of blended coal and woody biomass
  publication-title: Fuel
  doi: 10.1016/j.fuel.2003.05.003
– volume: 5
  start-page: 175
  issue: 2
  year: 1999
  ident: 10.1016/j.biortech.2014.06.105_b0040
  article-title: The study of pyrolysis property of pulverized coal by thermogravimetry
  publication-title: J. Combust. Sci. Technol.
– volume: 82
  start-page: 39
  issue: 1
  year: 2010
  ident: 10.1016/j.biortech.2014.06.105_b0115
  article-title: The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2010.04.018
– volume: 29
  start-page: 1702
  issue: 11
  year: 1957
  ident: 10.1016/j.biortech.2014.06.105_b0050
  article-title: Reaction kinetics in differential thermal analysis
  publication-title: Anal. Chem.
  doi: 10.1021/ac60131a045
– volume: 512
  start-page: 254
  issue: 1–2
  year: 2011
  ident: 10.1016/j.biortech.2014.06.105_b0135
  article-title: Investigation on catalyzed combustion of wheat straw by thermal analysis
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2010.11.006
– volume: 117
  start-page: 264
  year: 2012
  ident: 10.1016/j.biortech.2014.06.105_b0015
  article-title: Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.04.077
– volume: 75
  start-page: 412
  issue: 4
  year: 1996
  ident: 10.1016/j.biortech.2014.06.105_b0080
  article-title: Pyrolysis of blends of biomass with poor coals
  publication-title: Fuel
  doi: 10.1016/0016-2361(95)00275-8
– volume: 135
  start-page: 683
  year: 2013
  ident: 10.1016/j.biortech.2014.06.105_b0090
  article-title: Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.09.042
– volume: 42
  start-page: 219
  issue: 3
  year: 1992
  ident: 10.1016/j.biortech.2014.06.105_b0060
  article-title: Pyrolysis, a promising route for biomass utilization
  publication-title: Bioresour. Technol.
  doi: 10.1016/0960-8524(92)90025-S
– volume: 106
  start-page: 138
  year: 2014
  ident: 10.1016/j.biortech.2014.06.105_b0065
  article-title: What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2014.01.011
– volume: 143
  start-page: 562
  year: 2013
  ident: 10.1016/j.biortech.2014.06.105_b0055
  article-title: Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.06.052
– volume: 10
  start-page: 251
  issue: 3
  year: 1987
  ident: 10.1016/j.biortech.2014.06.105_b0100
  article-title: Glycolaldehyde from pyrolysis of cellulose
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/0165-2370(87)80006-2
– volume: 152
  start-page: 147
  year: 2014
  ident: 10.1016/j.biortech.2014.06.105_b0025
  article-title: Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.10.057
– volume: 109
  start-page: 163
  year: 2012
  ident: 10.1016/j.biortech.2014.06.105_b0110
  article-title: Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.001
– volume: 112
  start-page: 74
  year: 2013
  ident: 10.1016/j.biortech.2014.06.105_b0120
  article-title: Co-pyrolysis of low rank coals and biomass: product distributions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.04.073
– volume: 526
  start-page: 192
  issue: 1–2
  year: 2011
  ident: 10.1016/j.biortech.2014.06.105_b0130
  article-title: Combustion behaviour of biomass fuels and their blends with lignite
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2011.09.021
– year: 2012
  ident: 10.1016/j.biortech.2014.06.105_b0020
– volume: 25
  start-page: 4786
  issue: 10
  year: 2011
  ident: 10.1016/j.biortech.2014.06.105_b0170
  article-title: Modeling study of woody biomass: interactions of cellulose, hemicellulose, and lignin
  publication-title: Energy Fuels
  doi: 10.1021/ef201097d
– volume: 114
  start-page: 206
  year: 2013
  ident: 10.1016/j.biortech.2014.06.105_b0125
  article-title: Characterisation of coal and biomass based on kinetic parameter distributions for pyrolysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.04.023
SSID ssj0003172
Score 2.5362806
Snippet •Co-pyrolysis behavior of lignocellulosic biomass components and bituminous coal was explored.•Positive and/or negative synergistic effects were observed...
Co-thermochemical conversion of lignocellulosic biomass and coal has been investigated as an effective way to reduce the carbon footprint. Successful...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 220
SubjectTerms activation energy
Biological and medical sciences
Biomass
Biotechnology - methods
carbon footprint
cellulose
Cellulose - chemistry
Co-pyrolysis
Coal
Coal - analysis
Fundamental and applied biological sciences. Psychology
hemicellulose
Hot Temperature
Kinetics
lignin
Lignin - chemistry
lignocellulose
Lignocellulosic biomass
Polysaccharides - chemistry
prediction
pyrolysis
synergism
Synergistic effect
temperature
thermal properties
Thermogravimetry
Title Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal
URI https://dx.doi.org/10.1016/j.biortech.2014.06.105
https://www.ncbi.nlm.nih.gov/pubmed/25058297
https://www.proquest.com/docview/1556287984
https://www.proquest.com/docview/1836650476
Volume 169
WOSCitedRecordID wos000340894400030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6DgkQQjBglB-VkbhNgSRNY_tYVUOApgmJgSouke0kbacu6bpk2rhx5a_m-VdSGGVw4BJVdhKn-b7Yz_Z730PoZRoTmaci8gjNiRdxGXjCD6jHiU-yPPQZ0ToFnw_I4SGdTNiHTue7i4U5X5CioBcXbPlfoYYyAFuFzv4D3M1NoQB-A-hwBNjh-FfAf7xU4Xxaf9l6a9gNAeiCF01YvotPlKW3vFyVjTDJYj4tSrWaXy9KAHBPhedzlzFHO6CXhQ6KEzBcWc91Ma_qk7nWepWlfTy3TwxN2Q2CverqKn6t90Zm81Mg6bRd27dL2LP666xsy7_MuNkmqhtCj21syYHVD7fLF0HUOMLB6GO6XEpUNjmTBabpk03-Fter6ni5q729WXg4fgWvYqX-g_LUi5Qca6BDuas1tJcnGm5l8Klg4nb0a3wSXdUW2g7JkNEu2h6925-8b8Z1sLTCtRjz3zerxKXtjTZZOneW_Ay-v9wkTtk8s9EWztE9dNdOTfDIUOo-6mTFDro9mq6sPEu2g26OXX5AqFmTsnyAvq3RDhva4bLAlnbY0Q4b2uF12uEyx7_QDlvaYU073NIOa9phRTvc0g4r2j1En97sH43feja9hyfBaq08oYSiRM7DLBRCBizKtFxhOBQsTn0xyJXSkYjTTCVpJqnSkpBM7euGHGzMmA8eoW4BjT9GOAxyP5WU5lyChR0wytMwA-M5g9lKILnfQ0MHRSKt9r1KwbJInJPjceLQTBSaiR9D-bCHXjfXLY36y7VXMId0Ym1YY5smQNprr-3_RI2myZASlW-S9dALx5UEwFao8CKD15zArCCGsxiN_nAOHcQwH4tI3EO7hmhtC5azTzbWPEW32s_3GepWqzp7jm7I82p-tuqjLTKhffvF_AAmfewH
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+effect+on+thermal+behavior+during+co-pyrolysis+of+lignocellulosic+biomass+model+components+blend+with+bituminous+coal&rft.jtitle=Bioresource+technology&rft.au=Wu%2C+Zhiqiang&rft.au=Wang%2C+Shuzhong&rft.au=Zhao%2C+Jun&rft.au=Chen%2C+Lin&rft.date=2014-10-01&rft.eissn=1873-2976&rft.volume=169&rft.spage=220&rft_id=info:doi/10.1016%2Fj.biortech.2014.06.105&rft_id=info%3Apmid%2F25058297&rft.externalDocID=25058297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon