A method for assessment of the general circulation model quality using the K -means clustering algorithm: a case study with GETM v2.5
The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of discussion. Multidimensional model quality assessment is usually customized for the specific focus of the study and often for a limited number of locations. In this pape...
Saved in:
| Published in: | Geoscientific Model Development Vol. 15; no. 2; pp. 535 - 551 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Katlenburg-Lindau
Copernicus GmbH
25.01.2022
Copernicus Publications |
| Subjects: | |
| ISSN: | 1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of
discussion. Multidimensional model quality assessment is usually customized for the specific focus of the study and often for a limited number of
locations. In this paper, we propose a method that provides information on the accuracy of the model in general, while all dimensional information
for posterior analysis of the specific tasks is retained. The main goal of the method is to perform clustering of the multivariate model errors. The
clustering is done using the K-means algorithm of unsupervised machine learning. In addition, the potential application of the K-means clustering of
model errors for learning and predicting is shown. The method is tested on the 40-year simulation results of the general circulation model of the
Baltic Sea. The model results are evaluated with the measurement data of temperature and salinity from more than 1 million casts by forming a
two-dimensional error space and performing a clustering procedure in it. The optimal number of clusters that consist of four clusters was determined
using the Elbow cluster selection criteria and based on the analysis of the different number of error clusters. In this particular model, the error
cluster with good quality of the model with a bias of 0.4 ∘C (SD = 0.8 ∘C) for temperature and
0.6 g kg−1 (SD = 0.7 g kg−1) for salinity made up 57 % of all comparison data pairs. The prediction of centroids
from a limited number of randomly selected data showed that the obtained centroids gained a stability of at least 100 000 error pairs in the
learning dataset. |
|---|---|
| AbstractList | The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of
discussion. Multidimensional model quality assessment is usually customized for the specific focus of the study and often for a limited number of
locations. In this paper, we propose a method that provides information on the accuracy of the model in general, while all dimensional information
for posterior analysis of the specific tasks is retained. The main goal of the method is to perform clustering of the multivariate model errors. The
clustering is done using the K-means algorithm of unsupervised machine learning. In addition, the potential application of the K-means clustering of
model errors for learning and predicting is shown. The method is tested on the 40-year simulation results of the general circulation model of the
Baltic Sea. The model results are evaluated with the measurement data of temperature and salinity from more than 1 million casts by forming a
two-dimensional error space and performing a clustering procedure in it. The optimal number of clusters that consist of four clusters was determined
using the Elbow cluster selection criteria and based on the analysis of the different number of error clusters. In this particular model, the error
cluster with good quality of the model with a bias of 0.4 ∘C (SD = 0.8 ∘C) for temperature and
0.6 g kg−1 (SD = 0.7 g kg−1) for salinity made up 57 % of all comparison data pairs. The prediction of centroids
from a limited number of randomly selected data showed that the obtained centroids gained a stability of at least 100 000 error pairs in the
learning dataset. The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of discussion. Multidimensional model quality assessment is usually customized for the specific focus of the study and often for a limited number of locations. In this paper, we propose a method that provides information on the accuracy of the model in general, while all dimensional information for posterior analysis of the specific tasks is retained. The main goal of the method is to perform clustering of the multivariate model errors. The clustering is done using the K-means algorithm of unsupervised machine learning. In addition, the potential application of the K-means clustering of model errors for learning and predicting is shown. The method is tested on the 40-year simulation results of the general circulation model of the Baltic Sea. The model results are evaluated with the measurement data of temperature and salinity from more than 1 million casts by forming a two-dimensional error space and performing a clustering procedure in it. The optimal number of clusters that consist of four clusters was determined using the Elbow cluster selection criteria and based on the analysis of the different number of error clusters. In this particular model, the error cluster with good quality of the model with a bias of 0.4 ∘C (SD = 0.8 ∘C) for temperature and 0.6 gkg-1 (SD = 0.7 gkg-1) for salinity made up 57 % of all comparison data pairs. The prediction of centroids from a limited number of randomly selected data showed that the obtained centroids gained a stability of at least 100 000 error pairs in the learning dataset. The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of discussion. Multidimensional model quality assessment is usually customized for the specific focus of the study and often for a limited number of locations. In this paper, we propose a method that provides information on the accuracy of the model in general, while all dimensional information for posterior analysis of the specific tasks is retained. The main goal of the method is to perform clustering of the multivariate model errors. The clustering is done using the K-means algorithm of unsupervised machine learning. In addition, the potential application of the K-means clustering of model errors for learning and predicting is shown. The method is tested on the 40-year simulation results of the general circulation model of the Baltic Sea. The model results are evaluated with the measurement data of temperature and salinity from more than 1 million casts by forming a two-dimensional error space and performing a clustering procedure in it. The optimal number of clusters that consist of four clusters was determined using the Elbow cluster selection criteria and based on the analysis of the different number of error clusters. In this particular model, the error cluster with good quality of the model with a bias of 0.4 .sup." C (SD = 0.8 .sup." C) for temperature and 0.6 g kg.sup.-1 (SD = 0.7 g kg.sup.-1) for salinity made up 57 % of all comparison data pairs. The prediction of centroids from a limited number of randomly selected data showed that the obtained centroids gained a stability of at least 100 000 error pairs in the learning dataset. The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of discussion. Multidimensional model quality assessment is usually customized for the specific focus of the study and often for a limited number of locations. In this paper, we propose a method that provides information on the accuracy of the model in general, while all dimensional information for posterior analysis of the specific tasks is retained. The main goal of the method is to perform clustering of the multivariate model errors. The clustering is done using the K -means algorithm of unsupervised machine learning. In addition, the potential application of the K -means clustering of model errors for learning and predicting is shown. The method is tested on the 40-year simulation results of the general circulation model of the Baltic Sea. The model results are evaluated with the measurement data of temperature and salinity from more than 1 million casts by forming a two-dimensional error space and performing a clustering procedure in it. The optimal number of clusters that consist of four clusters was determined using the Elbow cluster selection criteria and based on the analysis of the different number of error clusters. In this particular model, the error cluster with good quality of the model with a bias of 0.4 ∘C (SD = 0.8 ∘C ) for temperature and 0.6 g kg−1 (SD = 0.7 g kg−1 ) for salinity made up 57 % of all comparison data pairs. The prediction of centroids from a limited number of randomly selected data showed that the obtained centroids gained a stability of at least 100 000 error pairs in the learning dataset. |
| Audience | Academic |
| Author | Maljutenko, Ilja Raudsepp, Urmas |
| Author_xml | – sequence: 1 givenname: Urmas surname: Raudsepp fullname: Raudsepp, Urmas – sequence: 2 givenname: Ilja orcidid: 0000-0001-7655-3363 surname: Maljutenko fullname: Maljutenko, Ilja |
| BookMark | eNptkkFv1DAQhSNUJNrCmaslThyytZ3YsbmtqlJWFCFBOVsTZ5L1Kolb2ynsD-B_4-0ioBLyYaynb55mNO-sOJn9jEXxmtGVYLq-GKauZKIUlSg55fxZccq0ZqWWtDr55_-iOItxR6nUjWxOi59rMmHa-o70PhCIEWOccE7E9yRtkQw4Y4CRWBfsMkJyfiaT73Ak9wuMLu3JEt08PLIfSTkhzJHYcYkJw0GHcfDBpe30jgCxEJHEtHR78j1r5Prq9hN54Cvxsnjewxjx1e96Xnx7f3V7-aG8-Xy9uVzflLauWCoBW05tLxpZC4q6Vq2Cvq5lh1IKRTvFmWy05lBrJfselWxl1apOqUp3TOjqvNgcfTsPO3MX3ARhbzw48yj4MBgIydkRTdUpyXhlG9bQurUcKKuhVQolMJCizV5vjl53wd8vGJPZ-SXMeXzDJed5QqrFX2qAbOrm3qcAdnLRmrXUtK60FjxTq_9Q-XU4OZvv3LusP2l4-6QhMwl_pAGWGM3m65en7MWRtcHHGLD_szij5hAdk6NjmDA5OuYQneoXvJK1lg |
| Cites_doi | 10.1088/2515-7620/ac0cc4 10.1016/j.eswa.2012.07.021 10.1016/j.jmarsys.2008.03.011 10.1016/j.jmarsys.2008.05.014 10.1145/233269.233324 10.1016/j.pocean.2014.08.010 10.1016/j.jmarsys.2019.03.004 10.1175/1520-0493(1989)117<0572:SSACCI>2.0.CO;2 10.5194/os-12-417-2016 10.1109/BALTIC.2014.6887830 10.1016/S1464-1909(99)00140-9 10.3389/fmars.2018.00384 10.1016/S1385-1101(03)00018-2 10.1175/1520-0434(1995)010<0681:TCOCAD>2.0.CO;2 10.1080/02626667.2015.1027710 10.1007/978-0-387-84858-7 10.3390/j2020016 10.1016/S0022-1694(98)00094-8 10.1007/BF00232256 10.1016/j.jmarsys.2004.08.004 10.1007/978-3-540-79703-6 10.1002/2013JC009483 10.1007/s00382-010-0842-y 10.1016/j.csr.2014.02.009 10.1080/1755876X.2020.1785097 10.1016/j.ecss.2007.05.019 10.1080/1755876X.2018.1489208 10.1579/0044-7447-33.4.261 10.2166/nh.2001.0009 10.17882/42182 10.1029/2000JD900719 10.1002/2013JC009192 10.1016/j.jmarsys.2013.04.015 10.1016/j.jmarsys.2005.04.008 10.5194/os-15-905-2019 10.3390/w11102057 10.1016/j.patrec.2009.09.011 10.1016/j.jmarsys.2008.08.009 10.1016/j.ocemod.2015.05.008 10.1533/9780857099440 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.5194/gmd-15-535-2022 |
| DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Continental Europe Database (ProQuest) ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Collection (ProQuest) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1991-9603 1991-962X |
| EndPage | 551 |
| ExternalDocumentID | oai_doaj_org_article_3d86123c71704bc2a014ab88e6a1a65b A690439952 10_5194_gmd_15_535_2022 |
| GeographicLocations | Gulf of Riga North Sea Gulf of Bothnia Gulf of Finland Baltic Sea Gotland (island) |
| GeographicLocations_xml | – name: Baltic Sea – name: North Sea – name: Gulf of Bothnia – name: Gotland (island) – name: Gulf of Finland – name: Gulf of Riga |
| GroupedDBID | 5VS 8R4 8R5 AAFWJ AAYXX ABDBF ACUHS ADBBV AENEX AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION ESX GROUPED_DOAJ H13 IAO IEA IEP ISR ITC KQ8 OK1 P2P Q2X RKB RNS TR2 TUS 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M LK5 M7R M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS |
| ID | FETCH-LOGICAL-c431t-aeb20cf576450e948b8af446de66580d82167992a4986ffe86b63b8d8839d1593 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751173300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1991-9603 1991-959X 1991-962X |
| IngestDate | Fri Oct 03 12:50:25 EDT 2025 Fri Jul 25 12:32:59 EDT 2025 Mon Oct 20 22:31:57 EDT 2025 Mon Oct 20 16:21:55 EDT 2025 Thu Oct 16 15:24:27 EDT 2025 Sat Nov 29 05:37:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c431t-aeb20cf576450e948b8af446de66580d82167992a4986ffe86b63b8d8839d1593 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
| ORCID | 0000-0001-7655-3363 |
| OpenAccessLink | https://www.proquest.com/docview/2622450095?pq-origsite=%requestingapplication% |
| PQID | 2622450095 |
| PQPubID | 105726 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3d86123c71704bc2a014ab88e6a1a65b proquest_journals_2622450095 gale_infotracmisc_A690439952 gale_infotracacademiconefile_A690439952 gale_incontextgauss_ISR_A690439952 crossref_primary_10_5194_gmd_15_535_2022 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-25 |
| PublicationDateYYYYMMDD | 2022-01-25 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Geoscientific Model Development |
| PublicationYear | 2022 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref22 doi: 10.1088/2515-7620/ac0cc4 – ident: ref4 doi: 10.1016/j.eswa.2012.07.021 – ident: ref5 – ident: ref43 doi: 10.1016/j.jmarsys.2008.03.011 – ident: ref19 doi: 10.1016/j.jmarsys.2008.05.014 – ident: ref49 doi: 10.1145/233269.233324 – ident: ref35 doi: 10.1016/j.pocean.2014.08.010 – ident: ref29 doi: 10.1016/j.jmarsys.2019.03.004 – ident: ref27 – ident: ref33 doi: 10.1175/1520-0493(1989)117<0572:SSACCI>2.0.CO;2 – ident: ref42 doi: 10.5194/os-12-417-2016 – ident: ref28 doi: 10.1109/BALTIC.2014.6887830 – ident: ref23 doi: 10.1016/S1464-1909(99)00140-9 – ident: ref31 doi: 10.3389/fmars.2018.00384 – ident: ref13 – ident: ref10 doi: 10.1016/S1385-1101(03)00018-2 – ident: ref2 – ident: ref32 doi: 10.1175/1520-0434(1995)010<0681:TCOCAD>2.0.CO;2 – ident: ref6 doi: 10.1080/02626667.2015.1027710 – ident: ref40 – ident: ref14 doi: 10.1007/978-0-387-84858-7 – ident: ref26 – ident: ref47 – ident: ref48 doi: 10.3390/j2020016 – ident: ref46 doi: 10.1016/S0022-1694(98)00094-8 – ident: ref20 doi: 10.1007/BF00232256 – ident: ref34 doi: 10.1016/j.jmarsys.2004.08.004 – ident: ref24 doi: 10.1007/978-3-540-79703-6 – ident: ref39 – ident: ref3 – ident: ref16 doi: 10.1002/2013JC009483 – ident: ref25 doi: 10.1007/s00382-010-0842-y – ident: ref41 doi: 10.1016/j.csr.2014.02.009 – ident: ref38 doi: 10.1080/1755876X.2020.1785097 – ident: ref30 doi: 10.1016/j.ecss.2007.05.019 – ident: ref37 doi: 10.1080/1755876X.2018.1489208 – ident: ref7 doi: 10.1579/0044-7447-33.4.261 – ident: ref36 doi: 10.2166/nh.2001.0009 – ident: ref1 doi: 10.17882/42182 – ident: ref44 doi: 10.1029/2000JD900719 – ident: ref45 doi: 10.1002/2013JC009192 – ident: ref11 doi: 10.1016/j.jmarsys.2013.04.015 – ident: ref15 doi: 10.1016/j.jmarsys.2005.04.008 – ident: ref18 doi: 10.5194/os-15-905-2019 – ident: ref8 doi: 10.3390/w11102057 – ident: ref17 doi: 10.1016/j.patrec.2009.09.011 – ident: ref9 doi: 10.1016/j.jmarsys.2008.08.009 – ident: ref12 doi: 10.1016/j.ocemod.2015.05.008 – ident: ref21 doi: 10.1533/9780857099440 |
| SSID | ssj0069767 ssj0069768 |
| Score | 2.2801785 |
| Snippet | The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of
discussion. Multidimensional... The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of discussion. Multidimensional... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 535 |
| SubjectTerms | Accuracy Algorithms Analysis Case studies Centroids Cluster analysis Clustering Dimensional analysis Elbow Errors General circulation models Learning algorithms Machine learning Methods Model accuracy Quality assessment Quality control Rivers Saline water Salinity Salinity effects Simulation Temperature Variables Vector quantization |
| SummonAdditionalLinks | – databaseName: Copernicus Publications dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQVSQu0PIhFko1QkhwMU2cOGtzW1BbEFAhKNLeLMcf6UrdXZTNVuqdH94ZJ63YQ8UBrslEif3smTeO_YaxV3n0wo8Lx5UYZ7y02nOVW8uVQ_aAKUYRfBJx_TI-OVHTqf72R6kv2hPWywP3HXdQeEUKIQ7TjqysnbDI6W2tVKhsbitZ07l1dLWUp1MNt94HVxhkU1kV2tejpZ72oj7IVsqDZu55LrksJI4QITbiUZLtv805p4hz9OAfvnWH3R9oJkz6R3bZnbB4yO4epzK-l4_Y7wn0paMBOSvYG3VOWEZARghNL0YNbta6ob4XpJo50B_CvATaL98k2898HjDegTtfk-gCXbbnzbKddWfzd2DBYZyEpGILtOgLx4enX-FCvJWP2c-jw9MPH_lQj4E7pBkdt5iFZy5ihlLKLOhS1cpGTCd9qJDHZF4J-qejhS21qmIMqqqrolZeIQnzSJuKJ2xrsVyEpwyKusyiyzM0iqXOZB0K5H4W3bZ0ApOsEXtzjYr51ctuGExXCECDAJpcGgTQEIAj9p6AuDEjvex0AZExAzLmb8iM2EvC3JAixoK23DR2vVqZTz--m0ml6fiwlvim14NRXHatdXY4wYBNIhGtDcu9DUucsm7z9vXQMoPLWBlRIZuSRHmf_Y8WPWf3qHdotUjIPbbVtevwgm27i262avfTbLkCdpoS1A priority: 102 providerName: Copernicus Gesellschaft – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5SKvgi1h942soggr7E7mY3uaRvp7RV1CJa4d5CNsluD3p3srdX6Lt_uDPZvdJ7kL74mh3YTWYy80128g1jb_I6iDAuPNdinPHSmcB17hzXHtEDphhFDInE9ev47ExPp-b7rVZfVBPW0wP3C3dYBE0MIR7TjqysvHCI6V2ldVQud0pW5H2zsdkkU70PVhhkU1sVqusx0kx7Uh9EK-VhMw88l1wWEi1EiK14lGj7_-WcU8Q5ecQeDlARJv0n7rF7cfGY3T9NrXivn7A_E-jbPwPiTnA3DJuwrAFRHTQ9oTT4WeuHHl2Q-t5Af5HyGqjmvUmyX_g8YswCf7km4gQadpfNsp11F_MjcOAx1kFiogU6uIXT4_NvcCXey6fs18nx-cdPfOipwD1ChY47zKQzX2OWUcosmlJX2tWYEoaoEItkQQv6L2OEK41WdR21qlRR6aARSAWEPsUztrNYLuJzBkVVZrXPMxSqS5PJKhaI3xy6XukFJkoj9m6zsvZ3T51hMeUgJVhUgs2lRSVYUsKIfaCVvxEjzus0gJZgB0uwd1nCiL0mvVlitVhQ2Uzj1quV_fzzh50oQ1eAjcQ3vR2E6mXXOu-GWwg4JSLC2pLc35LEbee3H2_Mww7bfmWFQkQkCba--B8zeske0OrQiY-Q-2yna9fxgO36q262al8li_8LBCMA5Q priority: 102 providerName: Directory of Open Access Journals |
| Title | A method for assessment of the general circulation model quality using the K -means clustering algorithm: a case study with GETM v2.5 |
| URI | https://www.proquest.com/docview/2622450095 https://doaj.org/article/3d86123c71704bc2a014ab88e6a1a65b |
| Volume | 15 |
| WOSCitedRecordID | wos000751173300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: RKB dateStart: 20080101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database (ProQuest) customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BFMQW dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: PCBAR dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZgA4kXfiMKo7IQEryYJU7sOrygFnVjGquqbkjlyXLsJExam9Gkk_bOH86d4w76AC88xjmpte58993l_B0hb-LScTdILFN8ELHUZI6p2BimLKAHSDGSwnkS1y-DyUTN59k0FNya0Fa58YneUbvaYo18n0sINgIRwcfLHwynRuHX1TBC4zbZRaYysPPd0XgynW18sYRgO_jzwd-Mw2afTPJ5x_QDECbdrxaOxYKJRIDZcL4VpDyX_988tg9DBw_-dwMPyf0AQOmws5hH5FaxfEzuHvoBv9dPyM8h7YZKU0Cz1NzwdtK6pIAVadXRVFN7vrJh8hf103Rodz3zmmInfeVlj9migEhI7cUa6Rhw2VxU8J_a74sP1FALEZR6fluK5WB6OD47oVf8vXhKvh6Mzz59ZmFSA7MAQFpmID-PbAm5C-ywyFKVK1NCoukKCQgncorj156MmzRTsiwLJXOZ5MopgGcOAFXyjOws62XxnNAkT6PSxhEIlWkWibxIABUacOjCcki_euTdRjX6siPk0JDIoBY1aFHHQoMWNWqxR0aouhsxZNL2C_Wq0uFg6sQpZKCxkNZGaW65gZzR5EoV0sRGirxHXqPiNXJlLLEZpzLrptFHpzM9lBleLM4E_NLbIFTW7cpYE-42wJaQXmtLcm9LEg6z3X69MR4dnEmjf1vOi3-_fknu4b6xQsTFHtlpV-viFbljr9rzZtUPZ6Pvyw59bHI9hbXp0cn0GzzNjke_AHN1GA8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLgguvBGFBSwEgovZxIlTBwmhAvuo-lAFXamcjGM7YaVtu6Tpot75PfxGZvJY6AFue-DYZJSq7pf5vnEy3xDyzE8tt53AMMk7Hgt1bJn0tWbSgHqAEiNwtjRxHXRGIzmdxuMt8rPphcHXKpucWCZquzC4R77LIyAbgYrg7ek3hlOj8OlqM0KjgkXfrb9DybZ80_sA_-9zzvf3Ju8PWT1VgBkgy4JpqCU9k4LOhsu5OJSJ1CkURdZFwMaelRyfTMRch7GM0tTJKImCRFoJUsIC-Qdw3UtkOwSwey2yPe4Nx5-b3B8BuXf-_FB24uHLRXHEp5WzEEimcDebWeYLJgIBMOV8gxTL2QF_Y4iS9vZv_G8LdpNcrwU27VZ3xC2y5ea3yZWDcoDx-g750aXV0GwKap3qc19SukgpaGGaVTbc1Bznpp5sRstpQbRqP11T7BTIytg-mzlgempOVmg3gYf1SQZrUHydvaaaGlAItPTvpbjdTQ_2JkN6xl-Ju-ToQpbgHmnNF3N3n9AgCb3U-B4EpWHsicQFoHo1EJYwHMrLNnnZQEGdVoYjCgo1RI0C1ChfKECNQtS0yTuEynkYOoWXBxZ5purEowIr0WHHQNnuhYnhGmpinUjpIu3rSCRt8hSBptALZI4vG2V6tVyq3qePqhvF2DgdC_imF3VQuihybXTduwE_Ce3DNiJ3NiIhWZnN0w1YVZ0sl-o3Uh_8-_QTcvVwMhyoQW_Uf0iu4RrgbhgXO6RV5Cv3iFw2Z8XxMn9c35eUfLloZP8Cr2BukQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF2VFBAXvhGBAisEgssSe-111kgIpTQpUUoUlVbKbVnvrk2lJimOU5Q7v4pfx4w_CjnArQeOtke2vH6eebO784aQF35que0Ghkne9VioY8ukrzWTBtgDpBiBs6WI60F3PJbTaTzZIj-bWhjcVtn4xNJR24XBOfIOjyDYCGQEnbTeFjHZG7w_-8awgxSutDbtNCqIjNz6O6Rvy3fDPfjWLzkf9I8-fGR1hwFmIHAWTENe6ZkUODfc2sWhTKROIUGyLoLI7FnJcZUi5jqMZZSmTkZJFCTSSqAVFohAAPe9Qra7ASQ9LbK92x9PDps4EEGg7_55UFbl4UajOOLTSmUI6FPYyWaW-YKJQABkOd8IkGUfgb9FizIEDm79z4N3m9ysiTftVX_KHbLl5nfJtf2ysfH6HvnRo1UzbQosnuoLvVK6SClwZJpV8tzUnOSm7nhGyy5CtCpLXVOsIMhK2xGbOWAA1JyuUIYCT-vTDMag-Dp7SzU1wBxoqetLcRqc7vePPtFz_kbcJ8eXMgQPSGu-mLuHhAZJ6KXG98AoDWNPJC4ANqwhkAnDIe1sk9cNLNRZJUSiIIFDBClAkPKFAgQpRFCb7CJsLsxQQbw8scgzVTskFViJyjsG0nkvTAzXkCvrREoXaV9HImmT5wg6hRohcwRMplfLpRp-PlS9KMaC6ljAk17VRumiyLXRdU0HvBLKim1Y7mxYghMzm5cb4KraiS7Vb9Q--vflZ-Q6wFkdDMejx-QGDgFOknGxQ1pFvnJPyFVzXpws86f1L0rJl8sG9i_PMncr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+assessment+of+the+general+circulation+model+quality+using+the+K+-means+clustering+algorithm%3A+a+case+study+with+GETM+v2.5&rft.jtitle=Geoscientific+model+development&rft.au=Raudsepp%2C+Urmas&rft.au=Maljutenko%2C+Ilja&rft.date=2022-01-25&rft.issn=1991-9603&rft.eissn=1991-9603&rft.volume=15&rft.issue=2&rft.spage=535&rft.epage=551&rft_id=info:doi/10.5194%2Fgmd-15-535-2022&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_gmd_15_535_2022 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon |