A method for assessment of the general circulation model quality using the K -means clustering algorithm: a case study with GETM v2.5

The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of discussion. Multidimensional model quality assessment is usually customized for the specific focus of the study and often for a limited number of locations. In this pape...

Full description

Saved in:
Bibliographic Details
Published in:Geoscientific Model Development Vol. 15; no. 2; pp. 535 - 551
Main Authors: Raudsepp, Urmas, Maljutenko, Ilja
Format: Journal Article
Language:English
Published: Katlenburg-Lindau Copernicus GmbH 25.01.2022
Copernicus Publications
Subjects:
ISSN:1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of discussion. Multidimensional model quality assessment is usually customized for the specific focus of the study and often for a limited number of locations. In this paper, we propose a method that provides information on the accuracy of the model in general, while all dimensional information for posterior analysis of the specific tasks is retained. The main goal of the method is to perform clustering of the multivariate model errors. The clustering is done using the K-means algorithm of unsupervised machine learning. In addition, the potential application of the K-means clustering of model errors for learning and predicting is shown. The method is tested on the 40-year simulation results of the general circulation model of the Baltic Sea. The model results are evaluated with the measurement data of temperature and salinity from more than 1 million casts by forming a two-dimensional error space and performing a clustering procedure in it. The optimal number of clusters that consist of four clusters was determined using the Elbow cluster selection criteria and based on the analysis of the different number of error clusters. In this particular model, the error cluster with good quality of the model with a bias of 0.4 ∘C (SD = 0.8 ∘C) for temperature and 0.6 g kg−1 (SD = 0.7 g kg−1) for salinity made up 57 % of all comparison data pairs. The prediction of centroids from a limited number of randomly selected data showed that the obtained centroids gained a stability of at least 100 000 error pairs in the learning dataset.
AbstractList The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of discussion. Multidimensional model quality assessment is usually customized for the specific focus of the study and often for a limited number of locations. In this paper, we propose a method that provides information on the accuracy of the model in general, while all dimensional information for posterior analysis of the specific tasks is retained. The main goal of the method is to perform clustering of the multivariate model errors. The clustering is done using the K-means algorithm of unsupervised machine learning. In addition, the potential application of the K-means clustering of model errors for learning and predicting is shown. The method is tested on the 40-year simulation results of the general circulation model of the Baltic Sea. The model results are evaluated with the measurement data of temperature and salinity from more than 1 million casts by forming a two-dimensional error space and performing a clustering procedure in it. The optimal number of clusters that consist of four clusters was determined using the Elbow cluster selection criteria and based on the analysis of the different number of error clusters. In this particular model, the error cluster with good quality of the model with a bias of 0.4 ∘C (SD = 0.8 ∘C) for temperature and 0.6 g kg−1 (SD = 0.7 g kg−1) for salinity made up 57 % of all comparison data pairs. The prediction of centroids from a limited number of randomly selected data showed that the obtained centroids gained a stability of at least 100 000 error pairs in the learning dataset.
The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of discussion. Multidimensional model quality assessment is usually customized for the specific focus of the study and often for a limited number of locations. In this paper, we propose a method that provides information on the accuracy of the model in general, while all dimensional information for posterior analysis of the specific tasks is retained. The main goal of the method is to perform clustering of the multivariate model errors. The clustering is done using the K-means algorithm of unsupervised machine learning. In addition, the potential application of the K-means clustering of model errors for learning and predicting is shown. The method is tested on the 40-year simulation results of the general circulation model of the Baltic Sea. The model results are evaluated with the measurement data of temperature and salinity from more than 1 million casts by forming a two-dimensional error space and performing a clustering procedure in it. The optimal number of clusters that consist of four clusters was determined using the Elbow cluster selection criteria and based on the analysis of the different number of error clusters. In this particular model, the error cluster with good quality of the model with a bias of 0.4 ∘C (SD = 0.8 ∘C) for temperature and 0.6 gkg-1 (SD = 0.7 gkg-1) for salinity made up 57 % of all comparison data pairs. The prediction of centroids from a limited number of randomly selected data showed that the obtained centroids gained a stability of at least 100 000 error pairs in the learning dataset.
The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of discussion. Multidimensional model quality assessment is usually customized for the specific focus of the study and often for a limited number of locations. In this paper, we propose a method that provides information on the accuracy of the model in general, while all dimensional information for posterior analysis of the specific tasks is retained. The main goal of the method is to perform clustering of the multivariate model errors. The clustering is done using the K-means algorithm of unsupervised machine learning. In addition, the potential application of the K-means clustering of model errors for learning and predicting is shown. The method is tested on the 40-year simulation results of the general circulation model of the Baltic Sea. The model results are evaluated with the measurement data of temperature and salinity from more than 1 million casts by forming a two-dimensional error space and performing a clustering procedure in it. The optimal number of clusters that consist of four clusters was determined using the Elbow cluster selection criteria and based on the analysis of the different number of error clusters. In this particular model, the error cluster with good quality of the model with a bias of 0.4 .sup." C (SD = 0.8 .sup." C) for temperature and 0.6 g kg.sup.-1 (SD = 0.7 g kg.sup.-1) for salinity made up 57 % of all comparison data pairs. The prediction of centroids from a limited number of randomly selected data showed that the obtained centroids gained a stability of at least 100 000 error pairs in the learning dataset.
The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of discussion. Multidimensional model quality assessment is usually customized for the specific focus of the study and often for a limited number of locations. In this paper, we propose a method that provides information on the accuracy of the model in general, while all dimensional information for posterior analysis of the specific tasks is retained. The main goal of the method is to perform clustering of the multivariate model errors. The clustering is done using the K -means algorithm of unsupervised machine learning. In addition, the potential application of the K -means clustering of model errors for learning and predicting is shown. The method is tested on the 40-year simulation results of the general circulation model of the Baltic Sea. The model results are evaluated with the measurement data of temperature and salinity from more than 1 million casts by forming a two-dimensional error space and performing a clustering procedure in it. The optimal number of clusters that consist of four clusters was determined using the Elbow cluster selection criteria and based on the analysis of the different number of error clusters. In this particular model, the error cluster with good quality of the model with a bias of 0.4  ∘C (SD  =  0.8  ∘C ) for temperature and 0.6  g kg−1 (SD  =  0.7  g kg−1 ) for salinity made up 57 % of all comparison data pairs. The prediction of centroids from a limited number of randomly selected data showed that the obtained centroids gained a stability of at least 100 000 error pairs in the learning dataset.
Audience Academic
Author Maljutenko, Ilja
Raudsepp, Urmas
Author_xml – sequence: 1
  givenname: Urmas
  surname: Raudsepp
  fullname: Raudsepp, Urmas
– sequence: 2
  givenname: Ilja
  orcidid: 0000-0001-7655-3363
  surname: Maljutenko
  fullname: Maljutenko, Ilja
BookMark eNptkkFv1DAQhSNUJNrCmaslThyytZ3YsbmtqlJWFCFBOVsTZ5L1Kolb2ynsD-B_4-0ioBLyYaynb55mNO-sOJn9jEXxmtGVYLq-GKauZKIUlSg55fxZccq0ZqWWtDr55_-iOItxR6nUjWxOi59rMmHa-o70PhCIEWOccE7E9yRtkQw4Y4CRWBfsMkJyfiaT73Ak9wuMLu3JEt08PLIfSTkhzJHYcYkJw0GHcfDBpe30jgCxEJHEtHR78j1r5Prq9hN54Cvxsnjewxjx1e96Xnx7f3V7-aG8-Xy9uVzflLauWCoBW05tLxpZC4q6Vq2Cvq5lh1IKRTvFmWy05lBrJfselWxl1apOqUp3TOjqvNgcfTsPO3MX3ARhbzw48yj4MBgIydkRTdUpyXhlG9bQurUcKKuhVQolMJCizV5vjl53wd8vGJPZ-SXMeXzDJed5QqrFX2qAbOrm3qcAdnLRmrXUtK60FjxTq_9Q-XU4OZvv3LusP2l4-6QhMwl_pAGWGM3m65en7MWRtcHHGLD_szij5hAdk6NjmDA5OuYQneoXvJK1lg
Cites_doi 10.1088/2515-7620/ac0cc4
10.1016/j.eswa.2012.07.021
10.1016/j.jmarsys.2008.03.011
10.1016/j.jmarsys.2008.05.014
10.1145/233269.233324
10.1016/j.pocean.2014.08.010
10.1016/j.jmarsys.2019.03.004
10.1175/1520-0493(1989)117<0572:SSACCI>2.0.CO;2
10.5194/os-12-417-2016
10.1109/BALTIC.2014.6887830
10.1016/S1464-1909(99)00140-9
10.3389/fmars.2018.00384
10.1016/S1385-1101(03)00018-2
10.1175/1520-0434(1995)010<0681:TCOCAD>2.0.CO;2
10.1080/02626667.2015.1027710
10.1007/978-0-387-84858-7
10.3390/j2020016
10.1016/S0022-1694(98)00094-8
10.1007/BF00232256
10.1016/j.jmarsys.2004.08.004
10.1007/978-3-540-79703-6
10.1002/2013JC009483
10.1007/s00382-010-0842-y
10.1016/j.csr.2014.02.009
10.1080/1755876X.2020.1785097
10.1016/j.ecss.2007.05.019
10.1080/1755876X.2018.1489208
10.1579/0044-7447-33.4.261
10.2166/nh.2001.0009
10.17882/42182
10.1029/2000JD900719
10.1002/2013JC009192
10.1016/j.jmarsys.2013.04.015
10.1016/j.jmarsys.2005.04.008
10.5194/os-15-905-2019
10.3390/w11102057
10.1016/j.patrec.2009.09.011
10.1016/j.jmarsys.2008.08.009
10.1016/j.ocemod.2015.05.008
10.1533/9780857099440
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.5194/gmd-15-535-2022
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Continental Europe Database (ProQuest)
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Collection (ProQuest)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1991-9603
1991-962X
EndPage 551
ExternalDocumentID oai_doaj_org_article_3d86123c71704bc2a014ab88e6a1a65b
A690439952
10_5194_gmd_15_535_2022
GeographicLocations Gulf of Riga
North Sea
Gulf of Bothnia
Gulf of Finland
Baltic Sea
Gotland (island)
GeographicLocations_xml – name: Baltic Sea
– name: North Sea
– name: Gulf of Bothnia
– name: Gotland (island)
– name: Gulf of Finland
– name: Gulf of Riga
GroupedDBID 5VS
8R4
8R5
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AENEX
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
ESX
GROUPED_DOAJ
H13
IAO
IEA
IEP
ISR
ITC
KQ8
OK1
P2P
Q2X
RKB
RNS
TR2
TUS
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
LK5
M7R
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
ID FETCH-LOGICAL-c431t-aeb20cf576450e948b8af446de66580d82167992a4986ffe86b63b8d8839d1593
IEDL.DBID BENPR
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751173300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1991-9603
1991-959X
1991-962X
IngestDate Fri Oct 03 12:50:25 EDT 2025
Fri Jul 25 12:32:59 EDT 2025
Mon Oct 20 22:31:57 EDT 2025
Mon Oct 20 16:21:55 EDT 2025
Thu Oct 16 15:24:27 EDT 2025
Sat Nov 29 05:37:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-aeb20cf576450e948b8af446de66580d82167992a4986ffe86b63b8d8839d1593
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0001-7655-3363
OpenAccessLink https://www.proquest.com/docview/2622450095?pq-origsite=%requestingapplication%
PQID 2622450095
PQPubID 105726
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_3d86123c71704bc2a014ab88e6a1a65b
proquest_journals_2622450095
gale_infotracmisc_A690439952
gale_infotracacademiconefile_A690439952
gale_incontextgauss_ISR_A690439952
crossref_primary_10_5194_gmd_15_535_2022
PublicationCentury 2000
PublicationDate 2022-01-25
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-25
  day: 25
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Geoscientific Model Development
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref22
  doi: 10.1088/2515-7620/ac0cc4
– ident: ref4
  doi: 10.1016/j.eswa.2012.07.021
– ident: ref5
– ident: ref43
  doi: 10.1016/j.jmarsys.2008.03.011
– ident: ref19
  doi: 10.1016/j.jmarsys.2008.05.014
– ident: ref49
  doi: 10.1145/233269.233324
– ident: ref35
  doi: 10.1016/j.pocean.2014.08.010
– ident: ref29
  doi: 10.1016/j.jmarsys.2019.03.004
– ident: ref27
– ident: ref33
  doi: 10.1175/1520-0493(1989)117<0572:SSACCI>2.0.CO;2
– ident: ref42
  doi: 10.5194/os-12-417-2016
– ident: ref28
  doi: 10.1109/BALTIC.2014.6887830
– ident: ref23
  doi: 10.1016/S1464-1909(99)00140-9
– ident: ref31
  doi: 10.3389/fmars.2018.00384
– ident: ref13
– ident: ref10
  doi: 10.1016/S1385-1101(03)00018-2
– ident: ref2
– ident: ref32
  doi: 10.1175/1520-0434(1995)010<0681:TCOCAD>2.0.CO;2
– ident: ref6
  doi: 10.1080/02626667.2015.1027710
– ident: ref40
– ident: ref14
  doi: 10.1007/978-0-387-84858-7
– ident: ref26
– ident: ref47
– ident: ref48
  doi: 10.3390/j2020016
– ident: ref46
  doi: 10.1016/S0022-1694(98)00094-8
– ident: ref20
  doi: 10.1007/BF00232256
– ident: ref34
  doi: 10.1016/j.jmarsys.2004.08.004
– ident: ref24
  doi: 10.1007/978-3-540-79703-6
– ident: ref39
– ident: ref3
– ident: ref16
  doi: 10.1002/2013JC009483
– ident: ref25
  doi: 10.1007/s00382-010-0842-y
– ident: ref41
  doi: 10.1016/j.csr.2014.02.009
– ident: ref38
  doi: 10.1080/1755876X.2020.1785097
– ident: ref30
  doi: 10.1016/j.ecss.2007.05.019
– ident: ref37
  doi: 10.1080/1755876X.2018.1489208
– ident: ref7
  doi: 10.1579/0044-7447-33.4.261
– ident: ref36
  doi: 10.2166/nh.2001.0009
– ident: ref1
  doi: 10.17882/42182
– ident: ref44
  doi: 10.1029/2000JD900719
– ident: ref45
  doi: 10.1002/2013JC009192
– ident: ref11
  doi: 10.1016/j.jmarsys.2013.04.015
– ident: ref15
  doi: 10.1016/j.jmarsys.2005.04.008
– ident: ref18
  doi: 10.5194/os-15-905-2019
– ident: ref8
  doi: 10.3390/w11102057
– ident: ref17
  doi: 10.1016/j.patrec.2009.09.011
– ident: ref9
  doi: 10.1016/j.jmarsys.2008.08.009
– ident: ref12
  doi: 10.1016/j.ocemod.2015.05.008
– ident: ref21
  doi: 10.1533/9780857099440
SSID ssj0069767
ssj0069768
Score 2.2801785
Snippet The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of discussion. Multidimensional...
The model's ability to reproduce the state of the simulated object or particular feature or phenomenon is always a subject of discussion. Multidimensional...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 535
SubjectTerms Accuracy
Algorithms
Analysis
Case studies
Centroids
Cluster analysis
Clustering
Dimensional analysis
Elbow
Errors
General circulation models
Learning algorithms
Machine learning
Methods
Model accuracy
Quality assessment
Quality control
Rivers
Saline water
Salinity
Salinity effects
Simulation
Temperature
Variables
Vector quantization
SummonAdditionalLinks – databaseName: Copernicus Publications
  dbid: RKB
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQVSQu0PIhFko1QkhwMU2cOGtzW1BbEFAhKNLeLMcf6UrdXZTNVuqdH94ZJ63YQ8UBrslEif3smTeO_YaxV3n0wo8Lx5UYZ7y02nOVW8uVQ_aAKUYRfBJx_TI-OVHTqf72R6kv2hPWywP3HXdQeEUKIQ7TjqysnbDI6W2tVKhsbitZ07l1dLWUp1MNt94HVxhkU1kV2tejpZ72oj7IVsqDZu55LrksJI4QITbiUZLtv805p4hz9OAfvnWH3R9oJkz6R3bZnbB4yO4epzK-l4_Y7wn0paMBOSvYG3VOWEZARghNL0YNbta6ob4XpJo50B_CvATaL98k2898HjDegTtfk-gCXbbnzbKddWfzd2DBYZyEpGILtOgLx4enX-FCvJWP2c-jw9MPH_lQj4E7pBkdt5iFZy5ihlLKLOhS1cpGTCd9qJDHZF4J-qejhS21qmIMqqqrolZeIQnzSJuKJ2xrsVyEpwyKusyiyzM0iqXOZB0K5H4W3bZ0ApOsEXtzjYr51ctuGExXCECDAJpcGgTQEIAj9p6AuDEjvex0AZExAzLmb8iM2EvC3JAixoK23DR2vVqZTz--m0ml6fiwlvim14NRXHatdXY4wYBNIhGtDcu9DUucsm7z9vXQMoPLWBlRIZuSRHmf_Y8WPWf3qHdotUjIPbbVtevwgm27i262avfTbLkCdpoS1A
  priority: 102
  providerName: Copernicus Gesellschaft
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5SKvgi1h942soggr7E7mY3uaRvp7RV1CJa4d5CNsluD3p3srdX6Lt_uDPZvdJ7kL74mh3YTWYy80128g1jb_I6iDAuPNdinPHSmcB17hzXHtEDphhFDInE9ev47ExPp-b7rVZfVBPW0wP3C3dYBE0MIR7TjqysvHCI6V2ldVQud0pW5H2zsdkkU70PVhhkU1sVqusx0kx7Uh9EK-VhMw88l1wWEi1EiK14lGj7_-WcU8Q5ecQeDlARJv0n7rF7cfGY3T9NrXivn7A_E-jbPwPiTnA3DJuwrAFRHTQ9oTT4WeuHHl2Q-t5Af5HyGqjmvUmyX_g8YswCf7km4gQadpfNsp11F_MjcOAx1kFiogU6uIXT4_NvcCXey6fs18nx-cdPfOipwD1ChY47zKQzX2OWUcosmlJX2tWYEoaoEItkQQv6L2OEK41WdR21qlRR6aARSAWEPsUztrNYLuJzBkVVZrXPMxSqS5PJKhaI3xy6XukFJkoj9m6zsvZ3T51hMeUgJVhUgs2lRSVYUsKIfaCVvxEjzus0gJZgB0uwd1nCiL0mvVlitVhQ2Uzj1quV_fzzh50oQ1eAjcQ3vR2E6mXXOu-GWwg4JSLC2pLc35LEbee3H2_Mww7bfmWFQkQkCba--B8zeske0OrQiY-Q-2yna9fxgO36q262al8li_8LBCMA5Q
  priority: 102
  providerName: Directory of Open Access Journals
Title A method for assessment of the general circulation model quality using the K -means clustering algorithm: a case study with GETM v2.5
URI https://www.proquest.com/docview/2622450095
https://doaj.org/article/3d86123c71704bc2a014ab88e6a1a65b
Volume 15
WOSCitedRecordID wos000751173300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: RKB
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database (ProQuest)
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BFMQW
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PCBAR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZgA4kXfiMKo7IQEryYJU7sOrygFnVjGquqbkjlyXLsJExam9Gkk_bOH86d4w76AC88xjmpte58993l_B0hb-LScTdILFN8ELHUZI6p2BimLKAHSDGSwnkS1y-DyUTN59k0FNya0Fa58YneUbvaYo18n0sINgIRwcfLHwynRuHX1TBC4zbZRaYysPPd0XgynW18sYRgO_jzwd-Mw2afTPJ5x_QDECbdrxaOxYKJRIDZcL4VpDyX_988tg9DBw_-dwMPyf0AQOmws5hH5FaxfEzuHvoBv9dPyM8h7YZKU0Cz1NzwdtK6pIAVadXRVFN7vrJh8hf103Rodz3zmmInfeVlj9migEhI7cUa6Rhw2VxU8J_a74sP1FALEZR6fluK5WB6OD47oVf8vXhKvh6Mzz59ZmFSA7MAQFpmID-PbAm5C-ywyFKVK1NCoukKCQgncorj156MmzRTsiwLJXOZ5MopgGcOAFXyjOws62XxnNAkT6PSxhEIlWkWibxIABUacOjCcki_euTdRjX6siPk0JDIoBY1aFHHQoMWNWqxR0aouhsxZNL2C_Wq0uFg6sQpZKCxkNZGaW65gZzR5EoV0sRGirxHXqPiNXJlLLEZpzLrptFHpzM9lBleLM4E_NLbIFTW7cpYE-42wJaQXmtLcm9LEg6z3X69MR4dnEmjf1vOi3-_fknu4b6xQsTFHtlpV-viFbljr9rzZtUPZ6Pvyw59bHI9hbXp0cn0GzzNjke_AHN1GA8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLgguvBGFBSwEgovZxIlTBwmhAvuo-lAFXamcjGM7YaVtu6Tpot75PfxGZvJY6AFue-DYZJSq7pf5vnEy3xDyzE8tt53AMMk7Hgt1bJn0tWbSgHqAEiNwtjRxHXRGIzmdxuMt8rPphcHXKpucWCZquzC4R77LIyAbgYrg7ek3hlOj8OlqM0KjgkXfrb9DybZ80_sA_-9zzvf3Ju8PWT1VgBkgy4JpqCU9k4LOhsu5OJSJ1CkURdZFwMaelRyfTMRch7GM0tTJKImCRFoJUsIC-Qdw3UtkOwSwey2yPe4Nx5-b3B8BuXf-_FB24uHLRXHEp5WzEEimcDebWeYLJgIBMOV8gxTL2QF_Y4iS9vZv_G8LdpNcrwU27VZ3xC2y5ea3yZWDcoDx-g750aXV0GwKap3qc19SukgpaGGaVTbc1Bznpp5sRstpQbRqP11T7BTIytg-mzlgempOVmg3gYf1SQZrUHydvaaaGlAItPTvpbjdTQ_2JkN6xl-Ju-ToQpbgHmnNF3N3n9AgCb3U-B4EpWHsicQFoHo1EJYwHMrLNnnZQEGdVoYjCgo1RI0C1ChfKECNQtS0yTuEynkYOoWXBxZ5purEowIr0WHHQNnuhYnhGmpinUjpIu3rSCRt8hSBptALZI4vG2V6tVyq3qePqhvF2DgdC_imF3VQuihybXTduwE_Ce3DNiJ3NiIhWZnN0w1YVZ0sl-o3Uh_8-_QTcvVwMhyoQW_Uf0iu4RrgbhgXO6RV5Cv3iFw2Z8XxMn9c35eUfLloZP8Cr2BukQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF2VFBAXvhGBAisEgssSe-111kgIpTQpUUoUlVbKbVnvrk2lJimOU5Q7v4pfx4w_CjnArQeOtke2vH6eebO784aQF35que0Ghkne9VioY8ukrzWTBtgDpBiBs6WI60F3PJbTaTzZIj-bWhjcVtn4xNJR24XBOfIOjyDYCGQEnbTeFjHZG7w_-8awgxSutDbtNCqIjNz6O6Rvy3fDPfjWLzkf9I8-fGR1hwFmIHAWTENe6ZkUODfc2sWhTKROIUGyLoLI7FnJcZUi5jqMZZSmTkZJFCTSSqAVFohAAPe9Qra7ASQ9LbK92x9PDps4EEGg7_55UFbl4UajOOLTSmUI6FPYyWaW-YKJQABkOd8IkGUfgb9FizIEDm79z4N3m9ysiTftVX_KHbLl5nfJtf2ysfH6HvnRo1UzbQosnuoLvVK6SClwZJpV8tzUnOSm7nhGyy5CtCpLXVOsIMhK2xGbOWAA1JyuUIYCT-vTDMag-Dp7SzU1wBxoqetLcRqc7vePPtFz_kbcJ8eXMgQPSGu-mLuHhAZJ6KXG98AoDWNPJC4ANqwhkAnDIe1sk9cNLNRZJUSiIIFDBClAkPKFAgQpRFCb7CJsLsxQQbw8scgzVTskFViJyjsG0nkvTAzXkCvrREoXaV9HImmT5wg6hRohcwRMplfLpRp-PlS9KMaC6ljAk17VRumiyLXRdU0HvBLKim1Y7mxYghMzm5cb4KraiS7Vb9Q--vflZ-Q6wFkdDMejx-QGDgFOknGxQ1pFvnJPyFVzXpws86f1L0rJl8sG9i_PMncr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+assessment+of+the+general+circulation+model+quality+using+the+K+-means+clustering+algorithm%3A+a+case+study+with+GETM+v2.5&rft.jtitle=Geoscientific+model+development&rft.au=Raudsepp%2C+Urmas&rft.au=Maljutenko%2C+Ilja&rft.date=2022-01-25&rft.issn=1991-9603&rft.eissn=1991-9603&rft.volume=15&rft.issue=2&rft.spage=535&rft.epage=551&rft_id=info:doi/10.5194%2Fgmd-15-535-2022&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_gmd_15_535_2022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon